Viral Crossroads: The Interface Between Wildlife and Domestic Animal Health

A special issue of Veterinary Sciences (ISSN 2306-7381). This special issue belongs to the section "Veterinary Microbiology, Parasitology and Immunology".

Deadline for manuscript submissions: 9 October 2025 | Viewed by 3068

Special Issue Editors


E-Mail Website
Guest Editor
Virology Department, Institute of Veterinary Medicine of Serbia, 11000 Belgrade, Serbia
Interests: veterinary virology; transboundary animal diseases; viral diseases diagnostics; epidemiology

E-Mail Website
Guest Editor
1. Department of Pathobiology and Epidemiology, University of Sarajevo—Veterinary Faculty, Zmaja od Bosne 90, 71000 Sarajevo, Bosnia and Herzegovina
2. Department of Animal Production and Biotechnology, University of Sarajevo—Veterinary Faculty, Zmaja od Bosne 90, 71000 Sarajevo, Bosnia and Herzegovina
Interests: virology; molecular biology; veterinary medicine

Special Issue Information

Dear Colleagues,

This Special Issue will explore the intricate and evolving interactions between wildlife and domestic animals, emphasizing how these relationships drive the spread and evolution of viral diseases. As human activities lead to habitat encroachment, agricultural expansion, and climate change, the boundaries between wildlife and domestic animal populations blur, heightening the risk of cross-species viral transmission. The Special Issue will explore critical topics such as viral spillover events, the intricate pathways and mechanisms that enable cross-species transmission, and the significant role played by environmental changes in accelerating these processes. Additionally, it will examine the broader implications for public health, agriculture, and biodiversity conservation, highlighting the interconnectedness of these fields. This Special Issue will deepen our understanding of the complex factors driving these viral interfaces by featuring cutting-edge research and diverse perspectives. It will also address the development of robust strategies for monitoring, preventing, and controlling disease spread, thereby safeguarding wildlife and domestic animal health at this pivotal crossroads.

Dr. Vesna Milicevic
Dr. Teufik Goletić
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Veterinary Sciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • animal viral diseases
  • transmission dynamics
  • viral spillover
  • cross-species transmission
  • disease surveillance

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 1328 KiB  
Article
Identification and Characterization of Viral and Bacterial Pathogens in Free-Living Bats of Kopaonik National Park, Serbia
by Dejan Vidanović, Nikola Vasković, Marko Dmitrić, Bojana Tešović, Mihailo Debeljak, Milovan Stojanović and Ivana Budinski
Vet. Sci. 2025, 12(5), 401; https://doi.org/10.3390/vetsci12050401 - 24 Apr 2025
Viewed by 134
Abstract
This pilot study investigated the presence of potentially zoonotic microorganisms in bat species from Kopaonik National Park, Serbia. A total of 40 individuals from 12 bat species were sampled and screened using microbiological and molecular methods. Salmonella spp., Chlamydia spp., Coxiella burnetii, [...] Read more.
This pilot study investigated the presence of potentially zoonotic microorganisms in bat species from Kopaonik National Park, Serbia. A total of 40 individuals from 12 bat species were sampled and screened using microbiological and molecular methods. Salmonella spp., Chlamydia spp., Coxiella burnetii, Francisella tularensis, Leptospira spp., Lyssavirus, Filoviridae, henipaviruses, and SARS-CoV-2 were not detected in any bats. Coronavirus genomes were confirmed in four bats—one Myotis brandtii, two Myotis daubentonii, and one Myotis cf. mystacinus. Sequence analysis identified the presence of alphacoronavirus genomes with high similarity to strains previously found in Europe. Mycoplasma spp. genomes were found in 18 bats (45%), and Rickettsia spp. were detected in five bats (12.5%), although species-level identification was not possible. The findings highlight the presence of certain bacteria and viruses in bats that could have implications for public health, especially in areas with close human–wildlife interaction. Although no direct evidence of high-risk pathogens was found, the results support the importance of continued surveillance and ecological studies on bats, given their role as potential reservoirs. Monitoring bat-associated microorganisms is essential to better understand possible transmission routes and improve the prevention of emerging zoonotic diseases. Full article
Show Figures

Figure 1

21 pages, 1992 KiB  
Article
Comparative Mutational Analysis and the Glycosylation Patterns of a Peruvian Isolated Avian Influenza A Virus H5N1: Exploring Possible Viral Spillover Events Within One Health Approach
by Sandra Landazabal-Castillo, Lucero Alva-Alvarez, Dilan Suarez-Agϋero, Enrique Mamani-Zapana and Egma Mayta-Huatuco
Vet. Sci. 2025, 12(4), 392; https://doi.org/10.3390/vetsci12040392 - 21 Apr 2025
Viewed by 225
Abstract
(1) Background: The ongoing panzootic of highly pathogenic avian influenza virus (HPAIV) of subtype H5N1, clade 2.3.4.4b, has decimated wild/domestic birds and mammals’ populations worldwide with reports of sporadic cases in humans. (2) Methods: This study aimed to compare the mutational profile of [...] Read more.
(1) Background: The ongoing panzootic of highly pathogenic avian influenza virus (HPAIV) of subtype H5N1, clade 2.3.4.4b, has decimated wild/domestic birds and mammals’ populations worldwide with reports of sporadic cases in humans. (2) Methods: This study aimed to compare the mutational profile of H5N1 avian Influenza virus isolated from a Peruvian natural reserve, with recent data from other related international studies made in human and different species of domestic and wild birds and mammals. Briefly, the near complete protein sequences of the Influenza virus coming from a Calidris alba were analyzed at a multisegmented level, together with 55 samples collected between 2022 and 2024 in different countries. Moreover, the glycosylation patterns were also predicted in silico. (3) Results: A total of 603 amino acid changes were found among H5N1 viruses analyzed, underscoring the detection of critical mutations HA:11I, HA:211I, HA:336T, HA:492D, HA:527I, NA:10T, NA:269L, NA:405T, NP:377N, PA:57R, PA:68S, PA:322V/L, PA:432I, PB2:539V, PB1:207R, PB1:375N, PB1:264D, PB1:429R, PA-X:250Q, PB1-F2:65R, and PB1-F2:42Y, as well as PA:13V, PA-X:13V, PA20T, PA-X:20T, PA:36T PA-X:36T, PA:45S, PA-X:45S, PA:57Q, PA-X:57Q, PA:61I, PA-X:61I, PA:68S, PA-X:68S, PA:70V, PA-X:70V, PA:75Q, PA-X:75Q, PA:85T, PA-X:85T, PA:86I, PA-X:86I, PA:100I, PA-X:100I, PA:142E, PA-X:142E, PA:160E, PA-X:160E, PA:211I, PA-X:211Y, among others, considered of importance under the One Health perspective. Similarly, changes in the N-linked glycosylation sites (NLGs) predicted in both HA and NA proteins were found, highlighting the loss/acquisition or changes in some NLGs, such as 209NNTN, 100 NPTT, 302NSSM (HA) and 70NNTN, 68NISS, and 50NGSV (NA). (4) Conclusions: This study provides our understanding about the evolution of current Influenza A viruses H5N1 HPAIV circulating globally. These findings outline the importance of surveillance updating mutational profiles and glycosylation patterns of these highly evolved viruses. Full article
Show Figures

Figure 1

14 pages, 3718 KiB  
Article
Scalable Production of Recombinant Adeno-Associated Virus Vectors Expressing Soluble Viral Receptors for Broad-Spectrum Inhibition of Porcine Reproductive and Respiratory Syndrome Virus Type 2
by Xiaoming Liu, Nuo Xu, Xiaoli Song, Linlin Zhuang, Qiuping Shen and Huaichang Sun
Vet. Sci. 2025, 12(4), 366; https://doi.org/10.3390/vetsci12040366 - 14 Apr 2025
Viewed by 295
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a major threat to the global swine industry, causing significant economic losses. To address this, we developed a scalable recombinant adeno-associated virus (rAAV)-based strategy for the delivery of soluble viral receptors (SVRs) to [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a major threat to the global swine industry, causing significant economic losses. To address this, we developed a scalable recombinant adeno-associated virus (rAAV)-based strategy for the delivery of soluble viral receptors (SVRs) to treat and potentially eliminate PRRSV infections. This strategy involves fusing the virus-binding domains of two key cellular receptors, sialoadhesin (Sn4D) and CD163 (SRCR5-9), with an Fc fragment. We then used an insect cell–baculovirus expression vector system to produce the rAAV-SRCR59-Fc/Sn4D-Fc vector. Through a series of optimizations, we determined the best conditions for rAAV production, including a baculovirus co-infection ratio of 0.5:1.0, an initial insect cell density of 2.0 × 106 cells/mL, a fetal bovine serum concentration of 2%, and a culture temperature of 30 °C. Under these optimized conditions, we achieved a high titer of rAAV-SRCR59-Fc/Sn4D-Fc in a 2 L bioreactor, reaching 5.4 ± 0.9 × 109 infectious viral particles (IVPs)/mL. Notably, in vitro neutralization assays using a Transwell co-culture system demonstrated a 4.3 log reduction in viral titers across genetically diverse PRRSV-2 strains, including VR2332, JXA1, JS07, and SH1705. Collectively, this study provides a robust platform for large-scale rAAV production and highlights the potential of SVR-based gene therapy to address the antigenic diversity of PRRSV-2. Full article
Show Figures

Figure 1

12 pages, 2967 KiB  
Article
The Detection of Mixed Infection with Canine Parvovirus, Canine Distemper Virus, and Rotavirus in Giant Pandas by Multiplex PCR
by Ai Liu, Wenyue Qiao, Rui Ma, Qigui Yan, Shan Zhao and Yifei Lang
Vet. Sci. 2025, 12(2), 81; https://doi.org/10.3390/vetsci12020081 - 23 Jan 2025
Viewed by 894
Abstract
The well-being and subsistence of giant pandas, an endangered species with a limited distribution, are currently threatened by a number of viruses, including canine parvovirus (CPV-2), canine distemper virus (CDV), and giant panda rotavirus (GPRV). To allow for timely intervention upon viral infection, [...] Read more.
The well-being and subsistence of giant pandas, an endangered species with a limited distribution, are currently threatened by a number of viruses, including canine parvovirus (CPV-2), canine distemper virus (CDV), and giant panda rotavirus (GPRV). To allow for timely intervention upon viral infection, it is necessary to execute rapid and accurate diagnosis of potential mixed viral infections. In the present study, we developed and validated a multiplex PCR (mPCR) approach for the detection of CPV-2, CDV, and GPRV infections. The results indicate that the method could selectively amplify the three viruses with high sensitivity and specificity, which are necessary attributes in clinical settings. Utilizing the established method, (sub)clinical giant panda samples were examined, and CPV-2, CDV, and GPRV were found in 19.72% (43 out of 218), 7.34% (16 out of 218), and 6.42% (14 out of 218) of the samples, respectively. Noticeably, mixed infections of two or three viruses were common, and this was generally observed in CDV- or GPRV-positive samples. Meanwhile, mPCR results were further validated with sequencing and the phylogenetic analysis of full-length sequences of viral genes. Taken together, our study provides an approachable assay which enables the quick detection of the three viruses mentioned above, which will benefit clinical diagnosis and laboratory epidemiological-based investigations of the giant panda population. Full article
Show Figures

Figure 1

Review

Jump to: Research

16 pages, 1065 KiB  
Review
Current Insights into Porcine Bocavirus (PBoV) and Its Impact on the Economy and Public Health
by Jelena Prpić, Tomislav Keros, Margarita Božiković, Magda Kamber and Lorena Jemeršić
Vet. Sci. 2024, 11(12), 677; https://doi.org/10.3390/vetsci11120677 - 22 Dec 2024
Viewed by 908
Abstract
Effective control of animal infectious diseases is crucial for maintaining robust livestock production systems worldwide. Porcine meat constitutes approximately 35–40% of global meat production with the largest producers being China and the European Union (EU). Emerging viral pathogens in swine, like porcine bocavirus [...] Read more.
Effective control of animal infectious diseases is crucial for maintaining robust livestock production systems worldwide. Porcine meat constitutes approximately 35–40% of global meat production with the largest producers being China and the European Union (EU). Emerging viral pathogens in swine, like porcine bocavirus (PBoV), have not garnered significant attention, leaving their pathogenic characteristics largely unexplored. This review aims to bridge this knowledge gap by conducting a comprehensive analysis of the existing literature on PBoV. We explore the virus’s genome structure, discovery, classification, detection methods, pathogenesis, and its potential public health implications. Additionally, we discuss the distribution and economic impact of PBoV, which includes potential losses due to decreased productivity, increased veterinary costs, and trade restrictions. By highlighting the current state of knowledge, this review seeks to enhance the understanding of PBoV, thereby aiding in its prevention and control, and mitigating its economic impact on the swine industry. Full article
Show Figures

Figure 1

Back to TopTop