Immunomodulatory Effect of a Cysteine-Rich Secretory Protein from an Entomopathogenic Nematode with Sterol-Binding Activity
Abstract
1. Introduction
2. Results
2.1. Optimisation and Heterologous Expression of the Recombinant Protein
2.2. Purification of the Recombinant Protein
2.3. Tertiary Structure Prediction of the Sc-CAP Protein and Comparison to Other Closely Related Structures
2.4. In Silico Interaction of Sterols with the Sc-CAP Protein
2.5. In Vitro Sterol-Binding Ability of the Sc-CAP Protein
2.6. Phenoloxidase Inhibition Effect of the Sc-CAP Protein
2.7. Hemolymph Antimicrobial Response
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Materials
5.2. Expression Vector Construction
5.3. Optimisation and Heterologous Expression of DsbC-CAP in E. coli
5.4. Purification of the DsbC-CAP Recombinant Protein
5.5. Electrophoresis Analysis
5.6. Mass Spectrometry Analysis
5.7. Structural Characterisation of the CAP Protein
5.7.1. Predicted Tertiary Structure of Sc-CAP
5.7.2. Structural Superimposition and Analysis of Phylogeny
5.8. Sterol-Binding Assays
5.8.1. Molecular Docking of Sterols with the Sc-CAP Protein
5.8.2. In Vitro Cholesterol-Binding Assay
5.9. Insect Physiological Assays
5.9.1. Prophenoloxidase Assay (PPO)
5.9.2. Antimicrobial Response
5.10. Data Analysis and Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BCA | Biological Control Agent |
CAP | Cysteine-rich Secretory Protein/Antigen 5/Pathogenesis-related 1 |
CBM | Caveolin Binding Motif |
DsbC | Disulfide Bond Isomerase C |
EPN | Entomopathogenic Nematode |
ESPs | Excretory/Secretory Products |
IMAC | Immobilized Metal Affinity Chromatography |
LB | Luria Broth |
OD | Optical Density |
PBS | Phosphate Buffer Saline |
PBC | Palmitate Binding Cavity |
PPO | Prophenoloxidase |
Sc-CAP | Steinernema carpocapsae CAP Protein |
VAL | Venom Allergen-like Protein |
NC | Negative Control |
References
- Javed, S.; Khanum, T.A.; Ali, A. Storage and Efficacy of Entomopathogenic Nematode Species as a Biocontrol Agent against the Armyworm, Spodoptera Litura (FABRICIUS) (Lepidoptera: Noctuidae). Egypt. J. Biol. Pest Control 2022, 32, 6. [Google Scholar] [CrossRef]
- Peña, J.M.; Carrillo, M.A.; Hallem, E.A. Variation in the Susceptibility of Drosophila to Different Entomopathogenic Nematodes. Infect. Immun. 2015, 83, 1130–1138. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Optimizing Entomopathogenic Nematode Genetics and Applications for the Integrated Management of Horticultural Pests. Horticulturae 2023, 9, 865. [Google Scholar] [CrossRef]
- Lu, D.; Baiocchi, T.; Dillman, A.R. Genomics of Entomopathogenic Nematodes and Implications for Pest Control. Trends Parasitol. 2016, 32, 588–598. [Google Scholar] [CrossRef]
- Bhat, A.H.; Chaubey, A.K.; Askary, T.H. Global Distribution of Entomopathogenic Nematodes, Steinernema and Heterorhabditis. Egypt. J. Biol. Pest Control 2020, 30, 31. [Google Scholar] [CrossRef]
- Lacey, L.A.; Georgis, R. Entomopathogenic Nematodes for Control of Insect Pests Above and Below Ground with Comments on Commercial Production. J. Nematol. 2012, 44, 218–225. [Google Scholar]
- Han, R.; Ehlers, R.U. Pathogenicity, Development, and Reproduction of Heterorhabditis Bacteriophora and Steinernema Carpocapsae under Axenic in Vivo Conditions. J. Invertebr. Pathol. 2000, 75, 55–58. [Google Scholar] [CrossRef]
- Yadav, S.; Shokal, U.; Forst, S.; Eleftherianos, I. An Improved Method for Generating Axenic Entomopathogenic Nematodes. BMC Res. Notes 2015, 8, 461. [Google Scholar] [CrossRef]
- Jones, K.; Tafesh-Edwards, G.; Kenney, E.; Toubarro, D.; Simões, N.; Eleftherianos, I. Excreted Secreted Products from the Parasitic Nematode Steinernema Carpocapsae Manipulate the Drosophila Melanogaster Immune Response. Sci. Rep. 2022, 12, 14237. [Google Scholar] [CrossRef]
- Toubarro, D.; Lucena-Robles, M.; Nascimento, G.; Costa, G.; Montiel, R.; Coelho, A.V.; Simões, N. An Apoptosis-Inducing Serine Protease Secreted by the Entomopathogenic Nematode Steinernema Carpocapsae. Int. J. Parasitol. 2009, 39, 1319–1330. [Google Scholar] [CrossRef]
- Balasubramanian, N.; Toubarro, D.; Simões, N. Biochemical Study and in Vitro Insect Immune Suppression by a Trypsin-like Secreted Protease from the Nematode Steinernema Carpocapsae. Parasite Immunol. 2010, 32, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Toubarro, D.; Hao, Y.; Simões, N. Cloning, Characterisation and Heterologous Expression of an Astacin Metalloprotease, Sc-AST, from the Entomoparasitic Nematode Steinernema Carpocapsae. Mol. Biochem. Parasitol. 2010, 174, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Frias, J.; Toubarro, D.; Bjerga, G.E.K.; Puntervoll, P.; Vicente, J.B.; Reis, R.L.; Simões, N. A ShK-like Domain from Steinernema Carpocapsae with Bioinsecticidal Potential. Toxins 2022, 14, 754. [Google Scholar] [CrossRef] [PubMed]
- Toubarro, D.; Avila, M.M.; Hao, Y.; Balasubramanian, N.; Jing, Y.; Montiel, R.; Faria, T.Q.; Brito, R.M.; Simões, N. A Serpin Released by an Entomopathogen Impairs Clot Formation in Insect Defense System. PLoS ONE 2013, 8, e69161. [Google Scholar] [CrossRef]
- Eliáš, S.; Hurychová, J.; Toubarro, D.; Frias, J.; Kunc, M.; Dobeš, P.; Simões, N.; Hyršl, P. Bioactive Excreted/Secreted Products of Entomopathogenic Nematode Heterorhabditis Bacteriophora Inhibit the Phenoloxidase Activity during the Infection. Insects 2020, 11, E353. [Google Scholar] [CrossRef]
- Lu, D.; Macchietto, M.; Chang, D.; Barros, M.M.; Baldwin, J.; Mortazavi, A.; Dillman, A.R. Activated Entomopathogenic Nematode Infective Juveniles Release Lethal Venom Proteins. PLoS Pathog. 2017, 13, e1006302. [Google Scholar] [CrossRef]
- Chang, D.Z.; Serra, L.; Lu, D.; Mortazavi, A.; Dillman, A.R. A Core Set of Venom Proteins Is Released by Entomopathogenic Nematodes in the Genus Steinernema. PLoS Pathog. 2019, 15, e1007626. [Google Scholar] [CrossRef]
- Lima, A.K.; Dhillon, H.; Dillman, A.R. ShK-Domain-Containing Protein from a Parasitic Nematode Modulates Drosophila Melanogaster Immunity. Pathogens 2022, 11, 1094. [Google Scholar] [CrossRef]
- Schneiter, R.; Di Pietro, A. The CAP Protein Superfamily: Function in Sterol Export and Fungal Virulence. Biomol. Concepts 2013, 4, 519–525. [Google Scholar] [CrossRef]
- Mason, L.; Tribolet, L.; Simon, A.; von Gnielinski, N.; Nienaber, L.; Taylor, P.; Willis, C.; Jones, M.K.; Sternberg, P.W.; Gasser, R.B.; et al. Probing the Equatorial Groove of the Hookworm Protein and Vaccine Candidate Antigen, Na-ASP-2. Int. J. Biochem. Cell Biol. 2014, 50, 146–155. [Google Scholar] [CrossRef]
- Ma, D.; Francischetti, I.M.B.; Ribeiro, J.M.C.; Andersen, J.F. The Structure of Hookworm Platelet Inhibitor (HPI), a CAP Superfamily Member from Ancylostoma Caninum. Acta Crystallogr. Sect. F 2015, 71, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Asojo, O.A.; Darwiche, R.; Gebremedhin, S.; Smant, G.; Lozano-Torres, J.L.; Drurey, C.; Pollet, J.; Maizels, R.M.; Schneiter, R.; Wilbers, R.H.P. Heligmosomoides Polygyrus Venom Allergen-like Protein-4 (HpVAL-4) Is a Sterol Binding Protein. Int. J. Parasitol. 2018, 48, 359–369. [Google Scholar] [CrossRef]
- Rougon-Cardoso, A.; Flores-Ponce, M.; Ramos-Aboites, H.E.; Martínez-Guerrero, C.E.; Hao, Y.-J.; Cunha, L.; Rodríguez-Martínez, J.A.; Ovando-Vázquez, C.; Bermúdez-Barrientos, J.R.; Abreu-Goodger, C.; et al. The Genome, Transcriptome, and Proteome of the Nematode Steinernema Carpocapsae: Evolutionary Signatures of a Pathogenic Lifestyle. Sci. Rep. 2016, 6, 37536. [Google Scholar] [CrossRef]
- Nozach, H.; Fruchart-Gaillard, C.; Fenaille, F.; Beau, F.; Ramos, O.H.P.; Douzi, B.; Saez, N.J.; Moutiez, M.; Servent, D.; Gondry, M.; et al. High Throughput Screening Identifies Disulfide Isomerase DsbC as a Very Efficient Partner for Recombinant Expression of Small Disulfide-Rich Proteins in E. coli. Microb. Cell Fact. 2013, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Darwiche, R.; Lugo, F.; Drurey, C.; Varossieau, K.; Smant, G.; Wilbers, R.H.P.; Maizels, R.M.; Schneiter, R.; Asojo, O.A. Crystal Structure of Brugia Malayi Venom Allergen-like Protein-1 (BmVAL-1), a Vaccine Candidate for Lymphatic Filariasis. Int. J. Parasitol. 2018, 48, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Guo, K.; Duan, J.; Jing, X.; Zhang, X.; Ding, Q.; Dong, Z.; Xia, Q.; Zhao, P. Silk Components and Properties of the Multilayer Cocoon of the Greater Wax Moth, Galleria Mellonella. Insect Sci. 2025. [Google Scholar] [CrossRef]
- Bobardt, S.D.; Dillman, A.R.; Nair, M.G. The Two Faces of Nematode Infection: Virulence and Immunomodulatory Molecules From Nematode Parasites of Mammals, Insects and Plants. Front. Microbiol. 2020, 11, 577846. [Google Scholar] [CrossRef]
- Sequeira, A.F.; Turchetto, J.; Saez, N.J.; Peysson, F.; Ramond, L.; Duhoo, Y.; Blémont, M.; Fernandes, V.O.; Gama, L.T.; Ferreira, L.M.A.; et al. Gene Design, Fusion Technology and TEV Cleavage Conditions Influence the Purification of Oxidized Disulphide-Rich Venom Peptides in Escherichia Coli. Microb. Cell Fact. 2017, 16, 4. [Google Scholar] [CrossRef]
- Turchetto, J.; Sequeira, A.F.; Ramond, L.; Peysson, F.; Brás, J.L.A.; Saez, N.J.; Duhoo, Y.; Blémont, M.; Guerreiro, C.I.P.D.; Quinton, L.; et al. High-Throughput Expression of Animal Venom Toxins in Escherichia Coli to Generate a Large Library of Oxidized Disulphide-Reticulated Peptides for Drug Discovery. Microb. Cell Fact. 2017, 16, 6. [Google Scholar] [CrossRef]
- Han, P.; Gong, Q.; Fan, J.; Zhang, M.; Abbas, M.; Zhu, W.; Deng, S.; Xing, S.; Zhang, J. 20-Hydroxyecdysone Regulates the Prophenoloxidase Cascade to Immunize Metarhizium Anisopliae in Locusta Migratoria. Pest Manag. Sci. 2020, 76, 3149–3158. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Behmer, S.T. Insect Sterol Nutrition: Physiological Mechanisms, Ecology, and Applications. Annu. Rev. Entomol. 2020, 65, 251–271. [Google Scholar] [CrossRef] [PubMed]
- Stanley, D.; Kim, Y. Prostaglandins and Other Eicosanoids in Insects: Biosynthesis and Biological Actions. Front. Physiol. 2019, 9, 1927. [Google Scholar] [CrossRef] [PubMed]
- Stanley, D. Prostaglandins and Other Eicosanoids in Insects: Biological Significance. Annu. Rev. Entomol. 2006, 51, 25–44. [Google Scholar] [CrossRef]
- Parks, S.C.; Nguyen, S.; Nasrolahi, S.; Bhat, C.; Juncaj, D.; Lu, D.; Ramaswamy, R.; Dhillon, H.; Fujiwara, H.; Buchman, A.; et al. Parasitic Nematode Fatty Acid- and Retinol-Binding Proteins Compromise Host Immunity by Interfering with Host Lipid Signaling Pathways. PLoS Pathog. 2021, 17, e1010027. [Google Scholar] [CrossRef]
- Brivio, M.F.; Mastore, M. Nematobacterial Complexes and Insect Hosts: Different Weapons for the Same War. Insects 2018, 9, 117. [Google Scholar] [CrossRef]
- Kenney, E.; Hawdon, J.M.; O’Halloran, D.; Eleftherianos, I. Heterorhabditis Bacteriophora Excreted-Secreted Products Enable Infection by Photorhabdus Luminescens Through Suppression of the Imd Pathway. Front. Immunol. 2019, 10, 2372. [Google Scholar] [CrossRef]
- Sanda, N.B.; Hou, B.; Hou, Y. The Entomopathogenic Nematodes H. Bacteriophora and S. Carpocapsae Inhibit the Activation of proPO System of the Nipa Palm Hispid Octodonta Nipae (Coleoptera: Chrysomelidae). Life 2022, 12, 1019. [Google Scholar] [CrossRef]
- Balasubramanian, N.; Hao, Y.-J.; Toubarro, D.; Nascimento, G.; Simões, N. Purification, Biochemical and Molecular Analysis of a Chymotrypsin Protease with Prophenoloxidase Suppression Activity from the Entomopathogenic Nematode Steinernema Carpocapsae. Int. J. Parasitol. 2009, 39, 975–984. [Google Scholar] [CrossRef]
- Brivio, M.F.; Toscano, A.; De Pasquale, S.M.; De Lerma Barbaro, A.; Giovannardi, S.; Finzi, G.; Mastore, M. Surface Protein Components from Entomopathogenic Nematodes and Their Symbiotic Bacteria: Effects on Immune Responses of the Greater Wax Moth, Galleria Mellonella (Lepidoptera: Pyralidae). Pest Manag. Sci. 2018, 74, 2089–2099. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Krissinel, E.; Henrick, K. Multiple Alignment of Protein Structures in Three Dimensions. In Computational Life Sciences; Springer: Berlin/Heidelberg, Germany, 2005; pp. 67–78. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the Scope of the Protein–Ligand Interaction Profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef] [PubMed]
Protein/Domain | PDB ID | Species | Function | Z-Score | RMSD | Lali | Nres | %id |
---|---|---|---|---|---|---|---|---|
BmVAL-1 | 6ANY | Brugia malayi | Sterol binding | 29.6 | 1.7 | 199 | 206 | 43 |
Na-ASP-2 | 4NUK | Necator americanus | Unknown | 28.5 | 1.6 | 191 | 193 | 41 |
Na-ASP-1 * | 3NT8 | Necator americanus | Unknown | 28.2 | 2.8 | 201 | 401 | 41 |
HpVAL-4 | 5WEE-A | Heligmosomoides polygyrus bakeri | Sterol binding | 23.5 | 1.9 | 183 | 188 | 26 |
HPI | 4TPV | Ancylostoma caninum | Unknown | 21.4 | 2.0 | 169 | 177 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frias, J.; Toubarro, D.; Paiva, T.; Simões, N. Immunomodulatory Effect of a Cysteine-Rich Secretory Protein from an Entomopathogenic Nematode with Sterol-Binding Activity. Toxins 2025, 17, 342. https://doi.org/10.3390/toxins17070342
Frias J, Toubarro D, Paiva T, Simões N. Immunomodulatory Effect of a Cysteine-Rich Secretory Protein from an Entomopathogenic Nematode with Sterol-Binding Activity. Toxins. 2025; 17(7):342. https://doi.org/10.3390/toxins17070342
Chicago/Turabian StyleFrias, Jorge, Duarte Toubarro, Tiago Paiva, and Nelson Simões. 2025. "Immunomodulatory Effect of a Cysteine-Rich Secretory Protein from an Entomopathogenic Nematode with Sterol-Binding Activity" Toxins 17, no. 7: 342. https://doi.org/10.3390/toxins17070342
APA StyleFrias, J., Toubarro, D., Paiva, T., & Simões, N. (2025). Immunomodulatory Effect of a Cysteine-Rich Secretory Protein from an Entomopathogenic Nematode with Sterol-Binding Activity. Toxins, 17(7), 342. https://doi.org/10.3390/toxins17070342