Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,960)

Search Parameters:
Keywords = rearing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 17055 KB  
Article
Effects of Wheel-Ground Conditions on Racing Car Aerodynamics Under Ride-Height-Related Attitude Variations
by Xiaojing Ma, Jie Li, Kun Zhang, Yi Zou and Matteo Massaro
Appl. Sci. 2026, 16(2), 874; https://doi.org/10.3390/app16020874 - 14 Jan 2026
Abstract
In racing cars, a low ride height is crucial for inverted wings and ground-effect systems to function effectively, significantly enhancing aerodynamic performance but also increasing sensitivity to pitch and roll variations. However, the specific impact of wheel-ground conditions on racing cars under ride-height-related [...] Read more.
In racing cars, a low ride height is crucial for inverted wings and ground-effect systems to function effectively, significantly enhancing aerodynamic performance but also increasing sensitivity to pitch and roll variations. However, the specific impact of wheel-ground conditions on racing cars under ride-height-related attitude variations has not received attention. This study employed numerical simulations (compared with wind tunnel test data) to investigate these effects on racecar aerodynamic characteristics, analyzing three specific wheel-ground combinations: moving ground with rotating wheels (MR), moving ground with stationary wheels (MS), and stationary ground with stationary wheels (SS). A systematic analysis was conducted on aerodynamic changes associated with wheel-plane total pressure coefficient differences, upper-lower surface pressure coefficient variations, and front-rear axle aerodynamic force distributions, elucidating individual component contributions to overall performance changes induced by wheel-ground alterations. Results indicate that wheel conditions, especially rear wheels and their localized interactions with the diffuser-equipped body predominantly influence drag. In contrast, ground conditions primarily affect the body and front wing to alter downforce, with induced drag variations further amplifying total drag differences. Moreover, ground conditions’ impact on the front wing is modulated by vehicle attitude, resulting in either increased or decreased front wing downforce and thus altering aerodynamic balance. These insights highlight that ride-height related attitudes are critical variables when evaluating combined wheel-ground effects, and while wheel rotation is significant, the aerodynamic force and balance changes induced by ground conditions (as modulated by attitude) warrant greater attention. This understanding provides valuable guidance for racecar aerodynamic design. Full article
(This article belongs to the Section Fluid Science and Technology)
15 pages, 1651 KB  
Article
Morphological Trait Analysis Showed the Existence of a Migratory Ecotype in the Fall Armyworm, Spodoptera frugiperda
by Jiajie Ma, Yishu Sun, Xiaoting Sun, Yifei Song, Wei He, Bo Chu, Xianming Yang and Kongming Wu
Insects 2026, 17(1), 95; https://doi.org/10.3390/insects17010095 - 14 Jan 2026
Abstract
Spodoptera frugiperda (fall armyworm, FAW) has rapidly spread across Asia and Africa in recent years, with its seasonal long-distance migration ability serving as the biological basis driving its region-wide outbreaks. Although the migratory biology of FAW has been extensively studied, it remains unclear [...] Read more.
Spodoptera frugiperda (fall armyworm, FAW) has rapidly spread across Asia and Africa in recent years, with its seasonal long-distance migration ability serving as the biological basis driving its region-wide outbreaks. Although the migratory biology of FAW has been extensively studied, it remains unclear whether there is stable differentiation between migratory and non-migratory individuals. In this study, we revealed the significant differences in morphological parameters between migratory populations and laboratory-reared populations. The migratory populations exhibited a greater body length and width and forewing size, as well as a lower body weight, compared to the laboratory colony. After three generations of indoor rearing, the migrants’ morphology and flight capacity converged to the laboratory phenotype, indicating the existence of a migratory ecotype in FAW. Through further investigation, a method for identifying the migratory ecotype of FAW was proposed based on the corrected wing loading (WL) and forewing aspect ratio (FA), which was successfully applied to distinguish individuals of the migratory ecotype in field populations. Our results confirm that FAWs exhibit stable differentiation into a migratory ecotype, and using WL and FA provides a robust, field-deployable tool for regional FAW monitoring, early warning systems, and targeted FAW control. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

17 pages, 440 KB  
Article
Effects of Hand-Rearing and Group Size on Chimpanzee (Pan troglodytes) Social Competence in Captivity
by Lindsay E. Murray
Animals 2026, 16(2), 250; https://doi.org/10.3390/ani16020250 - 14 Jan 2026
Abstract
The behavior of individual animals reflects both internal states and external context. For captive animals, their early life experiences can influence later adjustment, particularly their social competence. In addition, the way in which they are housed and their current social grouping context are [...] Read more.
The behavior of individual animals reflects both internal states and external context. For captive animals, their early life experiences can influence later adjustment, particularly their social competence. In addition, the way in which they are housed and their current social grouping context are important factors affecting the expression of social skills. Here, the social behavior of 39 chimpanzees (Pan troglodytes) was observed to assess whether differences existed due to how the apes were reared and grouped. Behaviors recorded related specifically to five main components: Sociability, Grooming, Play, Responsibility and Aggression. Chimpanzees in larger groups groomed and played more, while those housed in pairs or trios displayed more and spent more time alone. Mother-reared chimpanzees took more responsibility for soliciting grooming, and interactions between grouping and rearing on chimpanzee agonistic display rates highlighted how both hand- and mother-reared chimpanzees display more if housed in small groups rather than large. Implications for the optimal management and welfare of this highly intelligent and social species are discussed in light of the importance of early life experiences in modulating the impact of current social environment on chimpanzee social profiles. Full article
(This article belongs to the Section Zoo Animals)
Show Figures

Figure 1

24 pages, 2154 KB  
Article
Evaluation of Two Practical Field Methods for Estimating Operational Overmilking Duration Using Standard Milking-System Sensors
by Alice Uí Chearbhaill, Pablo Silva Boloña, Eoin G. Ryan, Catherine I. McAloon, Martin Browne and John Upton
Animals 2026, 16(2), 244; https://doi.org/10.3390/ani16020244 - 13 Jan 2026
Abstract
The objective of this study was to quantify the method-to-method variation between two widely used field indicators of the end-of-milking vacuum-exposure period (i.e., operational overmilking duration), and to identify cow- and milking-level factors associated with this variation. Operational overmilking was defined using two [...] Read more.
The objective of this study was to quantify the method-to-method variation between two widely used field indicators of the end-of-milking vacuum-exposure period (i.e., operational overmilking duration), and to identify cow- and milking-level factors associated with this variation. Operational overmilking was defined using two approaches: (i) MPC vacuum fluctuation patterns collected via VaDia™ recording devices, and (ii) milk flow curves generated from milking system data, with simulated ACR take-off thresholds ranging from 0.2 to 0.8 kg/min. Seven quarter combinations were analyzed to determine their effect on method-to-method variation. Multivariable modelling was used to investigate the factors which influenced the absolute difference in operational overmilking duration (ADOD) between methods, with larger ADOD indicating greater method-to-method variation. All quarter combinations showed large method-to-method variations. VaDiaTM-derived estimates indicated longer overmilking durations and higher milk flow at the onset of overmilking compared with the milk flow curve approach. Our findings showed that a combination of the rear quarters was significantly associated with the lowest ADOD, and that a combination of the front quarters was significantly associated with the highest ADOD. All other combinations did not differ from each other, indicating that combinations including one front and one rear quarter performed similarly, and that recording all four quarters did not improve agreement between methods within this dataset. Milk flow factors associated with increased ADOD included longer low flow times, longer high flow times, longer machine-on times, and increased yield. Vacuum values associated with increased ADOD included high short milk tube vacuum during the full milking, and high mouthpiece chamber vacuum levels during both the full milking and overmilking periods. High short milk tube vacuum during overmilking was associated with decreased ADOD. Wider teat diameters, longer teat lengths, and increased parity were associated with increased ADOD. These findings indicated that vacuum-based and flow-based indicators of operational overmilking capture different aspects of the end-milking process and should be clearly specified when measuring or reporting overmilking in research or commercial milking systems. Full article
(This article belongs to the Section Animal System and Management)
17 pages, 8315 KB  
Article
Gut Microbiome Differences Across Mixed-Sex and Female-Only Social Rearing Regimes in Female Field Crickets Teleogryllus occipitalis (Orthoptera: Gryllidae)
by Kazuya Hirata, Takeshi Suzuki, Kei Yura, Toru Asahi and Kosuke Kataoka
Insects 2026, 17(1), 91; https://doi.org/10.3390/insects17010091 - 13 Jan 2026
Abstract
The insect gut microbiome contributes to various host physiological processes and behaviors, such as digestion, nutrient absorption, immunity, mate choice, and fecundity. The social environment can shape gut microbial communities. Mixed-sex vs. female-only rearing is an important social context because it differs in [...] Read more.
The insect gut microbiome contributes to various host physiological processes and behaviors, such as digestion, nutrient absorption, immunity, mate choice, and fecundity. The social environment can shape gut microbial communities. Mixed-sex vs. female-only rearing is an important social context because it differs in exposure to the opposite sex and mating opportunities, which may in turn affect female physiology that may influence their gut microbiome. Despite the growing recognition of these social-microbial interactions, most studies have relied on 16S rRNA amplicon sequencing or qPCR, which provide only coarse taxonomic resolution and limited functional insight. In this study, we used whole-genome shotgun metagenomics to examine changes in microbial diversity and functional gene composition in the female field cricket Teleogryllus occipitalis (Serville) (Orthoptera: Gryllidae) reared under two social conditions: mixed-sex rearing and female-only rearing. Species richness and diversity analyses revealed that community composition separated between females from mixed-sex and female-only rearing. Functional profiling indicated higher relative abundances of genes annotated to nutrient processing and inter-bacterial competition in females from mixed-sex rearing, whereas females from female-only rearing showed relative enrichment of genes annotated to stress resistance and nitrogen fixation. These findings provide a genome-resolved foundation for testing how social rearing conditions covary with gut microbiome composition and functional potential in female crickets. Full article
(This article belongs to the Topic Diversity of Insect-Associated Microorganisms)
Show Figures

Figure 1

13 pages, 1060 KB  
Article
Whitefly Species Preferences of the Predatory Ladybird Beetle, Delphastus pallidus LeConte (Coleoptera: Coccinellidae)
by Muhammad Z. Ahmed, Catharine M. Mannion, Cindy L. McKenzie and Lance S. Osborne
Insects 2026, 17(1), 90; https://doi.org/10.3390/insects17010090 - 13 Jan 2026
Abstract
Delphastus Casey (Coleoptera: Coccinellidae: Serangiini) comprises small predatory ladybird beetles that feed on immature whiteflies. Several Delphastus species are utilized as biological control agents. However, Delphastus pallidus (LeConte) has been understudied for the past several decades. Recent landscape surveys in South Florida revealed [...] Read more.
Delphastus Casey (Coleoptera: Coccinellidae: Serangiini) comprises small predatory ladybird beetles that feed on immature whiteflies. Several Delphastus species are utilized as biological control agents. However, Delphastus pallidus (LeConte) has been understudied for the past several decades. Recent landscape surveys in South Florida revealed a marked increase in D. pallidus populations associated with multiple whitefly species. We evaluated whitefly species preferences of D. pallidus using choice and no-choice assays conducted in incubators and insectaries. Seven whitefly species were confirmed as prey and ranked in order of preference: Bemisia tabaci Gennadius > Aleurothrixus trachoides (=Aleurotrachelus trachoides) (Back) > Singhiella simplex (Singh) > Paraleyrodes bondari Peracchi > Aleurodicus rugioperculatus Martin > Asiothrixus antidesmae (Takahashi) > Aleurodicus dugesii Cockerell. Findings indicate that D. pallidus feeds on a taxonomically and morphologically diverse set of whiteflies, including both waxy and non-waxy species, which likely facilitates establishment and dispersal in ornamental and agricultural landscapes. This study is the first to document D. pallidus as a potentially native U.S. predatory beetle that attacks at least seven whitefly species. Knowledge of its prey preferences will inform mass-rearing strategies and potential deployment for whitefly biocontrol. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

33 pages, 1358 KB  
Article
Trajectory-Control-Based Analysis of Winch Traction Dynamics in Ship-Borne Aircraft Operations
by Guofang Nan, Bodong Zhang, Yao Li and Sirui Yang
J. Mar. Sci. Eng. 2026, 14(2), 170; https://doi.org/10.3390/jmse14020170 - 13 Jan 2026
Abstract
Aiming to address the problems of the violent fluctuation of winch traction rope and tire forces and the high safety risk caused by coupling ship motions (rolling, pitching, and heaving), wind loads, and deck space limitations in carrier-based aircraft, this paper focuses on [...] Read more.
Aiming to address the problems of the violent fluctuation of winch traction rope and tire forces and the high safety risk caused by coupling ship motions (rolling, pitching, and heaving), wind loads, and deck space limitations in carrier-based aircraft, this paper focuses on a multi-winch traction system on a small deck. A fully coupled dynamic model of an aircraft landing gear–tire–rope–winch system is constructed, ADAMS2020 and MATLAB/Simulink(MATLAB R2021b) co-simulations are used to develop the three-winch and five-winch traction system models, and a Fiala tire model and a telescopic landing gear model are adopted to build a precise mechanical model of the aircraft. The PID control strategy is proposed, based on the Bessel curve, to control the driving trajectory of the aircraft, and the quantitative influence of ship motion, winch number, and preset trajectory on traction dynamic characteristics is systematically studied. Compared to without trajectory control, the peak force of the winch rope before the start-up phase of the three-winch system is reduced by 54.9%, and the five-winch system is reduced by 57.6%. The fluctuation amplitude of the lateral force of the rear wheel is greater than that of the front wheel, up to a maximum of 215% of the front wheel. The correlation coefficient between the theoretical model and the simulation results is 0.91~0.97, and the error is less than 12%. The PID control strategy based on the Bessel trajectory can significantly improve the steadiness and security of the carrier-based aircraft winch traction system on a small deck. The study delivers the requisite theory and engineering means for the optimized design of carrier-based aircraft traction systems. Full article
(This article belongs to the Section Ocean Engineering)
6 pages, 190 KB  
Proceeding Paper
Efficiency of Weizmannia Faecalis in Improving Broiler Performance and Gut Health in Challenged Birds
by George Symeon, Ilias Giannenas, Panagiotis Sakkas, Ioanna Stylianaki, Despoina Karatosidi, Lydia Zeibich, Alexandra Schlagheck, Dimitris Koutsianos, Dimitrios Verros, Nikolaos Lykos, Marina Gaitanidou and Vasileios Dotas
Proceedings 2026, 134(1), 41; https://doi.org/10.3390/proceedings2026134041 - 13 Jan 2026
Abstract
The objective of the present study was to evaluate the probiotic impact of Weizmannia faecalis (formerly Bacillus coagulans) DSM 32016 on the performance parameters and intestinal health of broiler chickens reared under high stocking density and mild heat stress conditions. The trial [...] Read more.
The objective of the present study was to evaluate the probiotic impact of Weizmannia faecalis (formerly Bacillus coagulans) DSM 32016 on the performance parameters and intestinal health of broiler chickens reared under high stocking density and mild heat stress conditions. The trial involved 320 day-old ROSS broiler chicks, randomly assigned to two experimental groups (8 pens per group). The control group received a standard commercial diet while the experimental group was supplemented with W. faecalis. At 42 days of age, 24 birds from each group were slaughtered for carcass composition analysis and evaluation of the weight of individual cuts. Probiotic supplementation significantly increased final body weight and improved feed conversion ratio, resulting in a significant increase in drumstick weight and breast meat yield, while the average feeding cost per kg broiler decreased by 5%. Collectively, the probiotic diet supplementation enhanced growth performance, alleviating the adverse effects of high stocking density and thermal stress. Full article
12 pages, 2270 KB  
Article
Assessment of Various Tissues in Broilers Reared Under Different Lighting Programs with Respect to Rearing Disorders
by Umut Can Gündoğar, Ozan Ahlat and Esin Ebru Onbaşılar
Vet. Sci. 2026, 13(1), 75; https://doi.org/10.3390/vetsci13010075 - 12 Jan 2026
Viewed by 27
Abstract
This study aimed to assess the impact of gradual versus abrupt light–dark transitions on the pectoral muscle, heart, tibia, and eye tissues of broilers, focusing on rearing disorders. A total of 270 male broiler chicks (ROSS-308) were divided into three groups according to [...] Read more.
This study aimed to assess the impact of gradual versus abrupt light–dark transitions on the pectoral muscle, heart, tibia, and eye tissues of broilers, focusing on rearing disorders. A total of 270 male broiler chicks (ROSS-308) were divided into three groups according to the type of light transition: abrupt, 30-min gradual, and 1-h gradual changes in light intensity. The broilers were reared for six weeks, after which samples were collected for gross examination, morphometric and histomorphometric measurements, and histopathological analysis of the pectoral muscle, heart, tibia, and eye. White striping incidence in the pectoral muscle was not significantly affected by light–dark transition type. Results indicated that broilers in the 30-min gradual transition group had a higher relative heart weight than those in the abrupt-transition group (p < 0.05), although the RV/TV ratio did not differ. Tibial measurements, including weight, length, and cortical index, showed no differences across groups. Broilers exposed to a 1-h gradual transition between light and dark periods showed significantly greater eye weights compared to both the birds in the abrupt transition group and the birds in the 30-min transition group (p < 0.01). Overall, gradual light transitions did not substantially affect pectoral muscle or bone health but had minor effects on heart and eye weights in broilers reared under intensive production systems. Full article
Show Figures

Figure 1

20 pages, 1223 KB  
Article
Dynamics of Tilapia Lake Virus in Recirculating Aquaculture Systems and the Impact of Vaccination on Outbreak Control
by Montakarn Sresung, Jidapa Yamkasem, Supitchaya Theplhar, Piyathip Setthawong, Surapong Rattanakul, Skorn Mongkolsuk, Kwanrawee Sirikanchana, Win Surachetpong and Tuchakorn Lertwanakarn
Viruses 2026, 18(1), 96; https://doi.org/10.3390/v18010096 - 9 Jan 2026
Viewed by 256
Abstract
Tilapia lake virus (TiLV) is a highly virulent pathogen that has caused substantial mortality in tilapia farms, particularly those with open-water systems. However, TiLV can also emerge and persist in closed environments, such as recirculating aquaculture systems (RAS), where environmental accumulation and repeated [...] Read more.
Tilapia lake virus (TiLV) is a highly virulent pathogen that has caused substantial mortality in tilapia farms, particularly those with open-water systems. However, TiLV can also emerge and persist in closed environments, such as recirculating aquaculture systems (RAS), where environmental accumulation and repeated exposure may intensify infection and sustain outbreaks. In this case study, we conducted three field experiments to better understand TiLV dynamics among Nile tilapia in RAS. In experiment I, we quantified the TiLV levels in the fish, water, and sediment to compare outbreak and no-outbreak conditions and found that the TiLV concentrations in liver samples and the water were significantly higher in the outbreak ponds and positively correlated with increased fish mortality. In experiment II, we used a side-by-side field trial to evaluate the protective efficacy of a TiLV vaccine and its effects on the viral loads in the fish and aquatic environment during outbreaks. The vaccinated fish showed substantially lower cumulative mortality (16.7%) than the unvaccinated controls (37.7%), with a relative percent survival of 55.6%. Additionally, the TiLV concentrations in the pond water of the vaccinated group were significantly lower. In experiment III, we compared the TiLV patterns between RAS and non-RAS operations to determine how water recirculation influences viral accumulation and outbreak severity. The results revealed limited viral accumulation and shorter disease outbreak duration in the non-RAS. Overall, our findings showed that the TiLV levels in the rearing water were closely linked with disease severity in the RAS-based tilapia hatcheries. Continuous water recirculation allowed the virus to build up in the system, which led to more prolonged outbreaks, while the non-RAS conditions with regular water discharge showed lower viral loads and faster recovery. The vaccinated fish had better survival rates and released less virus into the water, which helped reduce infection pressure across the ponds. Together, these results suggest that combining vaccination with good water management and molecular monitoring can provide a practical, noninvasive way to detect and control TiLV outbreaks in intensive farming systems. Full article
(This article belongs to the Special Issue Viral Pathogenesis and Novel Vaccines for Fish Viruses)
Show Figures

Figure 1

15 pages, 2517 KB  
Article
Comparative Analysis of the Gut Bacterial Community in Laboratory-Reared and Seasonally Field-Released Larvae of the Antheraea pernyi
by Peng Hou, Li Liu, Ding Yang, Chuntian Zhang and Jianfeng Wang
Insects 2026, 17(1), 79; https://doi.org/10.3390/insects17010079 - 9 Jan 2026
Viewed by 141
Abstract
Analyzing the composition and structure of the gut bacterial community in Antheraea pernyi is essential for improving its economic traits, as well as for understanding gut bacteria–host interactions in lepidopteran insects. This study utilized the Illumina MiSeq PE 300 platform to conduct 16S [...] Read more.
Analyzing the composition and structure of the gut bacterial community in Antheraea pernyi is essential for improving its economic traits, as well as for understanding gut bacteria–host interactions in lepidopteran insects. This study utilized the Illumina MiSeq PE 300 platform to conduct 16S rRNA gene sequencing for a comparative analysis of gut bacterial community in laboratory-reared and field-released (spring and autumn) Antheraea pernyi larvae of the same strain. The study revealed the specific effects of rearing environment and seasonal variation on the structural and functional dynamics of the larval gut bacterial communities. The composition of the dominant gut bacteria varied significantly with rearing environment and season. Laboratory-reared and spring field-released groups exhibited similar bacterial community structures, whereas the autumn field-released group showed a significant trend toward specialization, characterized by enrichment of specific bacterial taxa. Linear discriminant analysis effect size identified statistically significant biomarkers across samples. Taxonomic analysis revealed that Actinomycetota, Actinobacteria, Mycobacteriales, Dietziaceae, and Dietzia were characteristic of the gut bacteria profile in spring field-released, Lactobacillales, Enterococcaceae, and Enterococcus were enriched in the autumn field-released group, and the laboratory-reared group exhibited a relative dominance of Alphaproteobacteria. Functional prediction indicated that gut bacterial community structure likely influences its metabolic potential, which may suggest an adaptive response of the Antheraea pernyi to distinct ecological environments. This study provides important insights into the highly complex nature of insect-microbe interactions. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

28 pages, 9392 KB  
Article
Analysis Method and Experiment on the Influence of Hard Bottom Layer Contour on Agricultural Machinery Motion Position and Posture Changes
by Tuanpeng Tu, Xiwen Luo, Lian Hu, Jie He, Pei Wang, Peikui Huang, Runmao Zhao, Gaolong Chen, Dawen Feng, Mengdong Yue, Zhongxian Man, Xianhao Duan, Xiaobing Deng and Jiajun Mo
Agriculture 2026, 16(2), 170; https://doi.org/10.3390/agriculture16020170 - 9 Jan 2026
Viewed by 158
Abstract
The hard bottom layer in paddy fields significantly impacts the driving stability, operational quality, and efficiency of agricultural machinery. Continuously improving the precision and efficiency of unmanned, precision operations for paddy field machinery is essential for realizing unmanned smart rice farms. Addressing the [...] Read more.
The hard bottom layer in paddy fields significantly impacts the driving stability, operational quality, and efficiency of agricultural machinery. Continuously improving the precision and efficiency of unmanned, precision operations for paddy field machinery is essential for realizing unmanned smart rice farms. Addressing the unclear influence patterns of hard bottom contours on typical scenarios of agricultural machinery motion and posture changes, this paper employs a rice transplanter chassis equipped with GNSS and AHRS. It proposes methods for acquiring motion state information and hard bottom contour data during agricultural operations, establishing motion state expression models for key points on the machinery antenna, bottom of the wheel, and rear axle center. A correlation analysis method between motion state and hard bottom contour parameters was established, revealing the influence mechanisms of typical hard bottom contours on machinery trajectory deviation, attitude response, and wheel trapping. Results indicate that hard bottom contour height and local roughness exert extremely significant effects on agricultural machinery heading deviation and lateral movement. Heading variation positively correlates with ridge height and negatively with wheel diameter. The constructed mathematical model for heading variation based on hard bottom contour height difference and wheel diameter achieves a coefficient of determination R2 of 0.92. The roll attitude variation in agricultural machinery is primarily influenced by the terrain characteristics encountered by rear wheels. A theoretical model was developed for the offset displacement of the antenna position relative to the horizontal plane during roll motion. The accuracy of lateral deviation detection using the posture-corrected rear axle center and bottom of the wheel center improved by 40.7% and 39.0%, respectively, compared to direct measurement using the positioning antenna. During typical vehicle-trapping events, a segmented discrimination function for trapping states is developed when the terrain profile steeply declines within 5 s and roughness increases from 0.008 to 0.012. This method for analyzing how hard bottom terrain contours affect the position and attitude changes in agricultural machinery provides theoretical foundations and technical support for designing wheeled agricultural robots, path-tracking control for unmanned precision operations, and vehicle-trapping early warning systems. It holds significant importance for enhancing the intelligence and operational efficiency of paddy field machinery. Full article
Show Figures

Figure 1

12 pages, 2095 KB  
Article
Caste-Dependent Interspecific Tolerance Permits Alien Reproductives to Reproduce Within Host Colonies in Reticulitermes Termites Under Laboratory Conditions
by Zhuang-Dong Bai, Ya-Nan Dong, David Sillam-Dussès and Rui-Wu Wang
Insects 2026, 17(1), 76; https://doi.org/10.3390/insects17010076 - 9 Jan 2026
Viewed by 189
Abstract
Nestmate recognition is the primary defense mechanism maintaining the integrity of eusocial insect colonies. While social parasitism is widespread in Hymenoptera, it is rarely documented in termites, and the behavioral boundaries preventing interspecific infiltration remain poorly understood. Here, we investigated the potential for [...] Read more.
Nestmate recognition is the primary defense mechanism maintaining the integrity of eusocial insect colonies. While social parasitism is widespread in Hymenoptera, it is rarely documented in termites, and the behavioral boundaries preventing interspecific infiltration remain poorly understood. Here, we investigated the potential for interspecific integration between two closely related termite species under laboratory conditions. We introduced Reticulitermes labralis workers and reproductives (queens and kings) into orphaned groups of R. aculabialis. We found that host workers exhibited caste-dependent aggression: introduced workers were immediately attacked and eliminated, whereas alien reproductives were partially tolerated. Surviving alien reproductives successfully integrated into host group, receiving allogrooming and trophallactic care from host workers. Crucially, these integrated pairs produced viable eggs and larvae. Molecular analysis confirmed that the brood reared by the host workers were the genetic offspring of the introduced R. labralis pair, demonstrating successful “cuckoo-like” reproduction. These findings reveal that termite colony recognition is sufficiently flexible to permit the acceptance of heterospecific reproductives when native royals are absent. While field evidence remains to be discovered, our results demonstrate that the behavioral and physiological prerequisites for social parasitism exist in termites, supporting the hypothesis that close phylogenetic relatedness (Emery’s rule) facilitates the breach of social barriers. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Figure 1

9 pages, 404 KB  
Review
Sustainable Tourism and Conservation: A Study of the Impact of Tourism on Magellanic Penguins Spheniscus magellanicus in Patagonia, Argentina
by Marcelo Bertellotti and Verónica D’Amico
J. Zool. Bot. Gard. 2026, 7(1), 7; https://doi.org/10.3390/jzbg7010007 - 9 Jan 2026
Viewed by 233
Abstract
The impact of tourism on Magellanic penguins (Spheniscus magellanicus) in Patagonia is a complex issue that requires a balanced approach between conservation and sustainable tourism development. While tourism in the region can bring significant economic benefits, it can also have a [...] Read more.
The impact of tourism on Magellanic penguins (Spheniscus magellanicus) in Patagonia is a complex issue that requires a balanced approach between conservation and sustainable tourism development. While tourism in the region can bring significant economic benefits, it can also have a negative impact on the penguins by disrupting nesting behavior and chick rearing, and even increasing the risk of disease and predation. We examined a comparative analysis of scientific papers on the impact of tourism on Magellanic penguins in two breeding colonies in Argentinean Patagonia, which have been visited for 10 to 50 years and whose visitor numbers range from 10,000 to 120,000 per year. We analyzed different physiological parameters (i.e., immunological, hematological, biochemical, and stress parameters) and behavioral respond (alternate head turns) in adult birds and chicks in these colonies. Although the results suggest that Magellanic penguins have adapted well to the presence of tourists in their breeding colonies, we documented changes in certain physiological parameters that indicate chronic stress due to high exposure to tourism. It is important to promote sustainable tourism in Patagonia that not only minimizes these negative impacts but also improves the protection of the penguins and their habitat. This includes the creation of new nature reserves, environmental education, and the regulation of tourism activities. Implementing responsible tourism practices can ensure economic benefits while protecting the well-being and health of penguin populations. The combination of increased tourist awareness and concrete conservation measures can protect not only the Magellanic penguins but also the natural wealth of the entire Patagonia region. Full article
(This article belongs to the Special Issue Effects of the Presence of Zoo Visitors on Zoo-Housed Penguins)
Show Figures

Figure 1

12 pages, 1130 KB  
Perspective
Juvenile Sardine Production in Ecological Culture System: Opportunities for Restocking and Coastal Sustainability
by Ángel Urzúa, Fabián Guzmán-Rivas and Ana Aguilera-Macías
Hydrobiology 2026, 5(1), 3; https://doi.org/10.3390/hydrobiology5010003 - 9 Jan 2026
Viewed by 127
Abstract
Small pelagic fish, including sardines, are essential to global fisheries and aquaculture feed production. However, these species are increasingly exposed to intense exploitation. In Chile, the common sardine (Strangomera bentincki), endemic to the Humboldt Current System, supports major industrial and artisanal [...] Read more.
Small pelagic fish, including sardines, are essential to global fisheries and aquaculture feed production. However, these species are increasingly exposed to intense exploitation. In Chile, the common sardine (Strangomera bentincki), endemic to the Humboldt Current System, supports major industrial and artisanal fisheries. Landings are expected to reach 300,000 tons by 2025, mostly for fishmeal production. As a keystone species, S. bentincki is highly sensitive to environmental variability during early development, which can reduce recruitment and threaten long-term population sustainability. This interdisciplinary approach integrates ecological and biotechnological perspectives to assess the feasibility of controlled juvenile sardine production in land-based Ecological Aquaculture (EA) systems, including Recirculating Aquaculture Systems (RAS) and Integrated Multi-Trophic Aquaculture (IMTA), which are designed to reduce environmental impacts. These systems enable precise control of temperature, feeding regimes, and water quality, facilitating investigations into larval and juvenile survival, growth performance, and physiological responses under variable thermal and nutritional conditions. Emphasis is placed on fatty acid metabolism during ontogeny, particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), which are essential for somatic growth, reproductive development, and thermal tolerance. Developing standardized protocols for juvenile S. bentincki culture addresses key gaps in husbandry and physiology (temperature threshold, nutrient density, larval growth rate, etc.) while introducing a novel ecological–aquaculture integration framework. This approach links early-life ecology with applied rearing techniques to support stock enhancement, strengthen artisanal fisheries, and promote sustainable aquaculture diversification under increasing environmental variability. Full article
Show Figures

Figure 1

Back to TopTop