Efficiency of Weizmannia Faecalis in Improving Broiler Performance and Gut Health in Challenged Birds †
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ban on Antibiotics as Growth Promoters in Animal Feed Enters into Effect. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_05_1687 (accessed on 8 September 2025).
- Ajuwon, K.M. Toward a Better Understanding of Mechanisms of Probiotics and Prebiotics Action in Poultry Species1. J. Appl. Poult. Res. 2016, 25, 277–283. [Google Scholar] [CrossRef]
- Bajagai, Y.S.; Klieve, A.V.; Dart, P.J.; Bryden, W.L. Probiotics in Animal Nutrition: Production, Impact and Regulation; FAO Animal Production and Health Paper (FAO) No. 179; FAO: Rome, Italy, 2016. [Google Scholar]
- Mountzouris, K.C.; Balaskas, C.; Xanthakos, I.; Tzivinikou, A.; Fegeros, K. Effects of a Multi-Species Probiotic on Biomarkers of Competitive Exclusion Efficacy in Broilers Challenged with Salmonella enteritidis. Br. Poult. Sci. 2009, 50, 467–478. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Kim, I.H. Effects of Multistrain Probiotics on Growth Performance, Apparent Ileal Nutrient Digestibility, Blood Characteristics, Cecal Microbial Shedding, and Excreta Odor Contents in Broilers. Poult. Sci. 2014, 93, 364–370. [Google Scholar] [CrossRef]
- Corr, S.C.; Li, Y.; Riedel, C.U.; O’Toole, P.W.; Hill, C.; Gahan, C.G.M. Bacteriocin Production as a Mechanism for the Antiinfective Activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. USA 2007, 104, 7617–7621. [Google Scholar] [CrossRef] [PubMed]
- Pagnini, C.; Saeed, R.; Bamias, G.; Arseneau, K.O.; Pizarro, T.T.; Cominelli, F. Probiotics Promote Gut Health through Stimulation of Epithelial Innate Immunity. Proc. Natl. Acad. Sci. USA 2010, 107, 454–459. [Google Scholar] [CrossRef]
- Bai, S.P.; Wu, A.M.; Ding, X.M.; Lei, Y.; Bai, J.; Zhang, K.Y.; Chio, J.S. Effects of Probiotic-Supplemented Diets on Growth Performance and Intestinal Immune Characteristics of Broiler Chickens. Poult. Sci. 2013, 92, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Johnson-Henry, K.C.; Hagen, K.E.; Gordonpour, M.; Tompkins, T.A.; Sherman, P.M. Surface-Layer Protein Extracts from Lactobacillus helveticus Inhibit Enterohaemorrhagic Escherichia coli O157:H7 Adhesion to Epithelial Cells. Cell. Microbiol. 2007, 9, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Das, R.; Oak, S.; Mishra, P. Probiotics (Direct-Fed Microbials) in Poultry Nutrition and Their Effects on Nutrient Utilization, Growth and Laying Performance, and Gut Health: A Systematic Review. Animals 2020, 10, 1863. [Google Scholar] [CrossRef]
- Fonseca, A.; Kenney, S.; Van Syoc, E.; Bierly, S.; Dini-Andreote, F.; Silverman, J.; Boney, J.; Ganda, E. Investigating Antibiotic Free Feed Additives for Growth Promotion in Poultry: Effects on Performance and Microbiota. Poult. Sci. 2024, 103, 103604. [Google Scholar] [CrossRef]
- Maresca, E.; Aulitto, M.; Contursi, P. Harnessing the Dual Nature of Bacillus (Weizmannia) coagulans for Sustainable Production of Biomaterials and Development of Functional Food. Microb. Biotechnol. 2024, 17, e14449. [Google Scholar] [CrossRef]
- Zhou, Y.; Zeng, Z.; Xu, Y.; Ying, J.; Wang, B.; Majeed, M.; Majeed, S.; Pande, A.; Li, W. Application of Bacillus coagulans in Animal Husbandry and Its Underlying Mechanisms. Animals 2020, 10, 454. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Yu, Z.; Liu, W.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Probiotic Characteristics of Bacillus coagulans and Associated Implications for Human Health and Diseases. J. Funct. Foods 2020, 64, 103643. [Google Scholar] [CrossRef]
- Gao, J.; Wang, R.; Liu, J.; Wang, W.; Chen, Y.; Cai, W. Effects of Novel Microecologics Combined with Traditional Chinese Medicine and Probiotics on Growth Performance and Health of Broilers. Poult. Sci. 2022, 101, 101412. [Google Scholar] [CrossRef] [PubMed]
- Zaghari, M.; Sarani, P.; Hajati, H. Comparison of Two Probiotic Preparations on Growth Performance, Intestinal Microbiota, Nutrient Digestibility and Cytokine Gene Expression in Broiler Chickens. J. Appl. Anim. Res. 2020, 48, 166–175. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, R.; Jia, H.; Zhu, Z.; Li, H.; Ma, Y. Supplementation of Probiotics in Water Beneficial Growth Performance, Carcass Traits, Immune Function, and Antioxidant Capacity in Broiler Chickens. Open Life Sci. 2021, 16, 311–322. [Google Scholar] [CrossRef]
- Balamuralikrishnan, B.; Lee, S.I.; Kim, I.H. Dietary Inclusion of Different Multi-Strain Complex Probiotics; Effects on Performance in Broilers. Br. Poult. Sci. 2017, 58, 83–86. [Google Scholar] [CrossRef]
- Tayeri, V.; Seidavi, A.; Asadpour, L.; Phillips, C.J.C. A Comparison of the Effects of Antibiotics, Probiotics, Synbiotics and Prebiotics on the Performance and Carcass Characteristics of Broilers. Vet. Res. Commun. 2018, 42, 195–207. [Google Scholar] [CrossRef]
- Palamidi, I.; Fegeros, K.; Mohnl, M.; Abdelrahman, W.H.A.; Schatzmayr, G.; Theodoropoulos, G.; Mountzouris, K.C. Probiotic Form Effects on Growth Performance, Digestive Function, and Immune Related Biomarkers in Broilers. Poult. Sci. 2016, 95, 1598–1608. [Google Scholar] [CrossRef]
- Fathi, M.M.; Ebeid, T.A.; Al-Homidan, I.; Soliman, N.K.; Abou-Emera, O.K. Influence of Probiotic Supplementation on Immune Response in Broilers Raised under Hot Climate. Br. Poult. Sci. 2017, 58, 512–516. [Google Scholar] [CrossRef]
- Sjofjan, O.; Adli, D.; Sholikin, M.; Jayanegara, A.; Irawan, A. The Effects of Probiotics on the Performance, Egg Quality and Blood Parameters of Laying Hens: A Meta-Analysis. J. Anim. Feed Sci. 2021, 30, 11–18. [Google Scholar] [CrossRef]
- Dotas, V.; Gourdouvelis, D.; Hatzizisis, L.; Kaimakamis, I.; Mitsopoulos, I.; Symeon, G. Typology, Structural Characterization and Sustainability of Integrated Broiler Farming System in Epirus, Greece. Sustainability 2021, 13, 13084. [Google Scholar] [CrossRef]
| Ingredient (%) | Starter (1–10 d) | Grower (11–24 d) | Finisher (25–42 d) |
|---|---|---|---|
| Corn | 42.9 | 48.5 | 52.1 |
| Wheat | 10.0 | 10.0 | 10.0 |
| Soymeal 47% | 33.6 | 30.2 | 22.6 |
| Sunflowermeal 33.7% | 4.5 | 4.0 | 4.0 |
| Soy oil | 3.3 | 4.2 | 4.8 |
| Phytase | 0.0 | 0.0 | 0.0 |
| Choline 60% | 0.1 | 0.1 | 0.1 |
| Metheionine DL | 0.2 | 0.2 | 0.2 |
| Salt | 0.3 | 0.2 | 0.3 |
| Vit + minerals premix | 0.2 | 0.2 | 0.2 |
| Lysine | 0.3 | 0.3 | 0.2 |
| Threonine | 0.1 | 0.1 | 0.1 |
| Emulsifier | 0.1 | - | 0.1 |
| Phosphorus | 1.1 | 0.9 | 0.6 |
| Calcium | 1.1 | 1.0 | 0.9 |
| NaHCO3 | 0.1 | 0.1 | 0.1 |
| Wheat bran | 2.2 | - | 3.0 |
| Soy protein 63% | - | - | 1.0 |
| Analysis (%) | |||
| Dry matter | 87.9 | 87.9 | 87.8 |
| Crude Protein | 22.9 | 21.0 | 19.0 |
| Fiber | 3.2 | 3.1 | 3.1 |
| Fat | 5.0 | 6.5 | 7.3 |
| Ash | 5.6 | 5.1 | 4.4 |
| C | P | SEM | Significance 1 | ||
|---|---|---|---|---|---|
| DAY 10 | BW (g) | 299.6 | 301.5 | 3.7 | ns |
| ADG (g/d) | 25.4 | 25.6 | 0.4 | ns | |
| FI (g/bird) | 370.9 | 375.1 | 2.5 | ns | |
| FCR | 1.24 | 1.24 | 0.01 | ns | |
| DAY 24 | BW (g) | 1106 | 1191 | 25 | ns |
| ADG (g/d) | 57.6 | 63.5 | 1.6 | * | |
| FI (g/bird) | 1260 | 1303 | 33 | ns | |
| FCR | 1.58 | 1.47 | 0.05 | ns | |
| DAY 42 | BW (g) | 2575 | 2786 | 51 | * |
| ADG (g/d) | 81.6 | 88.6 | 2.9 | td | |
| FI (g/bird) | 2809 | 2843 | 63 | ns | |
| FCR | 1.73 | 1.62 | 0.03 | * |
| C | P | SEM | Significance 1,* | |
|---|---|---|---|---|
| Abd. Fat | 1.1 | 1.2 | 0.1 | ns |
| Liver | 3.2 | 2.6 | 0.1 | ** |
| Thigh | 7.8 | 8.1 | 0.3 | ns |
| Drumstick | 5.9 | 6.4 | 0.1 | *** |
| Breast | 41.4 | 39.6 | 0.4 | ** |
| EPEF | 344 | 392 | 5.2 | *** |
| Footpad Scoring | 2.1 | 1.9 | 0.2 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Symeon, G.; Giannenas, I.; Sakkas, P.; Stylianaki, I.; Karatosidi, D.; Zeibich, L.; Schlagheck, A.; Koutsianos, D.; Verros, D.; Lykos, N.; et al. Efficiency of Weizmannia Faecalis in Improving Broiler Performance and Gut Health in Challenged Birds. Proceedings 2026, 134, 41. https://doi.org/10.3390/proceedings2026134041
Symeon G, Giannenas I, Sakkas P, Stylianaki I, Karatosidi D, Zeibich L, Schlagheck A, Koutsianos D, Verros D, Lykos N, et al. Efficiency of Weizmannia Faecalis in Improving Broiler Performance and Gut Health in Challenged Birds. Proceedings. 2026; 134(1):41. https://doi.org/10.3390/proceedings2026134041
Chicago/Turabian StyleSymeon, George, Ilias Giannenas, Panagiotis Sakkas, Ioanna Stylianaki, Despoina Karatosidi, Lydia Zeibich, Alexandra Schlagheck, Dimitris Koutsianos, Dimitrios Verros, Nikolaos Lykos, and et al. 2026. "Efficiency of Weizmannia Faecalis in Improving Broiler Performance and Gut Health in Challenged Birds" Proceedings 134, no. 1: 41. https://doi.org/10.3390/proceedings2026134041
APA StyleSymeon, G., Giannenas, I., Sakkas, P., Stylianaki, I., Karatosidi, D., Zeibich, L., Schlagheck, A., Koutsianos, D., Verros, D., Lykos, N., Gaitanidou, M., & Dotas, V. (2026). Efficiency of Weizmannia Faecalis in Improving Broiler Performance and Gut Health in Challenged Birds. Proceedings, 134(1), 41. https://doi.org/10.3390/proceedings2026134041

