Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,066)

Search Parameters:
Keywords = real-world network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3080 KiB  
Article
Unsupervised Multimodal Community Detection Algorithm in Complex Network Based on Fractal Iteration
by Hui Deng, Yanchao Huang, Jian Wang, Yanmei Hu and Biao Cai
Fractal Fract. 2025, 9(8), 507; https://doi.org/10.3390/fractalfract9080507 (registering DOI) - 2 Aug 2025
Abstract
Community detection in complex networks plays a pivotal role in modern scientific research, including in social network analysis and protein structure analysis. Traditional community detection methods face challenges in integrating heterogeneous multi-source information, capturing global semantic relationships, and adapting to dynamic network evolution. [...] Read more.
Community detection in complex networks plays a pivotal role in modern scientific research, including in social network analysis and protein structure analysis. Traditional community detection methods face challenges in integrating heterogeneous multi-source information, capturing global semantic relationships, and adapting to dynamic network evolution. This paper proposes a novel unsupervised multimodal community detection algorithm (UMM) based on fractal iteration. The core idea is to design a dual-channel encoder that comprehensively considers node semantic features and network topological structures. Initially, node representation vectors are derived from structural information (using feature vectors when available, or singular value decomposition to obtain feature vectors for nodes without attributes). Subsequently, a parameter-free graph convolutional encoder (PFGC) is developed based on fractal iteration principles to extract high-order semantic representations from structural encodings without requiring any training process. Furthermore, a semantic–structural dual-channel encoder (DC-SSE) is designed, which integrates semantic encodings—reduced in dimensionality via UMAP—with structural features extracted by PFGC to obtain the final node embeddings. These embeddings are then clustered using the K-means algorithm to achieve community partitioning. Experimental results demonstrate that the UMM outperforms existing methods on multiple real-world network datasets. Full article
21 pages, 4314 KiB  
Article
Panoptic Plant Recognition in 3D Point Clouds: A Dual-Representation Learning Approach with the PP3D Dataset
by Lin Zhao, Sheng Wu, Jiahao Fu, Shilin Fang, Shan Liu and Tengping Jiang
Remote Sens. 2025, 17(15), 2673; https://doi.org/10.3390/rs17152673 (registering DOI) - 2 Aug 2025
Abstract
The advancement of Artificial Intelligence (AI) has significantly accelerated progress across various research domains, with growing interest in plant science due to its substantial economic potential. However, the integration of AI with digital vegetation analysis remains underexplored, largely due to the absence of [...] Read more.
The advancement of Artificial Intelligence (AI) has significantly accelerated progress across various research domains, with growing interest in plant science due to its substantial economic potential. However, the integration of AI with digital vegetation analysis remains underexplored, largely due to the absence of large-scale, real-world plant datasets, which are crucial for advancing this field. To address this gap, we introduce the PP3D dataset—a meticulously labeled collection of about 500 potted plants represented as 3D point clouds, featuring fine-grained annotations for approximately 20 species. The PP3D dataset provides 3D phenotypic data for about 20 plant species spanning model organisms (e.g., Arabidopsis thaliana), potted plants (e.g., Foliage plants, Flowering plants), and horticultural plants (e.g., Solanum lycopersicum), covering most of the common important plant species. Leveraging this dataset, we propose the panoptic plant recognition task, which combines semantic segmentation (stems and leaves) with leaf instance segmentation. To tackle this challenge, we present SCNet, a novel dual-representation learning network designed specifically for plant point cloud segmentation. SCNet integrates two key branches: a cylindrical feature extraction branch for robust spatial encoding and a sequential slice feature extraction branch for detailed structural analysis. By efficiently propagating features between these representations, SCNet achieves superior flexibility and computational efficiency, establishing a new baseline for panoptic plant recognition and paving the way for future AI-driven research in plant science. Full article
Show Figures

Figure 1

20 pages, 15898 KiB  
Article
Design of a Humanoid Upper-Body Robot and Trajectory Tracking Control via ZNN with a Matrix Derivative Observer
by Hong Yin, Hongzhe Jin, Yuchen Peng, Zijian Wang, Jiaxiu Liu, Fengjia Ju and Jie Zhao
Biomimetics 2025, 10(8), 505; https://doi.org/10.3390/biomimetics10080505 (registering DOI) - 2 Aug 2025
Abstract
Humanoid robots have attracted considerable attention for their anthropomorphic structure, extended workspace, and versatile capabilities. This paper presents a novel humanoid upper-body robotic system comprising a pair of 8-degree-of-freedom (DOF) arms, a 3-DOF head, and a 3-DOF torso—yielding a 22-DOF architecture inspired by [...] Read more.
Humanoid robots have attracted considerable attention for their anthropomorphic structure, extended workspace, and versatile capabilities. This paper presents a novel humanoid upper-body robotic system comprising a pair of 8-degree-of-freedom (DOF) arms, a 3-DOF head, and a 3-DOF torso—yielding a 22-DOF architecture inspired by human biomechanics and implemented via standardized hollow joint modules. To overcome the critical reliance of zeroing neural network (ZNN)-based trajectory tracking on the Jacobian matrix derivative, we propose an integration-enhanced matrix derivative observer (IEMDO) that incorporates nonlinear feedback and integral correction. The observer is theoretically proven to ensure asymptotic convergence and enables accurate, real-time estimation of matrix derivatives, addressing a fundamental limitation in conventional ZNN solvers. Workspace analysis reveals that the proposed design achieves an 87.7% larger total workspace and a remarkable 3.683-fold expansion in common workspace compared to conventional dual-arm baselines. Furthermore, the observer demonstrates high estimation accuracy for high-dimensional matrices and strong robustness to noise. When integrated into the ZNN controller, the IEMDO achieves high-precision trajectory tracking in both simulation and real-world experiments. The proposed framework provides a practical and theoretically grounded approach for redundant humanoid arm control. Full article
(This article belongs to the Special Issue Bio-Inspired and Biomimetic Intelligence in Robotics: 2nd Edition)
Show Figures

Figure 1

24 pages, 1681 KiB  
Article
A Hybrid Quantum–Classical Architecture with Data Re-Uploading and Genetic Algorithm Optimization for Enhanced Image Classification
by Aksultan Mukhanbet and Beimbet Daribayev
Computation 2025, 13(8), 185; https://doi.org/10.3390/computation13080185 (registering DOI) - 1 Aug 2025
Abstract
Quantum machine learning (QML) has emerged as a promising approach for enhancing image classification by exploiting quantum computational principles such as superposition and entanglement. However, practical applications on complex datasets like CIFAR-100 remain limited due to the low expressivity of shallow circuits and [...] Read more.
Quantum machine learning (QML) has emerged as a promising approach for enhancing image classification by exploiting quantum computational principles such as superposition and entanglement. However, practical applications on complex datasets like CIFAR-100 remain limited due to the low expressivity of shallow circuits and challenges in circuit optimization. In this study, we propose HQCNN–REGA—a novel hybrid quantum–classical convolutional neural network architecture that integrates data re-uploading and genetic algorithm optimization for improved performance. The data re-uploading mechanism allows classical inputs to be encoded multiple times into quantum states, enhancing the model’s capacity to learn complex visual features. In parallel, a genetic algorithm is employed to evolve the quantum circuit architecture by optimizing gate sequences, entanglement patterns, and layer configurations. This combination enables automatic discovery of efficient parameterized quantum circuits without manual tuning. Experiments on the MNIST and CIFAR-100 datasets demonstrate state-of-the-art performance for quantum models, with HQCNN–REGA outperforming existing quantum neural networks and approaching the accuracy of advanced classical architectures. In particular, we compare our model with classical convolutional baselines such as ResNet-18 to validate its effectiveness in real-world image classification tasks. Our results demonstrate the feasibility of scalable, high-performing quantum–classical systems and offer a viable path toward practical deployment of QML in computer vision applications, especially on noisy intermediate-scale quantum (NISQ) hardware. Full article
Show Figures

Figure 1

12 pages, 855 KiB  
Article
Application of Integrative Medicine in Plastic Surgery: A Real-World Data Study
by David Lysander Freytag, Anja Thronicke, Jacqueline Bastiaanse, Ioannis-Fivos Megas, David Breidung, Ibrahim Güler, Harald Matthes, Sophia Johnson, Friedemann Schad and Gerrit Grieb
Medicina 2025, 61(8), 1405; https://doi.org/10.3390/medicina61081405 (registering DOI) - 1 Aug 2025
Abstract
Background and Objectives: There is a global rise of public interest in integrative medicine. The principles of integrative medicine combining conventional medicine with evidence-based complementary therapies have been implemented in many medical areas, including plastic surgery, to improve patient’s outcome. The aim [...] Read more.
Background and Objectives: There is a global rise of public interest in integrative medicine. The principles of integrative medicine combining conventional medicine with evidence-based complementary therapies have been implemented in many medical areas, including plastic surgery, to improve patient’s outcome. The aim of the present study was to systematically analyze the application and use of additional non-pharmacological interventions (NPIs) of patients of a German department of plastic surgery. Materials and Methods: The present real-world data study utilized data from the Network Oncology registry between 2016 and 2021. Patients included in this study were at the age of 18 or above, stayed at the department of plastic surgery and received at least one plastic surgical procedure. Adjusted multivariable logistic regression analyses were performed to detect associations between the acceptance of NPIs and predicting factors such as age, gender, year of admission, or length of hospital stay. Results: In total, 265 patients were enrolled in the study between January 2016 and December 2021 with a median age of 65 years (IQR: 52–80) and a male/female ratio of 0.77. Most of the patients received reconstructive surgery (90.19%), followed by hand surgery (5.68%) and aesthetic surgery (2.64%). In total, 42.5% of the enrolled patients accepted and applied NPIs. Physiotherapy, rhythmical embrocations, and compresses were the most often administered NPIs. Conclusions: This exploratory analysis provides a descriptive overview of the application and acceptance of NPIs in plastic surgery patients within a German integrative care setting. While NPIs appear to be well accepted by a subset of patients, further prospective studies are needed to evaluate their impact on clinical outcomes such as postoperative recovery, pain management, patient-reported quality of life, and overall satisfaction with care. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

23 pages, 2015 KiB  
Article
ASA-PSO-Optimized Elman Neural Network Model for Predicting Mechanical Properties of Coarse-Grained Soils
by Haijuan Wang, Jiang Li, Yufei Zhao and Biao Liu
Processes 2025, 13(8), 2447; https://doi.org/10.3390/pr13082447 (registering DOI) - 1 Aug 2025
Abstract
Coarse-grained soils serve as essential fill materials in earth–rock dam engineering, where their mechanical properties critically influence dam deformation and stability, directly impacting project safety. Artificial intelligence (AI) techniques are emerging as powerful tools for predicting the mechanical properties of coarse-grained soils. However, [...] Read more.
Coarse-grained soils serve as essential fill materials in earth–rock dam engineering, where their mechanical properties critically influence dam deformation and stability, directly impacting project safety. Artificial intelligence (AI) techniques are emerging as powerful tools for predicting the mechanical properties of coarse-grained soils. However, AI-based prediction models for these properties face persistent challenges, particularly in parameter tuning—a process requiring substantial computational resources, extensive time, and specialized expertise. To address these limitations, this study proposes a novel prediction model that integrates Adaptive Simulated Annealing (ASA) with an improved Particle Swarm Optimization (PSO) algorithm to optimize the Elman Neural Network (ENN). The methodology encompasses three key aspects: First, the standard PSO algorithm is enhanced by dynamically adjusting its inertial weight and learning factors. The ASA algorithm is then employed to optimize the Adaptive PSO (APSO), effectively mitigating premature convergence and local optima entrapment during training, thereby ensuring convergence to the global optimum. Second, the refined PSO algorithm optimizes the ENN, overcoming its inherent limitations of slow convergence and susceptibility to local minima. Finally, validation through real-world engineering case studies demonstrates that the ASA-PSO-optimized ENN model achieves high accuracy in predicting the mechanical properties of coarse-grained soils. This model provides reliable constitutive parameters for stress–strain analysis in earth–rock dam engineering applications. Full article
(This article belongs to the Section Particle Processes)
17 pages, 3062 KiB  
Article
Spatiotemporal Risk-Aware Patrol Planning Using Value-Based Policy Optimization and Sensor-Integrated Graph Navigation in Urban Environments
by Swarnamouli Majumdar, Anjali Awasthi and Lorant Andras Szolga
Appl. Sci. 2025, 15(15), 8565; https://doi.org/10.3390/app15158565 (registering DOI) - 1 Aug 2025
Abstract
This study proposes an intelligent patrol planning framework that leverages reinforcement learning, spatiotemporal crime forecasting, and simulated sensor telemetry to optimize autonomous vehicle (AV) navigation in urban environments. Crime incidents from Washington DC (2024–2025) and Seattle (2008–2024) are modeled as a dynamic spatiotemporal [...] Read more.
This study proposes an intelligent patrol planning framework that leverages reinforcement learning, spatiotemporal crime forecasting, and simulated sensor telemetry to optimize autonomous vehicle (AV) navigation in urban environments. Crime incidents from Washington DC (2024–2025) and Seattle (2008–2024) are modeled as a dynamic spatiotemporal graph, capturing the evolving intensity and distribution of criminal activity across neighborhoods and time windows. The agent’s state space incorporates synthetic AV sensor inputs—including fuel level, visual anomaly detection, and threat signals—to reflect real-world operational constraints. We evaluate and compare three learning strategies: Deep Q-Network (DQN), Double Deep Q-Network (DDQN), and Proximal Policy Optimization (PPO). Experimental results show that DDQN outperforms DQN in convergence speed and reward accumulation, while PPO demonstrates greater adaptability in sensor-rich, high-noise conditions. Real-map simulations and hourly risk heatmaps validate the effectiveness of our approach, highlighting its potential to inform scalable, data-driven patrol strategies in next-generation smart cities. Full article
(This article belongs to the Special Issue AI-Aided Intelligent Vehicle Positioning in Urban Areas)
Show Figures

Figure 1

14 pages, 1714 KiB  
Article
A Kalman Filter-Based Localization Calibration Method Optimized by Reinforcement Learning and Information Matrix Fusion
by Zijia Huang, Qiushi Xu, Menghao Sun and Xuzhen Zhu
Entropy 2025, 27(8), 821; https://doi.org/10.3390/e27080821 (registering DOI) - 1 Aug 2025
Abstract
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement [...] Read more.
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement learning network is designed to adaptively adjust the state covariance matrix, enhancing the Kalman filter’s adaptability to environmental changes. Meanwhile, a multi-trajectory information matrix fusion strategy is introduced, which aggregates multiple trajectories in the information domain via weighted inverse covariance matrices to suppress error propagation and improve system consistency. Experiments using both simulated and real-world sensor data demonstrate that the proposed method outperforms traditional extended Kalman filter approaches in terms of localization accuracy and stability, providing a novel solution for cooperative localization calibration of unmanned aerial vehicle (UAV) swarms in dynamic environments. Full article
(This article belongs to the Special Issue Complexity, Entropy and the Physics of Information II)
Show Figures

Figure 1

18 pages, 2724 KiB  
Article
Uncertainty-Aware Earthquake Forecasting Using a Bayesian Neural Network with Elastic Weight Consolidation
by Changchun Liu, Yuting Li, Huijuan Gao, Lin Feng and Xinqian Wu
Buildings 2025, 15(15), 2718; https://doi.org/10.3390/buildings15152718 (registering DOI) - 1 Aug 2025
Abstract
Effective earthquake early warning (EEW) is essential for disaster prevention in the built environment, enabling a rapid structural response, system shutdown, and occupant evacuation to mitigate damage and casualties. However, most current EEW systems lack rigorous reliability analyses of their predictive outcomes, limiting [...] Read more.
Effective earthquake early warning (EEW) is essential for disaster prevention in the built environment, enabling a rapid structural response, system shutdown, and occupant evacuation to mitigate damage and casualties. However, most current EEW systems lack rigorous reliability analyses of their predictive outcomes, limiting their effectiveness in real-world scenarios—especially for on-site warnings, where data are limited and time is critical. To address these challenges, we propose a Bayesian neural network (BNN) framework based on Stein variational gradient descent (SVGD). By performing Bayesian inference, we estimate the posterior distribution of the parameters, thus outputting a reliability analysis of the prediction results. In addition, we incorporate a continual learning mechanism based on elastic weight consolidation, allowing the system to adapt quickly without full retraining. Our experiments demonstrate that our SVGD-BNN model significantly outperforms traditional peak displacement (Pd)-based approaches. In a 3 s time window, the Pearson correlation coefficient R increases by 9.2% and the residual standard deviation SD decreases by 24.4% compared to a variational inference (VI)-based BNN. Furthermore, the prediction variance generated by the model can effectively reflect the uncertainty of the prediction results. The continual learning strategy reduces the training time by 133–194 s, enhancing the system’s responsiveness. These features make the proposed framework a promising tool for real-time, reliable, and adaptive EEW—supporting disaster-resilient building design and operation. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 2888 KiB  
Review
Machine Learning in Flocculant Research and Application: Toward Smart and Sustainable Water Treatment
by Caichang Ding, Ling Shen, Qiyang Liang and Lixin Li
Separations 2025, 12(8), 203; https://doi.org/10.3390/separations12080203 (registering DOI) - 1 Aug 2025
Abstract
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such [...] Read more.
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such as sludge production and chemical residues. Recent advances in machine learning (ML) have opened transformative avenues for the design, optimization, and intelligent application of flocculants. This review systematically examines the integration of ML into flocculant research, covering algorithmic approaches, data-driven structure–property modeling, high-throughput formulation screening, and smart process control. ML models—including random forests, neural networks, and Gaussian processes—have successfully predicted flocculation performance, guided synthesis optimization, and enabled real-time dosing control. Applications extend to both synthetic and bioflocculants, with ML facilitating strain engineering, fermentation yield prediction, and polymer degradability assessments. Furthermore, the convergence of ML with IoT, digital twins, and life cycle assessment tools has accelerated the transition toward sustainable, adaptive, and low-impact treatment technologies. Despite its potential, challenges remain in data standardization, model interpretability, and real-world implementation. This review concludes by outlining strategic pathways for future research, including the development of open datasets, hybrid physics–ML frameworks, and interdisciplinary collaborations. By leveraging ML, the next generation of flocculant systems can be more effective, environmentally benign, and intelligently controlled, contributing to global water sustainability goals. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

10 pages, 710 KiB  
Article
CPAP Use and Retinal Disease Risk in Obstructive Apnea: A Cohort Study
by Dillan Cunha Amaral, Pedro Lucas Machado Magalhães, Muhammad Alfatih, Bruna Gabriel Miranda, Hashem Abu Serhan, Raíza Jacometti, Bruno Fortaleza de Aquino Ferreira, Letícia Sant’Ana, Diogo Haddad Santos, Mário Luiz Ribeiro Monteiro and Ricardo Noguera Louzada
Vision 2025, 9(3), 65; https://doi.org/10.3390/vision9030065 (registering DOI) - 1 Aug 2025
Abstract
Obstructive sleep apnea (OSA) is a common condition associated with intermittent hypoxia, systemic inflammation, and vascular dysfunction; mechanisms implicated in retinal disease pathogenesis. This real-world retrospective cohort study used data from the TriNetX Research Network to assess whether continuous positive airway pressure (CPAP) [...] Read more.
Obstructive sleep apnea (OSA) is a common condition associated with intermittent hypoxia, systemic inflammation, and vascular dysfunction; mechanisms implicated in retinal disease pathogenesis. This real-world retrospective cohort study used data from the TriNetX Research Network to assess whether continuous positive airway pressure (CPAP) therapy reduces retinal disease incidence among adults with OSA and BMI between 25.0 and 30.0 kg/m2. After 1:1 propensity score matching, 101,754 patients were included in the analysis. Retinal outcomes included diabetic retinopathy (DR), age-related macular degeneration (AMD), retinal vein occlusion (RVO), and central serous chorioretinopathy (CSC). CPAP use was associated with a modest but statistically significant reduction in DR (3.2% vs. 3.4%, RR: 0.922, p = 0.016) and AMD (2.1% vs. 2.3%, RR: 0.906, p = 0.018), while no significant differences were found for RVO or CSC. These findings support prior evidence linking CPAP to improved retinal microvascular health and suggest a protective effect against specific retinal complications. Limitations include a lack of data on CPAP adherence, OSA severity, and imaging confirmation. Still, this study highlights the importance of interdisciplinary care between sleep and eye health, and the need for further prospective studies to validate CPAP’s role in preventing retinal disease progression in OSA patients. Full article
Show Figures

Figure 1

16 pages, 4587 KiB  
Article
FAMNet: A Lightweight Stereo Matching Network for Real-Time Depth Estimation in Autonomous Driving
by Jingyuan Zhang, Qiang Tong, Na Yan and Xiulei Liu
Symmetry 2025, 17(8), 1214; https://doi.org/10.3390/sym17081214 - 1 Aug 2025
Abstract
Accurate and efficient stereo matching is fundamental to real-time depth estimation from symmetric stereo cameras in autonomous driving systems. However, existing high-accuracy stereo matching networks typically rely on computationally expensive 3D convolutions, which limit their practicality in real-world environments. In contrast, real-time methods [...] Read more.
Accurate and efficient stereo matching is fundamental to real-time depth estimation from symmetric stereo cameras in autonomous driving systems. However, existing high-accuracy stereo matching networks typically rely on computationally expensive 3D convolutions, which limit their practicality in real-world environments. In contrast, real-time methods often sacrifice accuracy or generalization capability. To address these challenges, we propose FAMNet (Fusion Attention Multi-Scale Network), a lightweight and generalizable stereo matching framework tailored for real-time depth estimation in autonomous driving applications. FAMNet consists of two novel modules: Fusion Attention-based Cost Volume (FACV) and Multi-scale Attention Aggregation (MAA). FACV constructs a compact yet expressive cost volume by integrating multi-scale correlation, attention-guided feature fusion, and channel reweighting, thereby reducing reliance on heavy 3D convolutions. MAA further enhances disparity estimation by fusing multi-scale contextual cues through pyramid-based aggregation and dual-path attention mechanisms. Extensive experiments on the KITTI 2012 and KITTI 2015 benchmarks demonstrate that FAMNet achieves a favorable trade-off between accuracy, efficiency, and generalization. On KITTI 2015, with the incorporation of FACV and MAA, the prediction accuracy of the baseline model is improved by 37% and 38%, respectively, and a total improvement of 42% is achieved by our final model. These results highlight FAMNet’s potential for practical deployment in resource-constrained autonomous driving systems requiring real-time and reliable depth perception. Full article
Show Figures

Figure 1

24 pages, 3110 KiB  
Article
Coupling Individual Psychological Security and Information for Modeling the Spread of Infectious Diseases
by Na Li, Jianlin Zhou, Haiyan Liu and Xikai Wang
Systems 2025, 13(8), 637; https://doi.org/10.3390/systems13080637 (registering DOI) - 1 Aug 2025
Abstract
Background: Faced with the profound impact of major infectious diseases on public life and economic development, humans have long sought to understand disease transmission and intervention strategies. To better explore the impact of individuals’ different coping behaviors—triggered by changes in their psychological [...] Read more.
Background: Faced with the profound impact of major infectious diseases on public life and economic development, humans have long sought to understand disease transmission and intervention strategies. To better explore the impact of individuals’ different coping behaviors—triggered by changes in their psychological security due to public information and external environmental changes—on the spread to infectious diseases, the model will place greater emphasis on quantifying psychological factors to make it more aligned with real-world situations. Methods: To better understand the interplay between information dissemination and disease transmission, we propose a two-layer network model that incorporates psychological safety factors. Results: Our model reveals key insights into disease transmission dynamics: (1) active defense behaviors help reduce both disease spread and information diffusion; (2) passive resistance behaviors expand disease transmission and may trigger recurrence but enhance information spread; (3) high-timeliness, low-fuzziness information reduces the peak of the initial infection but does not significantly curb overall disease spread, and the rapid dissemination of disease-related information is most effective in limiting the early stages of transmission; and (4) community structures in information networks can effectively curb the spread of infectious diseases. Conclusions: These findings offer valuable theoretical support for public health strategies and disease prevention after government information release. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

26 pages, 1790 KiB  
Article
A Hybrid Deep Learning Model for Aromatic and Medicinal Plant Species Classification Using a Curated Leaf Image Dataset
by Shareena E. M., D. Abraham Chandy, Shemi P. M. and Alwin Poulose
AgriEngineering 2025, 7(8), 243; https://doi.org/10.3390/agriengineering7080243 - 1 Aug 2025
Abstract
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the [...] Read more.
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the lack of domain-specific, high-quality datasets and the limited representational capacity of traditional architectures. This study addresses these challenges by introducing a novel, well-curated leaf image dataset consisting of 39 classes of medicinal and aromatic plants collected from the Aromatic and Medicinal Plant Research Station in Odakkali, Kerala, India. To overcome performance bottlenecks observed with a baseline Convolutional Neural Network (CNN) that achieved only 44.94% accuracy, we progressively enhanced model performance through a series of architectural innovations. These included the use of a pre-trained VGG16 network, data augmentation techniques, and fine-tuning of deeper convolutional layers, followed by the integration of Squeeze-and-Excitation (SE) attention blocks. Ultimately, we propose a hybrid deep learning architecture that combines VGG16 with Batch Normalization, Gated Recurrent Units (GRUs), Transformer modules, and Dilated Convolutions. This final model achieved a peak validation accuracy of 95.24%, significantly outperforming several baseline models, such as custom CNN (44.94%), VGG-19 (59.49%), VGG-16 before augmentation (71.52%), Xception (85.44%), Inception v3 (87.97%), VGG-16 after data augumentation (89.24%), VGG-16 after fine-tuning (90.51%), MobileNetV2 (93.67), and VGG16 with SE block (94.94%). These results demonstrate superior capability in capturing both local textures and global morphological features. The proposed solution not only advances the state of the art in plant classification but also contributes a valuable dataset to the research community. Its real-world applicability spans field-based plant identification, biodiversity conservation, and precision agriculture, offering a scalable tool for automated plant recognition in complex ecological and agricultural environments. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

30 pages, 4409 KiB  
Article
Accident Impact Prediction Based on a Deep Convolutional and Recurrent Neural Network Model
by Pouyan Sajadi, Mahya Qorbani, Sobhan Moosavi and Erfan Hassannayebi
Urban Sci. 2025, 9(8), 299; https://doi.org/10.3390/urbansci9080299 (registering DOI) - 1 Aug 2025
Abstract
Traffic accidents pose a significant threat to public safety, resulting in numerous fatalities, injuries, and a substantial economic burden each year. The development of predictive models capable of the real-time forecasting of post-accident impact using readily available data can play a crucial role [...] Read more.
Traffic accidents pose a significant threat to public safety, resulting in numerous fatalities, injuries, and a substantial economic burden each year. The development of predictive models capable of the real-time forecasting of post-accident impact using readily available data can play a crucial role in preventing adverse outcomes and enhancing overall safety. However, existing accident predictive models encounter two main challenges: first, a reliance on either costly or non-real-time data, and second, the absence of a comprehensive metric to measure post-accident impact accurately. To address these limitations, this study proposes a deep neural network model known as the cascade model. It leverages readily available real-world data from Los Angeles County to predict post-accident impacts. The model consists of two components: Long Short-Term Memory (LSTM) and a Convolutional Neural Network (CNN). The LSTM model captures temporal patterns, while the CNN extracts patterns from the sparse accident dataset. Furthermore, an external traffic congestion dataset is incorporated to derive a new feature called the “accident impact” factor, which quantifies the influence of an accident on surrounding traffic flow. Extensive experiments were conducted to demonstrate the effectiveness of the proposed hybrid machine learning method in predicting the post-accident impact compared to state-of-the-art baselines. The results reveal a higher precision in predicting minimal impacts (i.e., cases with no reported accidents) and a higher recall in predicting more significant impacts (i.e., cases with reported accidents). Full article
Show Figures

Figure 1

Back to TopTop