Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (523)

Search Parameters:
Keywords = reaction rate coefficient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 865 KiB  
Article
A Sliding Microfluidic Chip-Integrated Colorimetric Biosensor Using MnO2 Nanoflowers for Rapid Salmonella Detection
by Yidan Niu, Juntao Jiang, Xin Zhi, Jiahui An and Yuhe Wang
Micromachines 2025, 16(8), 904; https://doi.org/10.3390/mi16080904 (registering DOI) - 31 Jul 2025
Abstract
Rapid screening of foodborne pathogens is critical for food safety, yet current detection techniques often suffer from low efficiency and complexity. In this study, we developed a sliding microfluidic colorimetric biosensor for the fast, sensitive, and multiplex detection of Salmonella. First, the [...] Read more.
Rapid screening of foodborne pathogens is critical for food safety, yet current detection techniques often suffer from low efficiency and complexity. In this study, we developed a sliding microfluidic colorimetric biosensor for the fast, sensitive, and multiplex detection of Salmonella. First, the target bacteria were specifically captured by antibody-functionalized magnetic nanoparticles in the microfluidic chip, forming magnetic bead–bacteria complexes. Then, through motor-assisted sliding of the chip, manganese dioxide (MnO2) nanoflowers conjugated with secondary antibodies were introduced to bind the captured bacteria, generating a dual-antibody sandwich structure. Finally, a second sliding step brought the complexes into contact with a chromogenic substrate, where the MnO2 nanoflowers catalyzed a colorimetric reaction, and the resulting signal was used to quantify the Salmonella concentration. Under optimized conditions, the biosensor achieved a detection limit of 10 CFU/mL within 20 min. In spiked pork samples, the average recovery rate of Salmonella ranged from 94.9% to 125.4%, with a coefficient of variation between 4.0% and 6.8%. By integrating mixing, separation, washing, catalysis, and detection into a single chip, this microfluidic biosensor offers a user-friendly, time-efficient, and highly sensitive platform, showing great potential for the on-site detection of foodborne pathogens. Full article
(This article belongs to the Section B1: Biosensors)
20 pages, 3271 KiB  
Article
Calculation Model for the Degree of Hydration and Strength Prediction in Basalt Fiber-Reinforced Lightweight Aggregate Concrete
by Yanqun Sun, Haoxuan Jia, Jianxin Wang, Yanfei Ding, Yanfeng Guan, Dongyi Lei and Ying Li
Buildings 2025, 15(15), 2699; https://doi.org/10.3390/buildings15152699 (registering DOI) - 31 Jul 2025
Viewed by 38
Abstract
The combined application of fibers and lightweight aggregates (LWAs) represents an effective approach to achieving high-strength, lightweight concrete. To enhance the predictability of the mechanical properties of fiber-reinforced lightweight aggregate concrete (LWAC), this study conducts an in-depth investigation into its hydration characteristics. In [...] Read more.
The combined application of fibers and lightweight aggregates (LWAs) represents an effective approach to achieving high-strength, lightweight concrete. To enhance the predictability of the mechanical properties of fiber-reinforced lightweight aggregate concrete (LWAC), this study conducts an in-depth investigation into its hydration characteristics. In this study, high-strength LWAC was developed by incorporating low water absorption LWAs, various volume fractions of basalt fiber (BF) (0.1%, 0.2%, and 0.3%), and a ternary cementitious system consisting of 70% cement, 20% fly ash, and 10% silica fume. The hydration-related properties were evaluated through isothermal calorimetry test and high-temperature calcination test. The results indicate that incorporating 0.1–0.3% fibers into the cementitious system delays the early hydration process, with a reduced peak heat release rate and a delayed peak heat release time compared to the control group. However, fitting the cumulative heat release over a 72-h period using the Knudsen equation suggests that BF has a minor impact on the final degree of hydration, with the difference in maximum heat release not exceeding 3%. Additionally, the calculation model for the final degree of hydration in the ternary binding system was also revised based on the maximum heat release at different water-to-binder ratios. The results for chemically bound water content show that compared with the pre-wetted LWA group, under identical net water content conditions, the non-pre-wetted LWA group exhibits a significant reduction at three days, with a decrease of 28.8%; while under identical total water content conditions it shows maximum reduction at ninety days with a decrease of 5%. This indicates that pre-wetted LWAs help maintain an effective water-to-binder ratio and facilitate continuous advancement in long-term hydration reactions. Based on these results, influence coefficients related to LWAs for both final degree of hydration and hydration rate were integrated into calculation models for degrees of hydration. Ultimately, this study verified reliability of strength prediction models based on degrees of hydration. Full article
Show Figures

Figure 1

25 pages, 2151 KiB  
Article
A Possibility of Tribological Investigation of Physicochemical Processes in a Friction Pair Operating Under Selective Transfer Conditions
by Filip Ilie, Daniel Constantin Cotici and Andrei-Florin Hristache
Lubricants 2025, 13(8), 331; https://doi.org/10.3390/lubricants13080331 - 30 Jul 2025
Viewed by 147
Abstract
The physicochemical processes that occur during selective transfer in the contact area of a bronze/steel friction pair lubricated with glycerin are experimentally studied by the polarization method to observe how they influence the tribological properties (friction and wear) of the pair. The proposed [...] Read more.
The physicochemical processes that occur during selective transfer in the contact area of a bronze/steel friction pair lubricated with glycerin are experimentally studied by the polarization method to observe how they influence the tribological properties (friction and wear) of the pair. The proposed method allows for the study of tribochemical transformations of glycerin and the friction pair materials during the work process with selective transfer. The analysis of the experimental results allows for the establishment of the conditions for a stable and stationary selective transfer during the operation of the bronze/steel pair, by friction, at which the friction coefficient (COF) values and wear are low. This was achieved by implementing continuous lubrication with fresh glycerin in the contact area, choosing the optimal flow rate, and maintaining an optimal ratio between glycerin and the chemical transformation products, within well-established limits, to avoid undesirable consequences. Acrolein, as a product of chemical transformation (resulting from the catalytic dehydration of glycerin), is the most important for the initiation and stability of the selective transfer, and as the main reaction product, also represents a pathway of regeneration. Thus, it was found that the friction relative moments and the acrolein concentration presented conclusive/specific results at loads of 4–15 MPa and a sliding speed of 0.3 m/s. The optimum lubricant entry speed is 15–30 mg/min, for a minimum COF and reduced wear (about 0.028–0.03 at relatively high operating temperatures (45 and 60 °C)), and at low temperatures (30 °C) the minimum COF is about 0.038, but the lubricant inlet entry speed increases considerably, by around 1000 mg/min. Therefore, this paper aims to demonstrate the possibility of moving to another stage of practical use of a friction pair (with greatly improved tribological properties) that operates with selective transfer, much different from the ones still present, using a lubricant with special properties (glycerin). The research method used (polarization) highlights the physicochemical properties, tribochemical transformations of the lubricant, and the friction pair materials present in the contact area, for the understanding, maintenance, and stability of selective transfer, based on experiments, as a novelty compared to other studies. Full article
(This article belongs to the Special Issue Experimental Modelling of Tribosystems)
Show Figures

Figure 1

22 pages, 1835 KiB  
Article
Homogeneous and Heterogeneous Photo-Fenton-Based Photocatalytic Techniques for the Degradation of Nile Blue Dye
by Georgia Papadopoulou, Eleni Evgenidou and Dimitra Lambropoulou
Appl. Sci. 2025, 15(14), 7917; https://doi.org/10.3390/app15147917 - 16 Jul 2025
Viewed by 295
Abstract
In this study, the degradation of Nile Blue dye was investigated using homogeneous and heterogeneous photocatalytic methods based on the photo-Fenton reaction. More specifically, for homogeneous photocatalysis, the classical photo-Fenton (UV/Fe2+/H2O2) and modified photo-Fenton-like (UV/Fe2+/S [...] Read more.
In this study, the degradation of Nile Blue dye was investigated using homogeneous and heterogeneous photocatalytic methods based on the photo-Fenton reaction. More specifically, for homogeneous photocatalysis, the classical photo-Fenton (UV/Fe2+/H2O2) and modified photo-Fenton-like (UV/Fe2+/S2O82−) systems were studied, while for heterogeneous photocatalysis, a commercial MOF catalyst, Basolite F300, and a natural ferrous mineral, geothite, were employed. Various parameters—including the concentrations of the oxidant and catalyst, UV radiation, and pH—were investigated to determine their influence on the reaction rate. In homogeneous systems, an increase in iron concentration led to an enhanced degradation rate of the target compound. Similarly, increasing the oxidant concentration accelerated the reaction rate up to an optimal level, beyond which radical scavenging effects were observed, reducing the overall efficiency. In contrast, heterogeneous systems exhibited negligible degradation in the absence of an oxidant; however, the addition of oxidants significantly improved the process efficiency. Among the tested processes, homogeneous techniques demonstrated a superior efficiency, with the conventional photo-Fenton process achieving complete mineralization within three hours. Kinetic analysis revealed pseudo-first-order behavior, with rate constants ranging from 0.012 to 0.688 min−1 and correlation coefficients (R2) consistently above 0.90, confirming the reliability of the applied model under various experimental conditions. Nevertheless, heterogeneous techniques, despite their lower degradation rates, also achieved high removal efficiencies while offering the advantage of operating at a neutral pH without the need for acidification. Full article
Show Figures

Figure 1

19 pages, 3179 KiB  
Article
Development of a Multiplex Real-Time PCR Assay for the Detection of Eight Pathogens Associated with Bovine Respiratory Disease Complex from Clinical Samples
by Fuxing Hao, Chunhao Tao, Ruilong Xiao, Ying Huang, Weifeng Yuan, Zhen Wang and Hong Jia
Microorganisms 2025, 13(7), 1629; https://doi.org/10.3390/microorganisms13071629 - 10 Jul 2025
Viewed by 326
Abstract
Bovine respiratory disease complex (BRDC) is one of the primary causes of morbidity, mortality, and economic loss in cattle worldwide. Accurate and rapid identification of causative pathogenic agents is essential for effective disease management and control. In this study, a novel multiplex fluorescence-based [...] Read more.
Bovine respiratory disease complex (BRDC) is one of the primary causes of morbidity, mortality, and economic loss in cattle worldwide. Accurate and rapid identification of causative pathogenic agents is essential for effective disease management and control. In this study, a novel multiplex fluorescence-based quantitative polymerase chain reaction (qPCR) assay was developed for the simultaneous detection of eight major pathogens associated with BRDC. The targeted pathogens included the following: bovine viral diarrhea virus (BVDV), bovine parainfluenza virus type 3 (BPIV3), bovine respiratory syncytial virus (BRSV), bovine coronavirus (BcoV), Mycoplasma bovis (M.bovis), Pasteurella multocida (PM), Mannheimia haemolytica (MH), and infectious bovine rhinotracheitis virus (IBRV). The assay was rigorously optimized to ensure high specificity with no cross-reactivity among targets. The limit of detection (LOD) was determined to be as low as 5 copies per reaction for all target pathogens. The coefficient of variation (CVs) for both intra-assay and inter-assay measurements were consistently below 2%, demonstrating excellent reproducibility. To validate the clinical utility of the assay, a total of 1012 field samples were tested, including 504 nasal swabs from Farm A and 508 from Farm B in Jiangsu Province. BVDV, BcoV, PM, and MH were detected from Farm A, with a BVDV-positive rate of 21.63% (109/504), BcoV-positive rate of 26.79% (135/504), PM-positive rate of 28.77% (145/504), and MH-positive rate of 15.08% (76/504). Also, BcoV, PM, MH, and IBRV were detected from Farm B, with a BcoV-positive rate of 2.36% (12/508), PM-positive rate of 1.38% (7/508), MH-positive rate of 14.76% (75/508), and IBRV-positive rate of 5.51% (28/508). Notably, a significant proportion of samples showed evidence of mixed infections, underscoring the complexity of BRDC etiology and the importance of a multiplex diagnostic approach. In conclusion, the developed multiplex qPCR assay provides a reliable, rapid, and cost-effective tool for simultaneous detection of multiple BRDC-associated pathogens, which will hold great promise for enhancing disease surveillance, early diagnosis, and targeted intervention strategies, ultimately contributing to improved BRDC management and cattle health outcomes. Full article
(This article belongs to the Special Issue Animal Viral Infectious Diseases)
Show Figures

Figure 1

16 pages, 2072 KiB  
Article
Dynamic Modeling of the Sulfur Cycle in Urban Sewage Pipelines Under High-Temperature and High-Salinity Conditions
by Zhiwei Cao, Zhen Xu, Yufeng Chen, Bingxuan Zhao, Chenxu Wang, Zuozhou Yu and Jingya Zhou
Microorganisms 2025, 13(7), 1534; https://doi.org/10.3390/microorganisms13071534 - 30 Jun 2025
Viewed by 297
Abstract
This study addresses the microbial corrosion of cement-based materials in coastal urban sewer networks, systematically investigating the kinetic mechanisms of sulfur biogeochemical cycling under seawater infiltration conditions. Through dynamic monitoring of sulfide concentrations and environmental parameter variations in anaerobic pipelines, a multiphase coupled [...] Read more.
This study addresses the microbial corrosion of cement-based materials in coastal urban sewer networks, systematically investigating the kinetic mechanisms of sulfur biogeochemical cycling under seawater infiltration conditions. Through dynamic monitoring of sulfide concentrations and environmental parameter variations in anaerobic pipelines, a multiphase coupled kinetic model integrating liquid-phase, gas-phase, and biofilm metabolic processes was developed. The results demonstrate that moderate salinity enhances the activity of sulfate-reducing bacteria (SRB) and accelerates sulfate reduction rates, whereas excessive sulfide accumulation inhibits SRB activity. At 35 °C, the mathematical model coefficient “a” for sulfate reduction in the reactor with 3 g/L salinity was significantly higher than those in reactors with 19 g/L and 35 g/L salinities, with no significant difference observed between the latter two. Overall, high sulfate concentrations do not act as limiting factors for sulfide oxidation under anaerobic conditions; instead, they enhance the reaction within specific concentration ranges. The refined kinetic model enables prediction of sulfur speciation in tropical coastal urban sewer pipelines, providing a scientific basis for corrosion risk assessment. Full article
Show Figures

Figure 1

18 pages, 3223 KiB  
Article
Design of a Metal Hydride Cartridge Heated by PEMFC Exhaust
by Tomoya Ezawa, Shan Miao, Koki Harano, Masami Sumita, Noboru Katayama and Kiyoshi Dowaki
Energies 2025, 18(13), 3399; https://doi.org/10.3390/en18133399 - 27 Jun 2025
Viewed by 384
Abstract
This study investigates the structure of a metal hydride (MH) cartridge as a hydrogen storage tank for small-scale fuel cells (FCs). This cartridge is designed to be stacked and used in layers, allowing flexible capacity adjustment according to demand. MH enables compact and [...] Read more.
This study investigates the structure of a metal hydride (MH) cartridge as a hydrogen storage tank for small-scale fuel cells (FCs). This cartridge is designed to be stacked and used in layers, allowing flexible capacity adjustment according to demand. MH enables compact and safe hydrogen storage for small-scale fuel cell (FC) applications due to its high energy density and low-pressure operation. However, because hydrogen desorption from MH is an endothermic reaction, an external heat supply is required for stable performance. To enhance both the heat transfer efficiency and cartridge usability, we propose a heat supply method that utilizes waste heat from an air-cooled proton-exchange membrane fuel cell (PEMFC). The proposed cartridge incorporates four cylindrical MH tanks that require uniform heat transfer. Therefore, we proposed the tank arrangements within the cartridge to minimize the non-uniformity of heat transfer distribution on the surface. The flow of exhaust air from the PEMFC into the cartridge was analyzed using computational fluid dynamics (CFD) simulations. In addition, an empirical correlation for the Nusselt number was developed to estimate the heat transfer coefficient. As a result, it was concluded that the heat utilization rate of the exhaust heat flowing into the cartridge was 13.2%. Full article
(This article belongs to the Special Issue Hydrogen Energy Storage: Materials, Methods and Perspectives)
Show Figures

Figure 1

16 pages, 6985 KiB  
Article
Development of a Quadruplex RT-qPCR Assay for Rapid Detection and Differentiation of PRRSV-2 and Its Predominant Genetic Sublineages in China
by Guishan Ye, Siyu Xiong, Zhipeng Su, Guosheng Chen, Siyuan Liu, Zixuan Wang, Huanchun Chen and Anding Zhang
Viruses 2025, 17(6), 853; https://doi.org/10.3390/v17060853 - 16 Jun 2025
Viewed by 483
Abstract
Background: Porcine Reproductive and Respiratory Syndrome (PRRS) is a highly contagious disease characterized by reproductive failure in sows and severe respiratory disorders across all swine ages, causing significant economic losses. In China, the PRRSV epidemiological landscape is complex, with the coexistence of multiple [...] Read more.
Background: Porcine Reproductive and Respiratory Syndrome (PRRS) is a highly contagious disease characterized by reproductive failure in sows and severe respiratory disorders across all swine ages, causing significant economic losses. In China, the PRRSV epidemiological landscape is complex, with the coexistence of multiple lineages and frequent recombination. The major circulating strains include sublineages 1.8 (NADC30-like PRRSV) and 1.5 (NADC34-like PRRSV), along with lineages 8 (HP-like PRRSV) and 5 (VR2332-like PRRSV), highlighting the urgent need for rapid detection and lineage differentiation. Methods: A quadruplex RT-qPCR assay was developed targeting lineage-specific deletions in the NSP2 gene to simultaneously detect PRRSV-2 and differentiate NADC30-like PRRSV, HP-like PRRSV, and NADC34-like PRRSV strains. The assay was optimized with respect to reaction conditions, including annealing temperature, primers, and probe concentrations. The method’s performance was evaluated in terms of specificity, sensitivity, repeatability, stability, limit of detection (LOD), and consistency with sequencing results. Results: The assay demonstrated high sensitivity (LOD of 3 copies/μL), high specificity, and good repeatability (coefficient of variation < 1.5%). Field application using 938 samples from Guangxi A and B farms revealed NADC30-like PRRSV wild-type strains at positivity rates of 13.44% and 3.53%, respectively. Positive samples selected for sequencing were further confirmed using ORF5-based phylogenetic analysis and NSP2 deletion pattern comparison, which aligned with RT-qPCR detection results. Field application primarily detected NADC30-like PRRSV, while further validation is still needed for HP-like and NADC34-like strains. The developed quadruplex RT-qPCR assay enables rapid and simultaneous detection of PRRSV-2 and differentiation of three major lineages, providing a sensitive, specific, and reliable tool for distinguishing vaccine-derived from circulating strains and supporting targeted disease surveillance and control in swine farms. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

22 pages, 3970 KiB  
Article
Experimental Research on Polymers for the Restoration of Cultural Relic Buildings
by Xinyu Wang, Jianwei Yue and Tuo Huang
Buildings 2025, 15(12), 2036; https://doi.org/10.3390/buildings15122036 - 13 Jun 2025
Viewed by 370
Abstract
The protective materials for cultural relic buildings generally have a deficiency of relatively shallow penetration depth. Based on the principle of changing the permeability coefficient of cultural relic buildings by “water blocking water” and considering the characteristics of magnesium acrylate polymer and the [...] Read more.
The protective materials for cultural relic buildings generally have a deficiency of relatively shallow penetration depth. Based on the principle of changing the permeability coefficient of cultural relic buildings by “water blocking water” and considering the characteristics of magnesium acrylate polymer and the requirement of extending the curing time, a method of modifying magnesium acrylate polymer with glycerol and sodium methyl silicate is proposed. Experimental studies on magnesium acrylate, glycerol–magnesium acrylate, and sodium methyl silicate—glycerol–magnesium acrylate polymers were carried out, and tests and analyses on curing time, swelling performance, water loss rate, and soil sample protection were conducted. The results show that the initiator concentration is a key factor affecting the curing rate of magnesium acrylate polymers. When the initiator content is ≥4%, the curing time is significantly shortened to 20–67 min, and the incorporation of glycerol prolongs the curing time by more than 100 min through the dilution reaction system. Glycerol modification significantly enhanced the swelling capacity of the polymer, with the swelling rate increasing by approximately 15–20% compared to the unmodified system. Sodium methyl silicate effectively improved the construction performance of magnesium acrylate and prevented the occurrence of bubbles. The optimal formula of magnesium acrylate polymer is 25% magnesium acrylate, 40% glycerol, and 2% sodium methyl silicate. While maintaining curing for 120 min, it features a high swelling rate (equilibrium swelling ratio Ew ≈ 0.32) and a low dehydration rate (dehydration rate ≤ 35% after 48 h), and has volume stability after interaction with soil samples. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 13463 KiB  
Article
Investigating the Characteristics of the Laser Powder Bed Fusion of SiCp/AlSi10Mg Composites: From a Single Track to a Cubic Block
by Ying He, Gang Xue, Haifeng Xiao and Haihong Zhu
Micromachines 2025, 16(6), 697; https://doi.org/10.3390/mi16060697 - 11 Jun 2025
Viewed by 754
Abstract
Laser powder bed fusion (LPBF) of SiCp/AlSi10Mg is promising in many industrial fields. In this paper, the characteristics of a 15 wt.% 1200 mesh SiCp/AlSi10Mg metal matrix composite fabricated by LPBF were investigated systematically, i.e., from a single track to a block. It [...] Read more.
Laser powder bed fusion (LPBF) of SiCp/AlSi10Mg is promising in many industrial fields. In this paper, the characteristics of a 15 wt.% 1200 mesh SiCp/AlSi10Mg metal matrix composite fabricated by LPBF were investigated systematically, i.e., from a single track to a block. It was found that when the laser energy input was high enough, the single track was continuous and not distorted; when the laser energy input was low, the single track was unstable and wrinkled. The densification of the LPBFed composite sample was influenced significantly by the surface morphologies and geometric dimensions of the single tracks. As high as 98.9% relative density was achieved when the optimized processing parameters were used. Because of the good wettability and the interfacial reaction during the process, the interface of SiC and the matrix showed good bonding. Near the interface of SiC and the matrix, needle-shaped phase Al4SiC4 could be found both in the single track and block, and the faceted particle Si was formed in the block because of the interfacial reaction. The microhardness of the LPBFed SiCp/AlSi10Mg composites was much higher than that of the LPBFed unreinforced AlSi10Mg. A coefficient of friction of 0.178 and wear rate of 2.02 × 10−4 mm3/(N⋅m) were achieved for the LPBFed composites. The main wear mechanism was delamination wear, accompanied by abrasive wear. The maximum yield strength and ultimate compressive strength were 566.6 MPa and 764.1 MPa, respectively. The fracture mode of the LPBFed composites is mainly brittle fracture. This study provides a theoretical and technical basis for LPBFed SiCp/AlSi10Mg 3D parts. Full article
Show Figures

Figure 1

29 pages, 5482 KiB  
Article
Mitigation of Volume Changes in Alkali-Activated Slag by Using Metakaolin
by Maïté Lacante, Brice Delsaute and Stéphanie Staquet
Materials 2025, 18(11), 2644; https://doi.org/10.3390/ma18112644 - 5 Jun 2025
Viewed by 492
Abstract
This research investigates whether metakaolin can be used as a partial substitution for slag to mitigate significant volume changes in alkali-activated slags. Its effect on compressive strength and workability (as well as on isothermal calorimetry, autogenous strain, and coefficient of thermal expansion (CTE)) [...] Read more.
This research investigates whether metakaolin can be used as a partial substitution for slag to mitigate significant volume changes in alkali-activated slags. Its effect on compressive strength and workability (as well as on isothermal calorimetry, autogenous strain, and coefficient of thermal expansion (CTE)) were found to depend on both the type and concentration of the alkaline activator. When using 8 M and 10 M sodium hydroxide (NaOH), increasing the substitution rate increased the compressive strength. With sodium silicate (Na2SiO3), compressive strength decreased as the substitution increased. Isothermal calorimetry revealed metakaolin’s dilution effect at 10% substitution. With 8 M NaOH, a third reaction peak appeared, whose magnitude increased with the substitution rate, while the second peak decreased. The swelling was increased at 10% substitution, followed by constant shrinkage in case of NaOH-activation. Shrinkage was mitigated with Na2SiO3-activation. Higher substitutions with 8 M NaOH resulted in a significant increase in the shrinkage rate and CTE, occurring when the third reaction peak appeared. A 10% substitution delayed the CTE increase but resulted in higher later-age values (dilution effect). The 20% substitution led to a similar final CTE value at 300 h, while 30% substitution resulted in a decrease in CTE after the initial increase. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 3449 KiB  
Article
Optimization of Gas-Liquid Sulfonation in Cross-Shaped Microchannels for α-Olefin Sulfonate Synthesis
by Yao Li, Yingxin Mu, Muxuan Qin, Wei Zhang and Wenjin Zhou
Micromachines 2025, 16(6), 638; https://doi.org/10.3390/mi16060638 - 28 May 2025
Viewed by 893
Abstract
The gas-liquid sulfonation of α-olefin sulfonate (AOS) in falling film reactors faces significant limitations, primarily due to poor mass transfer efficiency and excessive byproduct formation. To overcome these challenges, a novel cross-shaped microchannel reactor was developed for the continuous gas-liquid sulfonation of α-olefin [...] Read more.
The gas-liquid sulfonation of α-olefin sulfonate (AOS) in falling film reactors faces significant limitations, primarily due to poor mass transfer efficiency and excessive byproduct formation. To overcome these challenges, a novel cross-shaped microchannel reactor was developed for the continuous gas-liquid sulfonation of α-olefin (AO) with gaseous sulfur trioxide (SO3). The influence of key process parameters, including gas-phase flow rate, reaction temperature, SO3/AO molar ratio, and SO3 volume fraction, on product characteristics and their interactions was systematically investigated using the single-factor experiment and response surface methodology (RSM). A high-precision empirical model (coefficient of determination, R2 = 0.9882) to predict product content was successfully constructed. To achieve multi-objective optimization considering product active substance content and energy efficiency, a strategy combining a two-population genetic algorithm with the entropy-weighted TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method was implemented. Optimal conditions were determined as follows: gas-phase flow rate of 228 mL/min, reaction temperature of 52 °C, SO3/AO molar ratio of 1.27, and SO3 volume fraction of 4%. Compared to conditions optimized solely by RSM, this multi-objective approach achieved a significant 10% reduction in energy efficiency, with only a marginal 3.8% decrease in active substance content. This study demonstrates the feasibility and advantages of microreactors for the efficient and green synthesis of AOS. Full article
(This article belongs to the Section C:Chemistry)
Show Figures

Graphical abstract

19 pages, 5407 KiB  
Article
Prediction of Reduction Recovery of Iron and Vanadium Oxides in Low-Grade Vanadium–Titanium Magnetite Based on Response Surface Model
by Xueting Jiang, Hao Wu and Aijun Deng
Metals 2025, 15(6), 595; https://doi.org/10.3390/met15060595 - 27 May 2025
Viewed by 452
Abstract
In this study, the effects of reduction temperature and time on the reduction rates of iron and vanadium oxides in low-grade vanadium–titanium magnetite (VTM) were investigated. Based on the results of physical experiments, both the response surface method (RSM) and central composite design [...] Read more.
In this study, the effects of reduction temperature and time on the reduction rates of iron and vanadium oxides in low-grade vanadium–titanium magnetite (VTM) were investigated. Based on the results of physical experiments, both the response surface method (RSM) and central composite design (CCD) were used to fit the prediction model of the reduction rate of iron and vanadium oxides in low-grade VTM. The results of the RSM prediction model show that under the condition of a sufficient reducing medium, affected by the high-temperature products, such as silicates and magnesium aluminates, the reduction rate of iron and vanadium oxides in low-grade VTM will first increase and then decrease. This indicates that a single factor cannot maximize the reduction efficiency of metal oxides. The results of the RSM prediction model show that the correlation fitting coefficient and correction fitting coefficient of the model are greater than 99% and 98%, respectively. The F-value is 150.05 and 176.19, respectively, and the p-value is less than 0.0001. This indicates that the RSM prediction model has high accuracy and reliability. After parameter optimization of the RSM prediction model, when the reduction temperature is 1446 °C~1498 °C and the reduction time is 43 min~60 min, the maximum reduction rates of iron oxide and vanadium oxide in iron ore can reach 92.93% and 69.20%, respectively. The study of reaction kinetics shows that the reduction processes of iron and vanadium oxides in VTM are controlled by three-dimensional diffusion conditions. The apparent activation energies of the reactions are 86.76 kJ/mol and 90.30 kJ/mol, respectively. Full article
Show Figures

Figure 1

19 pages, 5199 KiB  
Article
Carbon Steel A36 Planar Coupons Exposed to a Turbulent Flow Inside a 90° Pipe Elbow in a Testing Rack: Hydrodynamic Simulation and Corrosion Studies
by Luis Cáceres, Genny Leinenweber, Alvaro Soliz and Esteban Landaeta
Metals 2025, 15(6), 583; https://doi.org/10.3390/met15060583 - 24 May 2025
Viewed by 713
Abstract
This work aims to characterize flow-accelerated corrosion of carbon steel A36 coupons exposed to simulated treated reverse-osmosis seawater under ambient conditions and a Reynolds number range of 6000 to 25,000 using a standard corrosion testing method. The flow behavior in the corrosion compartment [...] Read more.
This work aims to characterize flow-accelerated corrosion of carbon steel A36 coupons exposed to simulated treated reverse-osmosis seawater under ambient conditions and a Reynolds number range of 6000 to 25,000 using a standard corrosion testing method. The flow behavior in the corrosion compartment and the turbulent parameters were determined by computational fluid dynamics simulation. Using selected flow parameters, complemented with experimental corrosion rate measurements, the oxygen mass transfer coefficients (mc) and the rate constant for the cathodic reaction (kc) at the coupon surface were determined. As expected, mc depends only on the fluid conditions, while kc is highly influenced by interface resistance, leading to significantly different runs with and without a corrosion inhibitor. The dissimilar fluid flow distribution on intrados and extrados generates irregular corrosion patterns, depending on the angular position of the coupon inside the corrosion compartment. Morphological studies using scanning electron microscopy and atomic force microscopy support simulation results. Full article
Show Figures

Figure 1

18 pages, 3009 KiB  
Article
A Highly Specific Antibody-Based Assay for Nipah Virus AlphaLISA Detection
by Xuyang Sun, Qingyu Lv, Wenhua Huang, Xinran Zhang, Huiqi Duan, Yuhao Ren, Xiaojing Zhang, Yongqiang Jiang, Ruili Zhao and Shaolong Chen
Viruses 2025, 17(6), 748; https://doi.org/10.3390/v17060748 - 23 May 2025
Viewed by 533
Abstract
Nipah virus (NiV) is an emerging zoonotic pathogen whose surface glycoprotein (G)-mediated host cell invasion mechanism leads to fatal encephalitis in infected patients (case fatality rate 40–75%). Given the limitations of existing diagnostic technologies, such as low sensitivity and prolonged processing times, we [...] Read more.
Nipah virus (NiV) is an emerging zoonotic pathogen whose surface glycoprotein (G)-mediated host cell invasion mechanism leads to fatal encephalitis in infected patients (case fatality rate 40–75%). Given the limitations of existing diagnostic technologies, such as low sensitivity and prolonged processing times, we prepared an anti-NiV-G monoclonal antibody to establish a novel Amplified Luminescent Proximity Homogeneous Assay (AlphaLISA) detection system. Firstly, five high-affinity anti-NiV-G monoclonal antibodies were screened from the spleens of immunized mice by flow cytometry-single-cell cloning technology. The reaction system was further optimized, and the optimal dilution ratio of antibody-conjugated receptor microspheres, biotinylated antibodies, and donor microspheres was screened, and the AlphaLISA detection platform was successfully constructed. The detection sensitivity of NiV-G protein was 0.024 ng/mL (41.7 times higher than that of conventional ELISA), the coefficient of variation was <9.5%, and the repetition was good. It showed good specificity in the detection of 5 zoonotic viruses, including Japanese encephalitis virus and Zika virus. At the same time, this method is less disturbed by human serum, and the detection time is less than 30 min, showing a good clinical application prospect. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop