Advances in Microbiologically Influenced Corrosion: Mechanisms, Microbial Communities, Early Detection and Control Strategies

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Environmental Microbiology".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 3070

Special Issue Editors


E-Mail Website
Guest Editor
Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/Gas Facility Materials, College of New Energy and Materials, China University of Petroleum-Beijing, 18 Fuxue Road, Beijing 102249, China
Interests: biofilms; materials engineering; biocides; chemical engineering; microbiology; biocorrosion

E-Mail Website
Guest Editor
TECHT, Technology Park, 2/11 Brodie Hall Drive, Bentley, WA 6102, Australia
Interests: microbe-metal interactions; biofilms; biofilm Inhibition; bacterial quorum sensing; microbiologically influenced corrosion (MIC); MIC inhibition; marine and deep-water corrosion; localized corrosion and corrosion resistant alloys (CRAs); environmentally friendly inhibitor compounds
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Microbiologically influenced corrosion, a complex phenomenon involving the interaction between microorganisms and metal surfaces, poses significant challenges to the infrastructure and equipment in the oil and gas industries, mining, marine engineering, civil engineering, and medical devices. This Special Issue invites original research articles, reviews, and contributions that span a range of topics, including (but not limited to) the following:

  • Microbial corrosion mechanisms: Investigations into the diverse mechanisms by which microorganisms induce and accelerate corrosion, considering factors such as biofilm formation, metabolic byproducts, and electrochemical interactions;
  • Microbial communities in corrosive environments: Studies exploring the composition and dynamics of microbial communities and biofilms in environments prone to corrosion, highlighting the role of specific microorganisms in corrosive processes;
  • Biocorrosion control strategies: The development of novel strategies for mitigating microbiologically influenced corrosion, encompassing biocides, protective coatings, and materials engineering.

Dr. Yingchao Li
Dr. Laura L. Machuca
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biofilms
  • corrosion
  • microbial communities
  • microbiologically influenced corrosion (MIC)
  • biofilm inhibition and control
  • early detection

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 2072 KiB  
Article
Dynamic Modeling of the Sulfur Cycle in Urban Sewage Pipelines Under High-Temperature and High-Salinity Conditions
by Zhiwei Cao, Zhen Xu, Yufeng Chen, Bingxuan Zhao, Chenxu Wang, Zuozhou Yu and Jingya Zhou
Microorganisms 2025, 13(7), 1534; https://doi.org/10.3390/microorganisms13071534 - 30 Jun 2025
Abstract
This study addresses the microbial corrosion of cement-based materials in coastal urban sewer networks, systematically investigating the kinetic mechanisms of sulfur biogeochemical cycling under seawater infiltration conditions. Through dynamic monitoring of sulfide concentrations and environmental parameter variations in anaerobic pipelines, a multiphase coupled [...] Read more.
This study addresses the microbial corrosion of cement-based materials in coastal urban sewer networks, systematically investigating the kinetic mechanisms of sulfur biogeochemical cycling under seawater infiltration conditions. Through dynamic monitoring of sulfide concentrations and environmental parameter variations in anaerobic pipelines, a multiphase coupled kinetic model integrating liquid-phase, gas-phase, and biofilm metabolic processes was developed. The results demonstrate that moderate salinity enhances the activity of sulfate-reducing bacteria (SRB) and accelerates sulfate reduction rates, whereas excessive sulfide accumulation inhibits SRB activity. At 35 °C, the mathematical model coefficient “a” for sulfate reduction in the reactor with 3 g/L salinity was significantly higher than those in reactors with 19 g/L and 35 g/L salinities, with no significant difference observed between the latter two. Overall, high sulfate concentrations do not act as limiting factors for sulfide oxidation under anaerobic conditions; instead, they enhance the reaction within specific concentration ranges. The refined kinetic model enables prediction of sulfur speciation in tropical coastal urban sewer pipelines, providing a scientific basis for corrosion risk assessment. Full article
Show Figures

Figure 1

20 pages, 1845 KiB  
Article
Meta-Transcriptomic Response to Copper Corrosion in Drinking Water Biofilms
by Jingrang Lu, Ian Struewing and Nicholas J. Ashbolt
Microorganisms 2025, 13(7), 1528; https://doi.org/10.3390/microorganisms13071528 - 30 Jun 2025
Viewed by 1
Abstract
Drinking water biofilm ecosystems harbor complex and dynamic prokaryotic and eukaryotic microbial communities. However, little is known about the impact of copper corrosion on microbial community functions in metabolisms and resistance. This study was conducted to evaluate the impact of upstream Cu pipe [...] Read more.
Drinking water biofilm ecosystems harbor complex and dynamic prokaryotic and eukaryotic microbial communities. However, little is known about the impact of copper corrosion on microbial community functions in metabolisms and resistance. This study was conducted to evaluate the impact of upstream Cu pipe materials on downstream viable community structures, pathogen populations, and metatranscriptomic responses of the microbial communities in drinking water biofilms. Randomly transcribed cDNA was generated and sequenced from downstream biofilm samples of either unplasticized polyvinylchloride (PVC) or Cu coupons. Diverse viable microbial organisms with enriched pathogen-like organisms and opportunistic pathogens were active in those biofilm samples. Cu-influenced tubing biofilms had a greater upregulation of genes associated with potassium (K) metabolic pathways (i.e., K-homeostasis, K-transporting ATPase, and transcriptional attenuator), and a major component of the cell wall of mycobacteria (mycolic acids) compared to tubing biofilms downstream of PVC. Other upregulated genes on Cu influenced biofilms included those associated with stress responses (various oxidative resistance genes), biofilm formation, and resistance to toxic compounds. Downregulated genes included those associated with membrane proteins responsible for ion interactions with potassium; respiration–electron-donating reactions; RNA metabolism in eukaryotes; nitrogen metabolism; virulence, disease, and defense; and antibiotic resistance genes. When combined with our previous identification of biofilm community differences, our studies reveal how microbial biofilms adapt to Cu plumbing conditions by fine-tuning gene expression, altering metabolic pathways, and optimizing their structural organization. This study offers new insights into how copper pipe materials affect the development and composition of biofilms in premise plumbing. Specifically, it highlights copper’s role in inhibiting the growth of many microbes while also contributing to the resistance of some microbes within the drinking water biofilm community. Full article
Show Figures

Graphical abstract

14 pages, 4338 KiB  
Article
Microbial Corrosion Behavior of L245 Pipeline Steel in the Presence of Iron-Oxidizing Bacteria and Shewanella algae
by Fanghui Zhu, Yiyang Liu, Chunsheng Wu, Kai Li, Yingshuai Hu, Wei Liu, Shuzhen Yu, Mingxing Li, Xiaohuan Dong and Haobo Yu
Microorganisms 2025, 13(7), 1476; https://doi.org/10.3390/microorganisms13071476 - 25 Jun 2025
Viewed by 194
Abstract
Microbiologically influenced corrosion (MIC) poses significant challenges in oilfield water injection environments, leading to substantial socioeconomic losses. L245 steel, a low-alloy steel widely used in oil and gas pipelines due to its excellent mechanical properties and cost-effectiveness, remains highly vulnerable to MIC during [...] Read more.
Microbiologically influenced corrosion (MIC) poses significant challenges in oilfield water injection environments, leading to substantial socioeconomic losses. L245 steel, a low-alloy steel widely used in oil and gas pipelines due to its excellent mechanical properties and cost-effectiveness, remains highly vulnerable to MIC during long-term service. This study uses surface characterization and electrochemical techniques to investigate the corrosion behavior of L245 pipeline steel under short-cycle conditions in a symbiotic environment of iron-oxidizing bacteria (IOB) and Shewanella algae (S. algae). Key findings revealed that localized corrosion of L245 steel was markedly exacerbated under coexisting IOB and S. algae conditions compared to monoculture systems. However, the uniform corrosion rate under symbiosis fell between the rates observed in the individual IOB and S. algae systems. Mechanistically, the enhanced corrosion under symbiotic conditions was attributed to the synergistic electron transfer interaction: IOB exploited electron carriers secreted by S. algae during extracellular electron transfer (EET), which amplified the microbial consortium’s capacity to harvest electrons from the steel substrate. These results emphasize the critical role of interspecies electron exchange in accelerating localized degradation of carbon steel under complex microbial consortia, with implications for developing targeted mitigation strategies in industrial pipelines exposed to similar microbiological environments. Full article
Show Figures

Figure 1

15 pages, 9272 KiB  
Article
Effect of Temperature on Corrosion of L245 Steel Under CO2-SRB Corrosion System
by Ming Sun, Xinhua Wang, Wei Cui and Chuntao Shi
Microorganisms 2025, 13(3), 500; https://doi.org/10.3390/microorganisms13030500 - 24 Feb 2025
Viewed by 430
Abstract
Microorganisms are often observed in the produced medium during the oil and gas extraction process. Corrosion caused by CO2 and microorganisms is found on the inner wall of the metal gathering pipelines during the production process. In order to explore the corrosion [...] Read more.
Microorganisms are often observed in the produced medium during the oil and gas extraction process. Corrosion caused by CO2 and microorganisms is found on the inner wall of the metal gathering pipelines during the production process. In order to explore the corrosion characteristics of L245 materials under the combined action of sulfate-reducing bacteria (SRB) and CO2, a CO2-SRB corrosion system was established in this paper. Experimental research on corrosion rate, surface morphology, and corrosion products analysis was conducted. The effect of temperature on the corrosion of SRB while CO2 is saturated and the partial pressure is 0.06 MPa was investigated. It was observed that the corrosion is more serious in the CO2-SRB corrosion system than that in the single CO2 corrosion system. At 40 °C, the corrosion caused by CO2 is 0.0597 mm/a, and the corrosion caused by SRB is 0.0766 mm/a. So, more attention should be paid to the corrosion status of gathering pipelines with microorganisms. Further, the activity of SRB is stronger when the temperature of the medium is 40 °C, and corrosion on L245 samples is more obvious under the experimental conditions in this article. In order to reduce the corrosion damage of metal pipelines with microorganisms, the temperature should be well controlled to reduce the activity of SRB during the production process. Full article
Show Figures

Figure 1

17 pages, 11400 KiB  
Article
Corrosion of Sulfate-Reducing Bacteria on L245 Steel under Different Carbon Source Conditions
by Ming Sun, Xinhua Wang and Wei Cui
Microorganisms 2024, 12(9), 1826; https://doi.org/10.3390/microorganisms12091826 - 3 Sep 2024
Cited by 3 | Viewed by 1496
Abstract
Objective Sulfate-reducing bacteria (SRB) pose a threat to the safe operation of shale-gas-gathering pipelines. Therefore, it is essential to explore the role played by SRB in dedicated pipelines. Methods In this work, the corrosion behavior of SRB was investigated by organic carbon starvation [...] Read more.
Objective Sulfate-reducing bacteria (SRB) pose a threat to the safe operation of shale-gas-gathering pipelines. Therefore, it is essential to explore the role played by SRB in dedicated pipelines. Methods In this work, the corrosion behavior of SRB was investigated by organic carbon starvation immersion experiments combined with cell number monitoring, corrosion weight loss recordings, morphology and profile observations and electrochemical measurements. Results In experiments with sodium lactate content ranging from 0–3500 ppm, the corrosion rate and pitting depth were the highest at 350 ppm. Conclusions The results indicated that the reduction in carbon sources leads to bacterial starvation, which directly obtains electrons from metals and exacerbates corrosion. It is not appropriate to use the content of bacteria to determine the strength of bacterial corrosion. Full article
Show Figures

Figure 1

Back to TopTop