Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = rare earthquakes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2408 KiB  
Article
Tsunami Flow Characteristics on the East Coast of the UAE by One-Dimensional Numerical Analysis and Artificial Neural Networking
by Napayalage A. K. Nandasena, Ashraf Hefny, Cheng Chen, Maryam Alshehhi, Noura Alahbabi, Fatima Alketbi, Maha Ali and Noura Alblooshi
Sustainability 2025, 17(15), 7036; https://doi.org/10.3390/su17157036 - 3 Aug 2025
Viewed by 222
Abstract
The coastal developments in the Middle East put low priority on tsunami risk assessment due to the rare occurrence and absence of genuine tsunami track records on the coastline in the past. Tsunami-vulnerable coasts, including the east coast of the UAE, need to [...] Read more.
The coastal developments in the Middle East put low priority on tsunami risk assessment due to the rare occurrence and absence of genuine tsunami track records on the coastline in the past. Tsunami-vulnerable coasts, including the east coast of the UAE, need to prepare for, and pay attention to, the impact of future tsunamis due to increased earthquake activity in the region. This study investigated the tsunami characteristics of the nearshore from hypothetical tsunami conditions by applications of numerical modeling and Artificial Neural Network (ANN) methods. The modeling results showed that the maximum tsunami depth at the shore was highest in Khor Fakkan and Mirbih for the given tsunami boundary conditions, while the tsunami withdrawal was greater on the southern bathymetry compared to that on the northern bathymetry when the tsunami period increased. ANN results confirmed that the still sea depth and seabed slope were more important than the tsunami period when predicting the maximum tsunami depth at the shore. Full article
Show Figures

Figure 1

24 pages, 9147 KiB  
Article
Experimental and Numerical Study on the Seismic Performance of Base-Suspended Pendulum Isolation Structure
by Liang Lu, Lei Wang, Wanqiu Xia and Minghao Yin
Buildings 2025, 15(15), 2711; https://doi.org/10.3390/buildings15152711 - 31 Jul 2025
Viewed by 120
Abstract
This paper proposes a novel suspended seismic structure system called Base-suspended Pendulum Isolation (BSPI) structure. The BSPI structure can isolate seismic action and reduce structural seismic response by hanging the structure with hanger rods set at the base. The viscous dampers are installed [...] Read more.
This paper proposes a novel suspended seismic structure system called Base-suspended Pendulum Isolation (BSPI) structure. The BSPI structure can isolate seismic action and reduce structural seismic response by hanging the structure with hanger rods set at the base. The viscous dampers are installed in the isolation layer to dissipate earthquake energy and control the displacement. Firstly, the configuration of suspension isolation layer and mechanical model of the BSPI structure are described. Then, an equivalent scaled BSPI structure physical model was tested on the shaking table. The test results demonstrate that the BSPI structure has a good isolation effect under earthquakes, and the viscous dampers had an obvious control effect on the structure’s displacement and acceleration response. Finally, numerical simulation of the tests was carried out. The accuracy of the numerical models are confirmed by the good agreement between the simulation and test results. The numerical models for the BSPI structure and conventional reinforced concrete (RC) frame structure are built and analyzed using the commercial software ABAQUS. Research results indicate that the lateral stiffness of the BSPI structure is reduced greatly by installing the suspension layer, and the acceleration response of BSPI structure is significantly reduced under rare earthquakes, which is only 1/2 of that of the RC frame. The inter-story displacement of the BSPI structure is less than 1/100, which meets the seismic fortification goal and is reduced to 50% of that of the BSPI structure without damper under rare earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 17113 KiB  
Article
Seismic Performance of an Asymmetric Tall-Pier Girder Bridge with Fluid Viscous Dampers Under Near-Field Earthquakes
by Ziang Pan, Qiming Qi, Jianxian He, Huaping Yang, Changjiang Shao, Wanting Gong and Haomeng Cui
Symmetry 2025, 17(8), 1209; https://doi.org/10.3390/sym17081209 - 30 Jul 2025
Viewed by 246
Abstract
Tall-pier girder bridges with fluid viscous dampers (FVDs) are widely used in earthquake-prone mountainous areas. However, the influence of higher-order modes and near-field earthquakes on tall piers has rarely been studied. Based on an asymmetric tall-pier girder bridge, a finite element model is [...] Read more.
Tall-pier girder bridges with fluid viscous dampers (FVDs) are widely used in earthquake-prone mountainous areas. However, the influence of higher-order modes and near-field earthquakes on tall piers has rarely been studied. Based on an asymmetric tall-pier girder bridge, a finite element model is established, and the parameters of FVDs are optimized using SAP2000. The higher-order mode effects on tall piers are explored by proportionally reducing the pier heights. The pulse effects of near-field earthquakes on FVD mitigation and higher-order modes are analyzed. The optimal FVDs can coordinate the force distribution among tall piers, effectively reducing displacement responses and internal forces. Due to higher-order modes, the internal force envelopes of tall piers exhibit concave-convex distributions. As pier heights decrease, the internal force envelopes gradually become linear, implying reduced higher-order mode effects. Long-period pulse-like motions produce the maximum seismic responses because the slender tall-pier bridge is sensitive to high spectral accelerations in medium-to-long periods. The higher-order modes are more easily excited by near-field motions with large spectral values in the high-frequency range. Overall, FVDs can simultaneously reduce the seismic responses of tall piers and diminish the influence of higher-order modes. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

27 pages, 6356 KiB  
Article
A Fast Fragility Analysis Method for Seismically Isolated RC Structures
by Cholap Chong, Mufeng Chen, Mingming Wang and Lushun Wei
Buildings 2025, 15(14), 2449; https://doi.org/10.3390/buildings15142449 - 12 Jul 2025
Viewed by 306
Abstract
This paper presents an advanced seismic performance evaluation of reinforced concrete (RC) seismically isolated frame structures under the conditions of rare earthquakes. By employing an elastic–plastic analysis in conjunction with a nonlinear multi-degree-of-freedom model, this study innovatively assesses the incremental dynamic vulnerability of [...] Read more.
This paper presents an advanced seismic performance evaluation of reinforced concrete (RC) seismically isolated frame structures under the conditions of rare earthquakes. By employing an elastic–plastic analysis in conjunction with a nonlinear multi-degree-of-freedom model, this study innovatively assesses the incremental dynamic vulnerability of isolated structures. A novel equivalent linearization method is introduced for both single- and two-degree-of-freedom isolation structures, providing a simplified yet accurate means of predicting seismic responses. The reliability of the modified Takeda hysteretic model is verified through comparative analysis with experimental data, providing a solid foundation for the research. Furthermore, a multi-degree-of-freedom shear model is employed for rapid elastic–plastic analysis, validated against finite element software, resulting in an impressive 85% reduction in computation time while maintaining high accuracy. The fragility analysis reveals the staggered upward trend in the vulnerability of the upper structure and isolation layer, highlighting the importance of comprehensive damage control to enhance overall seismic performance. Full article
Show Figures

Figure 1

15 pages, 5543 KiB  
Article
Vibration Table Test of Prefabricated L-Shaped Column Concrete Structure
by Xueyan Wang and Che Chen
Buildings 2025, 15(13), 2329; https://doi.org/10.3390/buildings15132329 - 2 Jul 2025
Viewed by 290
Abstract
This paper conducts a full-scale shaking table test on a prototype prefabricated L-shaped column concrete house structure to experimentally verify its seismic performance in high-intensity seismic areas. We analyze the frequency of the structure, story drift angle, amplification factor of peak acceleration of [...] Read more.
This paper conducts a full-scale shaking table test on a prototype prefabricated L-shaped column concrete house structure to experimentally verify its seismic performance in high-intensity seismic areas. We analyze the frequency of the structure, story drift angle, amplification factor of peak acceleration of ground motion, and damage distribution. The corresponding finite element model is established using ABAQUS to verify the experimental results and further study the damage forms and weak areas of the structure under a strong earthquake. The results show that the structure can maintain an elastic state under the rare intensity of a level 7 earthquake, but begins to bend and deform in the direction of the two main axes under the rare intensity of a level 8 earthquake. At a rare intensity of a level 9 earthquake, the structure is completely destroyed. This result shows that the unitary precast special-shaped column concrete structure meets the requirements of the current code. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

42 pages, 42620 KiB  
Article
Increased Preparedness During the 2025 Santorini–Amorgos (Greece) Earthquake Swarm and Comparative Insights from Recent Cases for Civil Protection and Disaster Risk Reduction
by Spyridon Mavroulis, Maria Mavrouli, Andromachi Sarantopoulou, Assimina Antonarakou and Efthymios Lekkas
GeoHazards 2025, 6(2), 32; https://doi.org/10.3390/geohazards6020032 - 14 Jun 2025
Viewed by 2945
Abstract
In early 2025, the Santorini–Amorgos area (Aegean Volcanic Arc, Greece) experienced a seismic swarm, with dozens of M ≥ 4.0 earthquakes and a maximum magnitude of M = 5.2. Beyond its seismological interest, the sequence was notable for triggering rare increased preparedness actions [...] Read more.
In early 2025, the Santorini–Amorgos area (Aegean Volcanic Arc, Greece) experienced a seismic swarm, with dozens of M ≥ 4.0 earthquakes and a maximum magnitude of M = 5.2. Beyond its seismological interest, the sequence was notable for triggering rare increased preparedness actions by Greek Civil Protection operational structures in anticipation of an imminent destructive earthquake. These actions included (i) risk communication, (ii) the reinforcement of operational structures with additional personnel and equipment on the affected islands, (iii) updates to local emergency plans, (iv) the dissemination of self-protection guidance, (v) the activation of emergency alert systems, and (vi) volunteer mobilization, including first aid and mental health first aid courses. Although it was in line with contingency plans, public participation was limited. Volunteers helped bridge this gap, focusing on vulnerable groups. The implemented actions in Greece are also compared with increased preparedness during the 2024–2025 seismic swarms in Ethiopia, as well as preparedness before the highly anticipated major earthquake in Istanbul (Turkey). In Greece and Turkey, legal and technical frameworks enabled swift institutional responses. In contrast, Ethiopia highlighted the risks of limited preparedness and the need to embed disaster risk reduction in national development strategies. All cases affirm that preparedness, through infrastructure, planning, communication, and community engagement, is vital to reducing earthquake impacts. Full article
Show Figures

Figure 1

27 pages, 4150 KiB  
Article
Improved Liquefaction Hazard Assessment via Deep Feature Extraction and Stacked Ensemble Learning on Microtremor Data
by Oussama Arab, Soufiana Mekouar, Mohamed Mastere, Roberto Cabieces and David Rodríguez Collantes
Appl. Sci. 2025, 15(12), 6614; https://doi.org/10.3390/app15126614 - 12 Jun 2025
Viewed by 408
Abstract
The reduction in disaster risk in urban regions due to natural hazards (e.g., earthquakes, landslides, floods, and tropical cyclones) is primarily a development matter that must be treated within the scope of a broader urban development framework. Natural hazard assessment is one of [...] Read more.
The reduction in disaster risk in urban regions due to natural hazards (e.g., earthquakes, landslides, floods, and tropical cyclones) is primarily a development matter that must be treated within the scope of a broader urban development framework. Natural hazard assessment is one of the turning points in mitigating disaster risk, which typically contributes to stronger urban resilience and more sustainable urban development. Regarding this challenge, our research proposes a new approach in the signal processing chain and feature extraction from microtremor data that focuses mainly on the Horizontal-to-Vertical Spectral Ratio (HVSR) so as to assess liquefaction potential as a natural hazard using AI. The key raw seismic features of site amplification and resonance are extracted from the data via bandpass filtering, Fourier Transformation (FT), the calculation of the HVSR, and smoothing through the use of moving averages. The main novelty is the integration of machine learning, particularly stacked ensemble learning, for liquefaction potential classification from imbalanced seismic datasets. For this approach, several models are used to consider class imbalance, enhancing classification performance and offering better insight into liquefaction risk based on microtremor data. Then, the paper proposes a liquefaction detection method based on deep learning with an autoencoder and stacked classifiers. The autoencoder compresses data into the latent space, underlining the liquefaction features classified by the multi-layer perceptron (MLP) classifier and eXtreme Gradient Boosting (XGB) classifier, and the meta-model combines these outputs to put special emphasis on rare liquefaction events. This proposed methodology improved the detection of an imbalanced dataset, although challenges remain in both interpretability and computational complexity. We created a synthetic dataset of 1000 samples using realistic feature ranges that mimic the Rif data region to test model performance and conduct sensitivity analysis. Key seismic and geotechnical variables were included, confirming the amplification factor (Af) and seismic vulnerability index (Kg) as dominant predictors and supporting model generalizability in data-scarce regions. Our proposed method for liquefaction potential classification achieves 100% classification accuracy, 100% precision, and 100% recall, providing a new baseline. Compared to existing models such as XGB and MLP, the proposed model performs better in all metrics. This new approach could become a critical component in assessing liquefaction hazard, contributing to disaster mitigation and urban planning. Full article
Show Figures

Figure 1

31 pages, 5995 KiB  
Article
Study on Seismic Performance of Frame–Shear Wall Split-Foundation Structures with Shear Walls on Both Grounding Ends
by Wusu Wang, Baolong Jiang, Yingmin Li, Yangyang Tang and Shuyan Ji
Buildings 2025, 15(11), 1852; https://doi.org/10.3390/buildings15111852 - 28 May 2025
Viewed by 539
Abstract
This study focuses on the fundamental mechanical behavior of frame–shear wall split-foundation structures with shear walls at both upper and lower ground ends, investigating their basic mechanical characteristics, internal force redistribution patterns, and the influencing factor of intra-stiffness ratio on seismic performance. From [...] Read more.
This study focuses on the fundamental mechanical behavior of frame–shear wall split-foundation structures with shear walls at both upper and lower ground ends, investigating their basic mechanical characteristics, internal force redistribution patterns, and the influencing factor of intra-stiffness ratio on seismic performance. From the analysis results, it can be found that the relative drop height of frame–shear wall split-foundation structures significantly affects their internal force patterns. Shear-bending stiffness should be adopted in stiffness calculations to reflect the stiffness reduction effect of drop height on lower embedding shear walls. In frame–shear wall split-foundation structures, the existence of drop height causes upper embedding columns to experience more unfavorable stress conditions compared to lower embedding shear walls, potentially preventing lower embedding shear walls from serving as the primary seismic defense line. Strengthening lower embedding shear walls to reduce the intra-stiffness ratio can mitigate this issue. Performance evaluation under bidirectional rare earthquakes shows greater along-slope directional damage than cross-slope directional damage. Increasing shear wall length to reduce the intra-stiffness ratio improves component rotation-based performance, but shear strain-based evaluation of upper embedding shear walls indicates a limited improvement in shear capacity. Special attention should therefore be paid to along-slope directional shear capacity of upper embedding shear walls during structural design. Full article
Show Figures

Figure 1

26 pages, 28377 KiB  
Article
Seismic Performance Analysis for an Eccentrically Braced Frame (EBF) with an Innovative Self-Centering Shear Link
by Xinyu Xu, Lifen Huang, Shangwen Liu, Bo Zhang and Shujun Hu
Buildings 2025, 15(9), 1471; https://doi.org/10.3390/buildings15091471 - 26 Apr 2025
Cited by 1 | Viewed by 429
Abstract
By integrating a very short shear link–shear slotted bolted connection (VSSL-SSBC) and two self-centering SMA braces (SCBs), a novel self-centering shear link (SC-SL) was developed for installation between a steel brace and steel beam in an eccentrically braced frame (EBF). The SC-SL can [...] Read more.
By integrating a very short shear link–shear slotted bolted connection (VSSL-SSBC) and two self-centering SMA braces (SCBs), a novel self-centering shear link (SC-SL) was developed for installation between a steel brace and steel beam in an eccentrically braced frame (EBF). The SC-SL can enhance the seismic performance and seismic resilience capacity of the EBF by achieving a high bearing capacity and low residual deformation. The mechanical properties of the VSSL-SSBC and SC-SL were designed and analyzed using both experimental and numerical methods. Subsequently, the seismic performances of EBFs equipped with VSSL-SSBC and SC-SL were analyzed under different earthquakes. Validated numerical methods were employed to investigate the deformation modes, stress nephograms, and hysteresis curves of the EBFs. The deformation mode and hysteresis curve of the VSSL-SSBC exhibit an initial frictional slip of the SSBC, followed by the load-bearing response of the VSSL. The skeleton curve of the VSSL-SSBC consists of elastic, slip, elastoplastic, and plastic stages, and the deformation and damage are significantly reduced at the same displacement. In the SC-SL, the SCB undergoes substantial deformation when the SMA is in tension, effectively minimizing residual deformation. Under frequent earthquakes, the stress and displacement of all components in both the EBF-VSSL-SSBC and EBF-SC-SL are essentially equivalent, and the VSSL-SSBC remains elastic, without significant yielding deformation. Under rare earthquakes, incorporating SCB in EBF-SC-SL significantly enhances the ultimate load capacity by 19.66% and reduces the residual deformation by 27.90%. This improvement greatly contributes to the seismic resilience of the EBF. Full article
(This article belongs to the Special Issue Advanced Studies on Steel Structures)
Show Figures

Figure 1

20 pages, 9800 KiB  
Article
Multi-Hazard Vibration Control of Transmission Infrastructure: A Pounding Tuned Mass Damper Approach with Lifelong Reliability Analysis
by Zhuoqun Zhang, Lizhong Qi, Jingguo Rong, Yaping Zhang, Peijie Li and Ziguang Jia
Buildings 2025, 15(7), 1113; https://doi.org/10.3390/buildings15071113 - 29 Mar 2025
Viewed by 327
Abstract
Power transmission tower-line systems are exposed to various dynamic hazards, including wind and earthquakes, among others. Despite the multitude of dampers proposed to mitigate vibrations, the dual control effect on both seismic and wind-induced vibrations has rarely been addressed. This paper introduces a [...] Read more.
Power transmission tower-line systems are exposed to various dynamic hazards, including wind and earthquakes, among others. Despite the multitude of dampers proposed to mitigate vibrations, the dual control effect on both seismic and wind-induced vibrations has rarely been addressed. This paper introduces a comprehensive methodology for evaluating the reliability of power transmission towers under a range of dynamic disasters, encompassing both earthquakes and wind loads. Subsequently, a lifelong reliability approach was employed to assess the efficacy of a pounding tuned mass damper (PTMD). The proposed algorithm leverages the incremental dynamic analysis (IDA) method to compute structural fragility with regard to each type of disaster and integrates these findings with hazard functions to determine the probability of overall failure. The results conclusively demonstrate that the PTMD substantially diminished the towers’ dynamic response to both earthquakes and wind loads, thereby enhancing their overall reliability. Specifically, the PTMD reduced the vibration reduction ratio by 10% to 30% under wind loads and by 20% to 80% under seismic actions, with more pronounced effects at higher wind speeds and peak ground accelerations (PGAs). Furthermore, the reliability index (β) of the transmission tower increased from 2.1849 to 2.4295 when the PTMD was implemented, highlighting its effectiveness in dual-hazard scenarios. This study underscores the potential for reliability to be considered as a key metric for optimizing damping devices in power transmission structures, particularly in the context of multi-hazard scenarios. Full article
(This article belongs to the Special Issue Advances and Applications in Structural Vibration Control)
Show Figures

Figure 1

23 pages, 4265 KiB  
Article
Research on Quasi-Elastic–Plastic Optimization of Reinforced Concrete Frame–Shear Wall Structures
by Fengling Jin, Bo Hu, Jianlu Zhou, Boqing Gao and Qiankun Zhang
Buildings 2025, 15(6), 982; https://doi.org/10.3390/buildings15060982 - 20 Mar 2025
Viewed by 530
Abstract
Precise determination of structural elastic–plastic displacement and component states under rare earthquakes is crucial for structural design. This article proposes a quasi-elastic–plastic optimization method for reinforced concrete structures. First, an approximate formula for calculating the yield bending moment of shear walls is provided [...] Read more.
Precise determination of structural elastic–plastic displacement and component states under rare earthquakes is crucial for structural design. This article proposes a quasi-elastic–plastic optimization method for reinforced concrete structures. First, an approximate formula for calculating the yield bending moment of shear walls is provided through analysis of 64 shear walls. Second, a quasi-elastic–plastic analysis method is proposed. Using the elastic response spectrum analysis, strain energy for each component is calculated, and stiffness reduction factors for walls, beams, and columns are derived based on the energy equivalence principle. Finally, combining the elastic response spectrum analysis and the quasi-elastic–plastic analysis, various constraint indicators at the elastic and elastic–plastic design stages are calculated, and structural size optimization is completed using the particle swarm optimization method. The feasibility of this method is validated with examples of a 15-story reinforced concrete frame structure and a 15-story frame–shear wall structure. The quasi-elastic–plastic optimization with the particle swarm optimization efficiently completes elastic–plastic optimization for reinforced concrete structures, determining section sizes that meet performance standards while reducing material usage. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 8500 KiB  
Article
Modular Steel Buildings Based on Self-Locking-Unlockable Connections Seismic Performance Analysis
by Xingwang Liu, Qingkai Meng, Liwen Xu, Yang Liu and Xinpeng Tian
Buildings 2025, 15(5), 678; https://doi.org/10.3390/buildings15050678 - 21 Feb 2025
Cited by 3 | Viewed by 1046
Abstract
This paper introduces a new self-locking-unlockable modular building with an inter-module connection, and its seismic performance is investigated. The new connection can realize fast connection and unlocking during construction through exceptional design. In this paper, taking the Tianjin Binhai Apartment project as the [...] Read more.
This paper introduces a new self-locking-unlockable modular building with an inter-module connection, and its seismic performance is investigated. The new connection can realize fast connection and unlocking during construction through exceptional design. In this paper, taking the Tianjin Binhai Apartment project as the background, for the actual force situation of the new connection, considering the influence of corrugated steel plate stiffness, a simplified model of the connection is constructed by using multi-fold elastic connection, and the corrugated steel plate stiffness is simulated with equivalent support. In the MIDAS Gen 2021 software, the five-story and six-story structural models using traditional rigid connections and new connections were established, respectively, and reaction spectrum analysis was carried out. Meanwhile, seismic waves that comply with codes were selected for dynamic time course analysis. The results show that the stress ratios of all components of the new connection model and the traditional rigid model are less than 1. Among them, the maximum stress ratios of both floor beams are 0.745 and 0.725, respectively; the maximum stress ratios of the modular columns are 0.655 and 0.494, respectively; the stress ratios of the ceiling beams are all less than 0.5; and the two models show good strength and stiffness reserves, following the design principle of strong columns and weak beams and verifying the reliability of the new connection model. Meanwhile, it is found that the inter-story displacement angle of the six-story structure with the new connections is less than the normative value under the action of rare earthquakes, and the difference in top displacement is about 18% compared with that of the rigid structure, so it is suggested that the new connections can be applied within the height of six stories. Full article
Show Figures

Figure 1

19 pages, 7374 KiB  
Article
Vulnerability Analysis of Column-Supported Reinforced Concrete Silo Structures
by Guiling Wang, Qikeng Xu, Yonggang Ding, Jianye Li and Qiang Liu
Appl. Sci. 2025, 15(4), 2041; https://doi.org/10.3390/app15042041 - 15 Feb 2025
Cited by 1 | Viewed by 768
Abstract
Under earthquake action, concrete silos can undergo damage over a vast area or may even collapse. To aid seismic design, a numerical simulation of the seismic performance of column-supported reinforced concrete silos was performed, and the performance was quantitatively described. The focus of [...] Read more.
Under earthquake action, concrete silos can undergo damage over a vast area or may even collapse. To aid seismic design, a numerical simulation of the seismic performance of column-supported reinforced concrete silos was performed, and the performance was quantitatively described. The focus of the research was on determining the damage levels of these silos by adopting an incremental dynamic analysis. The focus of the research was on determining the damage levels of these silos by adopting an incremental dynamic analysis. Four limit states were defined for the first time so as to better determine the damage states of column-supported reinforced concrete silos in the event of earthquakes and the vulnerability analysis of the silo structures was carried out. The analysis results show that volume of the stored grain directly determined its damage behavior. The silo with a greater amount of stored grain entered the plastic state earlier, and the damage effect was more evident. Under the most dangerous working conditions, i.e., the full state of the silo, the 50-year collapse exceedance probability of the silo reaching collapse (LS4) was less than 1% of the 50-year failure risk limit defined in the US seismic design code FEMA P750. This demonstrated that a column-supported reinforced concrete silo can maintain its high anti-collapse reserve capacity under the effect of rare earthquakes. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

27 pages, 4025 KiB  
Article
Vertical Total Electron Content Enhancements and Their Global Distribution in Relation to Tectonic Plate Boundaries
by Paweł Wielgosz, Wojciech Jarmołowski, Stanisław Mazur, Beata Milanowska and Anna Krypiak-Gregorczyk
Remote Sens. 2025, 17(4), 614; https://doi.org/10.3390/rs17040614 - 11 Feb 2025
Viewed by 983
Abstract
Atmospheric responses to earthquakes or volcanic eruptions have become an interesting topic and can potentially contribute to future forecasting of these events. Extensive anomalies of the total electron content (TEC) are most often linked with geomagnetic storms or Earth-dependent phenomena, like earthquakes, volcanic [...] Read more.
Atmospheric responses to earthquakes or volcanic eruptions have become an interesting topic and can potentially contribute to future forecasting of these events. Extensive anomalies of the total electron content (TEC) are most often linked with geomagnetic storms or Earth-dependent phenomena, like earthquakes, volcanic eruptions, or nuclear explosions. This study extends rarely discussed, but very frequent, interactions between tectonic plate boundaries and the ionosphere. Our investigations focus on the very frequent occurrence of TEC enhancements not exclusively linked with individual seismic phenomena but located over tectonic plate boundaries. The objective of this study is to provide a review of the global spatiotemporal distribution of TEC anomalies, facilitating the discussion of their potential relations with tectonic activity. We apply a Kriging-based UPC-IonSAT quarter-of-an-hour time resolution rapid global ionospheric map (UQRG) from the Polytechnic University of Catalonia (UPC) IonSAT group for the detection of relative vertical TEC (VTEC) changes. Our study describes global relative and normalized VTEC variations, which have spatial and temporal behaviours strongly indicating their relationship both with geomagnetic changes and the tectonic plate system. The variations in geomagnetic fields, including the storms, disturb the ionosphere and amplify TEC variations persisting for several hours over tectonic plate boundaries, mostly over the diverging ones. The seismic origin of the selected parts of these TEC enhancements and depletions and their link with tectonic plate edges are suspected from their duration, shape, and location. The changes in TEC originating from both sources can be observed separately or together, and therefore, there is an open question about the directions of the energy transfers. However, the importance of geomagnetic field lines seems to be probable, due to the frequent common occurrence of both types of TEC anomalies. This research also proves that permanent observation of global lithosphere–atmosphere–ionosphere coupling (LAIC) is also important in time periods without strong earthquake or volcanic events. The occurrence of TEC variations over diverging tectonic plate boundaries, sometimes combined with travelling anomalies of geomagnetic origin, can add to the studies on earthquake precursors and forecasting. Full article
Show Figures

Graphical abstract

33 pages, 10824 KiB  
Article
Seismic Performance Assessment of an RC Building Due to 2023 Türkiye Earthquakes: A Case Study in Adıyaman, Türkiye
by Mahmut Bassurucu, Ozgur Yildiz and Ceren Kina
Buildings 2025, 15(4), 521; https://doi.org/10.3390/buildings15040521 - 8 Feb 2025
Cited by 3 | Viewed by 1759
Abstract
The 7.7 and 7.6 magnitude Pazarcık and Elbistan earthquakes that struck Kahramanmaraş on 6 February 2023 caused widespread structural damage across many provinces and are considered rare in seismological terms. While many reinforced concrete (RC) buildings designed under current earthquake regulations sustained significant [...] Read more.
The 7.7 and 7.6 magnitude Pazarcık and Elbistan earthquakes that struck Kahramanmaraş on 6 February 2023 caused widespread structural damage across many provinces and are considered rare in seismological terms. While many reinforced concrete (RC) buildings designed under current earthquake regulations sustained significant damage, some older RC buildings with outdated designs sustained only moderate damage. This study aims to analyze the seismic performance of such older RC buildings to understand why they did not collapse or suffer severe damage. An 8-story RC building in Adıyaman province, damaged by the earthquake, was considered for analysis. The region’s seismicity and local site conditions were assessed through borehole operations, geotechnical laboratory tests, and seismic field tests. The soil profile was modeled, and one-dimensional seismic site response analyses were performed using records from nearby stations (TK 4615 Pazarcık and TK 4612 Göksun stations) to determine the foundation-level earthquake record. Nonlinear static pushover analysis was carried out via SAP2000 and STA4CAD, utilizing site response analysis and test results taken from the reinforcement and concrete samples of the building. The findings, compared with the observed damage, provide insights into the performance of older RC buildings in this region. Full article
Show Figures

Figure 1

Back to TopTop