Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = rapid oxidation polymerization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8045 KiB  
Article
Modification of G-C3N4 by the Surface Alkalinization Method and Its Photocatalytic Depolymerization of Lignin
by Zhongmin Ma, Ling Zhang, Lihua Zang and Fei Yu
Materials 2025, 18(14), 3350; https://doi.org/10.3390/ma18143350 - 17 Jul 2025
Viewed by 254
Abstract
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, [...] Read more.
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, such as a wide band gap and rapid carrier recombination, severely limit its catalytic performance. In this paper, a g-C3N4 modification strategy of K⁺ doping and surface alkalinization is proposed, which is firstly applied to the photocatalytic depolymerization of the lignin β-O-4 model compound (2-phenoxy-1-phenylethanol). K⁺ doping is achieved by introducing KCl in the precursor thermal polymerization stage to weaken the edge structure strength of g-C3N4, and post-treatment with KOH solution is combined to optimize the surface basic groups. The structural/compositional evolution of the materials was analyzed by XRD, FTIR, and XPS. The morphology/element distribution was visualized by SEM-EDS, and the optoelectronic properties were evaluated by UV–vis DRS, PL, EIS, and transient photocurrent (TPC). K⁺ doping and surface alkalinization synergistically regulate the layered structure of the material, significantly increase the specific surface area, introduce nitrogen vacancies and hydroxyl functional groups, effectively narrow the band gap (optimized to 2.35 eV), and inhibit the recombination of photogenerated carriers by forming electron capture centers. Photocatalytic experiments show that the alkalinized g-C3N4 can completely depolymerize 2-phenoxy-1-phenylethanol with tunable product selectivity. By adjusting reaction time and catalyst dosage, the dominant product can be shifted from benzaldehyde (up to 77.28% selectivity) to benzoic acid, demonstrating precise control over oxidation degree. Mechanistic analysis shows that the surface alkaline sites synergistically optimize the Cβ-O bond breakage path by enhancing substrate adsorption and promoting the generation of active oxygen species (·OH, ·O2). This study provides a new idea for the efficient photocatalytic depolymerization of lignin and lays an experimental foundation for the interface engineering and band regulation strategies of g-C3N4-based catalysts. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

14 pages, 4092 KiB  
Article
Preparation of V2O5 Composite Cathode Material Based on In Situ Intercalated Polyaniline and Its High-Performance Aqueous Zinc-Ion Battery Applications
by Shilin Li, Taoyun Zhou, Yun Cheng and Xinyu Li
Materials 2025, 18(10), 2166; https://doi.org/10.3390/ma18102166 - 8 May 2025
Cited by 1 | Viewed by 652
Abstract
With the rapid growth of renewable energy, the need for efficient and stable energy storage systems has become increasingly urgent. Aqueous zinc-ion batteries (AZIBs) can offer high safety, abundant zinc supply, and promising electrochemical properties. However, their performance is limited by poor electronic [...] Read more.
With the rapid growth of renewable energy, the need for efficient and stable energy storage systems has become increasingly urgent. Aqueous zinc-ion batteries (AZIBs) can offer high safety, abundant zinc supply, and promising electrochemical properties. However, their performance is limited by poor electronic conductivity, slow Zn2+ diffusion, and structural degradation of conventional cathode materials. To address these issues, an in situ polyaniline (PANI) intercalation strategy for vanadium oxide cathodes is introduced in this paper. The conductive PANI chains play three key roles: (1) expand and stabilize interlayer spacing, (2) enhance electronic conductivity, and (3) provide mechanical support to prevent structural collapse and zinc-dendrite formation. A flower-like PANI-V2O5 hybrid is synthesized via synchronous oxidative polymerization, forming a hierarchical architecture without inert intercalants. The resulting electrode achieves a high specific capacity of 450 mAh·g−1 at 0.1 A·g−1 and retains 96.7% of its capacity after 300 cycles at 1 A·g−1, with excellent rate performance. These findings demonstrate that PANI intercalation enhances ion transport, electronic conductivity, and structural integrity, offering a promising design approach for next-generation AZIBs cathodes. Full article
Show Figures

Figure 1

23 pages, 995 KiB  
Review
Exploring Oxidative Stress Mechanisms of Nanoparticles Using Zebrafish (Danio rerio): Toxicological and Pharmaceutical Insights
by Denisa Batir-Marin, Monica Boev, Oana Cioanca, Ionut-Iulian Lungu, George-Alexandru Marin, Ana Flavia Burlec, Andreea-Maria Mitran, Cornelia Mircea and Monica Hancianu
Antioxidants 2025, 14(4), 489; https://doi.org/10.3390/antiox14040489 - 18 Apr 2025
Cited by 2 | Viewed by 1534
Abstract
Nanoparticles (NPs) have revolutionized biomedical and pharmaceutical applications due to their unique physicochemical properties. However, their widespread use has raised concerns regarding their potential toxicity, particularly mediated by oxidative stress mechanisms. This redox imbalance, primarily driven by the overproduction of reactive oxygen species [...] Read more.
Nanoparticles (NPs) have revolutionized biomedical and pharmaceutical applications due to their unique physicochemical properties. However, their widespread use has raised concerns regarding their potential toxicity, particularly mediated by oxidative stress mechanisms. This redox imbalance, primarily driven by the overproduction of reactive oxygen species (ROS), plays a central role in NP-induced toxicity, leading to cellular dysfunction, inflammation, apoptosis, and genotoxicity. Zebrafish (Danio rerio) have emerged as a powerful in vivo model for nanotoxicology, offering advantages such as genetic similarity to humans, rapid development, and optical transparency, allowing real-time monitoring of oxidative damage. This review synthesizes current findings on NP-induced oxidative stress in zebrafish, highlighting key toxicity mechanisms and case studies involving metallic (gold, silver, copper), metal oxide (zinc oxide, titanium dioxide, iron oxide), polymeric, and lipid-based NPs. The influence of NP physicochemical properties, such as size, surface charge, and functionalization, on oxidative stress responses is explored. Additionally, experimental approaches used to assess ROS generation, antioxidant enzyme activity, and oxidative damage biomarkers in zebrafish models are examined. In addition to toxicity concerns, pharmaceutical applications of antioxidant-modified NPs are evaluated, particularly their potential in drug delivery, neuroprotection, and disease therapeutics. Notably, studies show that curcumin- and quercetin-loaded nanoparticles enhance antioxidant defense and reduce neurotoxicity in zebrafish models, demonstrating their promise in neuroprotective therapies. Furthermore, cerium oxide nanoparticles, which mimic catalase and SOD enzymatic activity, have shown significant efficacy in reducing ROS and protecting against oxidative damage. Challenges in zebrafish-based nanotoxicology, the need for standardized methodologies, and future directions for optimizing NP design to minimize oxidative stress-related risks are also discussed. By integrating insights from toxicity mechanisms, case studies, and pharmaceutical strategies, this review supports the development of safer and more effective nanoparticle-based therapies while addressing the challenges of oxidative stress-related toxicity. Full article
(This article belongs to the Special Issue Natural Antioxidants in Pharmaceuticals and Dermatocosmetology)
Show Figures

Figure 1

15 pages, 3300 KiB  
Article
Peroxidase-like Active Cu-MOFs Nanozymes for Colorimetric Detection of Total Antioxidant Capacity in Fruits and Vegetables
by Yanyan Huang, Jiatong Han, Yi Ping, Xin Chen, Yiming Zhao, Ge Chen, Jun Lv, Donghui Xu, Yanguo Zhang, Jing Chen and Guangyang Liu
Foods 2025, 14(8), 1311; https://doi.org/10.3390/foods14081311 - 9 Apr 2025
Viewed by 844
Abstract
In this study, two types of Cu-MOFs (Cu-TCPP and CuO-TCPP) with a two-dimensional layered porous structure were prepared via in situ polymerization using Cu2+, CuO, and TCPP as raw materials. Both Cu-MOFs exhibited peroxidase-like activity, capable of catalyzing the oxidation of [...] Read more.
In this study, two types of Cu-MOFs (Cu-TCPP and CuO-TCPP) with a two-dimensional layered porous structure were prepared via in situ polymerization using Cu2+, CuO, and TCPP as raw materials. Both Cu-MOFs exhibited peroxidase-like activity, capable of catalyzing the oxidation of TMB by H2O2 to form oxTMB, resulting in an absorption peak at 652 nm and a color change from colorless to blue. Subsequently, the addition of AA can reduce oxTMB back to TMB, causing the color of the system to lighten or become colorless. Based on this principle, a simple and rapid colorimetric method for AA detection was established and successfully applied to the detection of TAC in fruits and vegetables. The results showed that Cu-TCPP and CuO-TCPP had a large linear range of ascorbic acid detection of 0.01–100 mM (Cu-TCPP) and 0.05–100 mM (CuO-TCPP). This study not only provides a novel method for preparing nanozymes with peroxidase-like activity, but also offers a simple approach for analyzing the TAC of food. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

32 pages, 6990 KiB  
Review
Graphitic Carbon Nitride Nanomaterials-Based Electrochemical Sensing Interfaces for Monitoring Heavy Metal Ions in Aqueous Environments
by Cheng Yin, Yao Liu, Tingting Hu and Xing Chen
Nanomaterials 2025, 15(7), 564; https://doi.org/10.3390/nano15070564 - 7 Apr 2025
Viewed by 914
Abstract
The persistent threat of heavy metal ions (e.g., Pb2+, Hg2+, Cd2+) in aqueous environments to human health underscores an urgent need for advanced sensing platforms capable of rapid and precise pollutant monitoring. Graphitic carbon nitride (g-C3 [...] Read more.
The persistent threat of heavy metal ions (e.g., Pb2+, Hg2+, Cd2+) in aqueous environments to human health underscores an urgent need for advanced sensing platforms capable of rapid and precise pollutant monitoring. Graphitic carbon nitride (g-C3N4), a metal-free polymeric semiconductor, has emerged as a revolutionary material for constructing next-generation environmental sensors due to its exceptional physicochemical properties, including tunable electronic structure, high chemical/thermal stability, large surface area, and unique optical characteristics. This review systematically explores the integration of g-C3N4 with functional nanomaterials (e.g., metal nanoparticles, metal oxide nanomaterials, carbonaceous materials, and conduction polymer) to engineer high-performance sensing interfaces for heavy metal detection. The structure-property relationship is critically analyzed, emphasizing how morphology engineering (nanofibers, nanosheets, and mesoporous) and surface functionalization strategies enhance sensitivity and selectivity. Advanced detection mechanisms are elucidated, including electrochemical signal amplification, and photoinduced electron transfer processes enabled by g-C3N4’s tailored bandgap and surface active sites. Furthermore, this review addresses challenges in real-world deployment, such as scalable nanomaterial synthesis, matrix interference mitigation, and long-term reliable detection. This work provides valuable insights for advancing g-C3N4-based electrochemical sensing technologies toward sustainable environmental monitoring and intelligent pollution control systems. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

16 pages, 4171 KiB  
Article
The Impact of Recovered Lignin on Solid-State PEO-Based Electrolyte Produced via Electrospinning: Manufacturing and Characterisation
by Laura Coviello, Giorgia Montalbano, Alessandro Piovano, Nagore Izaguirre, Chiara Vitale-Brovarone, Claudio Gerbaldi and Sonia Fiorilli
Polymers 2025, 17(7), 982; https://doi.org/10.3390/polym17070982 - 4 Apr 2025
Cited by 1 | Viewed by 1025
Abstract
Lithium batteries have gained significant attention due to their high energy density, specific capacity, operating voltage, slow self-discharge rate, good cycle stability, and rapid charging capabilities. However, the use of liquid electrolytes presents several safety hazards. Solid-state polymer electrolytes (SPEs) offer a promising [...] Read more.
Lithium batteries have gained significant attention due to their high energy density, specific capacity, operating voltage, slow self-discharge rate, good cycle stability, and rapid charging capabilities. However, the use of liquid electrolytes presents several safety hazards. Solid-state polymer electrolytes (SPEs) offer a promising alternative to mitigate these issues. This study focuses on the preparation of an ionically conductive electrospun membrane and its potential application as an SPE. To support a circular approach and reduce the environmental impact, the target polymeric formulation combines poly(ethylene oxide) (PEO) and lignin, sourced from paper industry waste. The formulation is optimised to ensure the dissolution of lithium salts and enhance the membrane integrity. The addition of lignin is crucial to contrast the dendrites’ growth and prevent the consequent battery breakdown. The electrospinning process is adjusted to obtain stable, homogeneous nanofibrous membranes, which are characterised using electron scanning microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The membranes’ potential as an SPE is assessed by measuring their ionic conductivity (>10−5 S cm−1 above 50 °C) and anodic stability (≈4.6 V vs. Li/Li+), and by testing their compatibility with lithium metal by reversible cycling in a symmetric Li|Li cell at 55 °C. Full article
Show Figures

Figure 1

14 pages, 4341 KiB  
Article
Fabricating Oxygen Vacancy-Rich Bi2WO6/Bi2S3 Z-Scheme Nano-Heterojunction on Carbon Fiber with Polydopamine for Enhanced Photocatalytic Activity
by Jiantao Niu, Jiaqi Pan, Jianfeng Qiu and Chaorong Li
Catalysts 2025, 15(4), 350; https://doi.org/10.3390/catal15040350 - 2 Apr 2025
Viewed by 484
Abstract
The use of fibers or fabrics as frameworks for loading photocatalysts is beneficial in solving the problems of photocatalytic nanomaterials, which tend to agglomerate and are difficult to recycle. In this study, Bi2WO6/CFb and Bi2WO6/Bi [...] Read more.
The use of fibers or fabrics as frameworks for loading photocatalysts is beneficial in solving the problems of photocatalytic nanomaterials, which tend to agglomerate and are difficult to recycle. In this study, Bi2WO6/CFb and Bi2WO6/Bi2S3/CFb photocatalytic fibers rich in oxygen vacancies were prepared using carbon fibers as the framework by the crystal seed attachment method and in situ growth method by using the self-polymerization and strong adhesion properties of dopamine. The results of SEM, TEM and XRD tests showed that Bi2WO6 and Bi2WO6/Bi2S3 nanosheets were uniformly and completely encapsulated on the surface of the carbon fibers. The results of XPS and EPR tests showed that Bi2WO6 nanosheets were rich in oxygen vacancies. The PL, transient photocurrent responses and EIS results showed that the introduction of Bi2S3 significantly improved the migration efficiency of the photogenerated carriers of Bi2WO6/Bi2S3/CFb, which effectively hindered the recombination of photogenerated electron–hole pairs. By conducting degradation experiments on p-nitrophenol and analyzing the bandgap structure, it was postulated that the heterojunction structure of Bi2WO6/Bi2S3/CFb in the Bi2WO6/Bi2S3 material was not Type-II but Z-scheme. As analyzed by the active species assay, the active species that played a major role in the degradation process were O2 and h+. The incorporation of a small amount of Bi2S3 resulted in enhanced photocatalytic degradation activity of Bi2WO6/Bi2S3/CFb toward tetracycline hydrochloride compared to Bi2WO6/CFb. The excellent photocatalytic performance of Bi2WO6/Bi2S3/CFb photocatalytic fibers can be attributed to the rapid transmission and separation performance and the high oxidation and reduction capacities of photogenerated electron–hole pairs formed by direct Z-scheme heterojunctions. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

8 pages, 1880 KiB  
Article
Surface-Imprinted Acrylamide Polymer-Based Reduced Graphene–Gold Sensor in Rapid and Sensitive Electrochemical Determination of αB-Conotoxin
by Jia Cao, Jiayue Li, Tianyang Yu and Fei Wang
Sensors 2025, 25(5), 1408; https://doi.org/10.3390/s25051408 - 26 Feb 2025
Viewed by 605
Abstract
The quantitative determination of conotoxins has great potential in the development of natural marine peptide pharmaceuticals. Considering the time-consuming sample pretreatment and expensive equipment in MS or LC-MS/MS analysis, an electrochemical sensor combined with molecularly imprinted polymer (MIP) is fabricated for the rapid [...] Read more.
The quantitative determination of conotoxins has great potential in the development of natural marine peptide pharmaceuticals. Considering the time-consuming sample pretreatment and expensive equipment in MS or LC-MS/MS analysis, an electrochemical sensor combined with molecularly imprinted polymer (MIP) is fabricated for the rapid monitoring of conotoxin αB-VxXXIVA to promote its pharmaceutical value and eliminate the risk of human poisoning. Electrochemically reduced graphene oxide–gold composite (rGO-Au) is modified with chitosan (CS) and glutaraldehyde (GA) to immobilize the macromolecular peptide, conotoxin αB-VxXXIVA. Subsequently, acrylamide (AAM) with a cross-linking agent, N,N′-methylene-bisacrylamide (NNMBA), is introduced into the rGO-Au electrode to form MIPs by electro-polymerization. The proposed MIP-based electrochemical sensor, PAM/αB-CTX/CS-GA/rGO-Au/SPE, exhibits satisfactory sensing performance in the detection of αB-VxXXIVA. Based on current change versus logarithm concentration, a wide linear range from 0.1 to 10,000 ng/mL and a low detection limit (LOD) of 0.014 ng/mL for this sensor are obtained. This work provides a promising method in electrochemical determination combined with MIP for the determination of macromolecular peptides. Full article
(This article belongs to the Collection Sensors and Biosensors for Environmental and Food Applications)
Show Figures

Figure 1

12 pages, 1489 KiB  
Article
Acid-Neutralizing Omeprazole Formulation for Rapid Release and Absorption
by Sreela Ramesh, Vít Zvoníček, Daniel Pěček, Markéta Pišlová, Josef Beránek, Jiří Hofmann and Aleksandra Dumicic
Pharmaceutics 2025, 17(2), 161; https://doi.org/10.3390/pharmaceutics17020161 - 25 Jan 2025
Viewed by 2352
Abstract
Background/Objectives: Omeprazole undergoes degradation in acidic conditions, which makes it unstable in low pHs found in the gastric environment. The vast majority of already marketed omeprazole formulations use enteric polymer coatings to protect the drug from exposure to acidic pH in the [...] Read more.
Background/Objectives: Omeprazole undergoes degradation in acidic conditions, which makes it unstable in low pHs found in the gastric environment. The vast majority of already marketed omeprazole formulations use enteric polymer coatings to protect the drug from exposure to acidic pH in the stomach, allowing for drug release in the small intestine where the pH is higher. This study aimed to explore the technical aspects of using stomach acid neutralizers as an alternative to polymeric coatings for omeprazole. Methods: After evaluating various neutralizers, magnesium oxide and sodium bicarbonate were chosen to be incorporated into capsules containing omeprazole, which then underwent in vitro dissolution testing to assess their ability to maintain optimal pH levels and ensure appropriate dissolution kinetics. Hygroscopicity and chemical stability of the selected formulation were tested to prove pharmaceutical quality of the product. An in vivo pharmacokinetic study was conducted to demonstrate the efficacy of the omeprazole–sodium bicarbonate formulation in providing faster absorption in humans. Results: Sodium bicarbonate was selected as the most suitable antacid for ensuring omeprazole stabilization. Its quantity was optimized to effectively neutralize stomach acid, facilitating the rapid release and absorption of omeprazole. In vitro studies demonstrated the ability of the formulation to neutralize gastric acid within five minutes. In vivo studies indicated that maximum concentrations of omeprazole were achieved within half an hour. The product met the requirements of pharmaceutical quality. Conclusions: An easily manufacturable, fast-absorbing oral formulation was developed as an alternative to enteric-coated omeprazole. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

19 pages, 1295 KiB  
Article
Dielectrically Monitored Flow Synthesis of Functional Vaccine Adjuvant Mixtures via Microwave-Assisted Catalytic Chain Transfer Processing
by Cordula S. Hege, Ian E. Hamilton, Adam A. Dundas, Kevin Adlington, Edward Walker, Helena Henke, Kaiyang Wang, Georgios Dimitrakis, Adam Buttress, Christopher Dodds, Christopher B. Fox and Derek J. Irvine
Chemistry 2025, 7(1), 10; https://doi.org/10.3390/chemistry7010010 - 17 Jan 2025
Viewed by 968
Abstract
A novel flow process to produce low-molecular-weight (Mwt) methacrylate oligomer mixtures that have potential as vaccine adjuvants and chain transfer agents (CTAs) is reported. The chemistry and process were designed to significantly reduce the number of stages required to manufacture methyl methacrylate oligomer-in-monomer [...] Read more.
A novel flow process to produce low-molecular-weight (Mwt) methacrylate oligomer mixtures that have potential as vaccine adjuvants and chain transfer agents (CTAs) is reported. The chemistry and process were designed to significantly reduce the number of stages required to manufacture methyl methacrylate oligomer-in-monomer mixtures with an oligomer Mwt range of dimers to pentamers and >50% conversion. Combining rapid in-flow, in situ catalytic chain transfer polymerization catalyst synthesis and volumetric microwave heating of the reaction medium resulted in catalyst flow synthesis being completed in <4 min, removing the need to pre-synthesize it. The steady-state operation was then successfully maintained with very low levels of external energy, as the process utilized the reaction exotherm. The microwave process outperformed a comparative conventionally heated system by delivering a 20% increase in process throughput with no change in final product quality or conversion. Additionally, combining flow and in situ catalyst processing enabled the use of a more oxidatively unstable catalyst. This allowed for in situ catalyst deactivation post-generation of the oligomers, such that residual catalyst did not need to be removed prior to preparing subsequent vaccine adjuvant or CTA screening formulations. Finally, dielectric property measurements were able to monitor the onset of reaction and steady-state operation. Full article
(This article belongs to the Section Molecular Organics)
Show Figures

Figure 1

14 pages, 6655 KiB  
Article
Dependence of the Molecular Interactions Between Cyanoacrylate and Native Copper Surfaces on the Process Atmosphere
by Philipp Moritz, Lienhard Wegewitz and Wolfgang Maus-Friedrichs
Adhesives 2025, 1(1), 1; https://doi.org/10.3390/adhesives1010001 - 24 Dec 2024
Viewed by 1115
Abstract
Cyanoacrylates, known for their rapid polymerization and strong bonding capabilities, are widely used in industrial and medical applications. This study investigates the impacts of different process atmospheres with varying water and oxygen contents—air, argon, and argon/silane—on the curing and adhesion mechanisms of cyanoacrylate [...] Read more.
Cyanoacrylates, known for their rapid polymerization and strong bonding capabilities, are widely used in industrial and medical applications. This study investigates the impacts of different process atmospheres with varying water and oxygen contents—air, argon, and argon/silane—on the curing and adhesion mechanisms of cyanoacrylate adhesives on oxidized copper substrates. Raman spectroscopy indicated that the curing process in argon and argon/silane atmospheres was slower compared to ambient air, likely due to the reduced moisture content of the atmosphere. However, the degree of curing and the inter- and intramolecular interactions within the adhesive volume showed no significant differences across atmospheres. X-ray photoelectron spectroscopy (XPS) and infrared reflection absorption spectroscopy (IRRAS) revealed that strong ionic interactions between cyanoacrylate and the copper surface oxide were absent in the low-moisture argon atmosphere. The introduction of silane resulted in the formation of silicon oxides and other silane-derived compounds, which probably contributed to the formation of these ionic interactions, similar to those observed in air. This study highlights the critical influence of the surrounding atmosphere on the adhesive properties of cyanoacrylates, with implications for optimizing bonding processes in various environments. Full article
Show Figures

Figure 1

21 pages, 6317 KiB  
Article
Additive Fabrication of Polyaniline and Carbon-Based Composites for Energy Storage
by Niwat Hemha, Jessada Khajonrit and Wiwat Nuansing
Polymers 2024, 16(23), 3369; https://doi.org/10.3390/polym16233369 - 29 Nov 2024
Viewed by 1128
Abstract
The growing demand for efficient energy storage systems, particularly in portable electronics and electric vehicles, has led to increased interest in supercapacitors, which offer high power density, rapid charge/discharge rates, and long cycle life. However, improving their energy density without compromising performance remains [...] Read more.
The growing demand for efficient energy storage systems, particularly in portable electronics and electric vehicles, has led to increased interest in supercapacitors, which offer high power density, rapid charge/discharge rates, and long cycle life. However, improving their energy density without compromising performance remains a challenge. In this study, we developed novel 3D-printed reduced graphene oxide (rGO) electrodes coated with polyaniline (PANI) to enhance their electrochemical properties. The rGO 3D-printed electrodes were fabricated using direct ink writing (DIW), which allowed precise control over thickness, ranging from 4 to 24 layers. A unique ink formulation was optimized for the printing process, consisting of rGO, cellulose acetate (CA) as a binder, and acetone as a solvent. The PANI coating was applied via chemical oxidative polymerization (COP) with up to five deposition cycles. Electrochemical testing, including cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS), revealed that 12-layer electrodes with three PANI deposition cycles achieved the highest areal capacitance of 84.32 mF/cm2. While thicker electrodes (16 layers and beyond) experienced diminished performance due to ion diffusion limitations, the composite electrodes demonstrated excellent cycling stability, retaining over 80% of their initial capacitance after 1500 cycles. This work demonstrates the potential of 3D-printed PANI/rGO electrodes for scalable, high-performance supercapacitors with customizable architectures. Full article
(This article belongs to the Special Issue Advances in Polymer/Graphene Composites and Nanocomposites)
Show Figures

Graphical abstract

24 pages, 5046 KiB  
Article
Ultrasensitive Electrochemical Detection of Salmonella typhimurium in Food Matrices Using Surface-Modified Bacterial Cellulose with Immobilized Phage Particles
by Wajid Hussain, Huan Wang, Xiaohan Yang, Muhammad Wajid Ullah, Jawad Hussain, Najeeb Ullah, Mazhar Ul-Islam, Mohamed F. Awad and Shenqi Wang
Biosensors 2024, 14(10), 500; https://doi.org/10.3390/bios14100500 - 14 Oct 2024
Cited by 7 | Viewed by 2727
Abstract
The rapid and sensitive detection of Salmonella typhimurium in food matrices is crucial for ensuring food safety. This study presents the development of an ultrasensitive electrochemical biosensor using surface-modified bacterial cellulose (BC) integrated with polypyrrole (Ppy) and reduced graphene oxide (RGO), further functionalized [...] Read more.
The rapid and sensitive detection of Salmonella typhimurium in food matrices is crucial for ensuring food safety. This study presents the development of an ultrasensitive electrochemical biosensor using surface-modified bacterial cellulose (BC) integrated with polypyrrole (Ppy) and reduced graphene oxide (RGO), further functionalized with immobilized S. typhimurium-specific phage particles. The BC substrate, with its ultra-fibrous and porous structure, was modified through in situ oxidative polymerization of Ppy and RGO, resulting in a highly conductive and flexible biointerface. The immobilization of phages onto this composite was facilitated by electrostatic interactions between the polycationic Ppy and the negatively charged phage capsid heads, optimizing phage orientation and enhancing bacterial capture efficiency. Morphological and chemical characterization confirmed the successful fabrication and phage immobilization. The biosensor demonstrated a detection limit of 1 CFU/mL for S. typhimurium in phosphate-buffered saline (PBS), with a linear detection range spanning 100 to 107 CFU/mL. In real samples, the sensor achieved detection limits of 5 CFU/mL in milk and 3 CFU/mL in chicken, with a linear detection range spanning 100 to 106 CFU/mL, maintaining high accuracy and reproducibility. The biosensor also effectively discriminated between live and dead bacterial cells, demonstrating its potential in real-world food safety applications. The biosensor performed excellently over a wide pH range (4–10) and remained stable for up to six weeks. Overall, the developed BC/Ppy/RGO–phage biosensor offers a promising tool for the rapid, sensitive, and selective detection of S. typhimurium, with robust performance across different food matrices. Full article
(This article belongs to the Special Issue Advancements in Biosensors for Foodborne Pathogens Detection)
Show Figures

Figure 1

13 pages, 6005 KiB  
Article
Facile One-Pot Preparation of Polypyrrole-Incorporated Conductive Hydrogels for Human Motion Sensing
by Zunhui Zhao, Jiahao Liu, Jun Lv, Bo Liu, Na Li and Hangyu Zhang
Sensors 2024, 24(17), 5814; https://doi.org/10.3390/s24175814 - 7 Sep 2024
Cited by 3 | Viewed by 1691
Abstract
Conductive hydrogels have been widely used in soft robotics, as well as skin-attached and implantable bioelectronic devices. Among the candidates of conductive fillers, conductive polymers have become popular due to their intrinsic conductivity, high biocompatibility, and mechanical flexibility. However, it is still a [...] Read more.
Conductive hydrogels have been widely used in soft robotics, as well as skin-attached and implantable bioelectronic devices. Among the candidates of conductive fillers, conductive polymers have become popular due to their intrinsic conductivity, high biocompatibility, and mechanical flexibility. However, it is still a challenge to construct conductive polymer-incorporated hydrogels with a good performance using a facile method. Herein, we present a simple method for the one-pot preparation of conductive polymer-incorporated hydrogels involving rapid photocuring of the hydrogel template followed by slow in situ polymerization of pyrrole. Due to the use of a milder oxidant, hydrogen peroxide, for polypyrrole synthesis, the photocuring of the hydrogel template and the growing of polypyrrole proceeded in an orderly manner, making it possible to prepare conductive polymer-incorporated hydrogels in one pot. The preparation process is facile and extensible. Moreover, the obtained hydrogels exhibit a series of properties suitable for biomedical strain sensors, including good conductivity (2.49 mS/cm), high stretchability (>200%), and a low Young’s modulus (~30 kPa) that is compatible with human skin. Full article
Show Figures

Figure 1

13 pages, 2685 KiB  
Article
ARGET-ATRP-Mediated Grafting of Bifunctional Polymers onto Silica Nanoparticles Fillers for Boosting the Performance of High-Capacity All-Solid-State Lithium–Sulfur Batteries with Polymer Solid Electrolytes
by Liang Wang, Junyue Huang, Yujian Shen, Mengqi Ma, Wenhong Ruan and Mingqiu Zhang
Polymers 2024, 16(8), 1128; https://doi.org/10.3390/polym16081128 - 17 Apr 2024
Cited by 1 | Viewed by 1910
Abstract
The shuttle effect in lithium–sulfur batteries, which leads to rapid capacity decay, can be effectively suppressed by solid polymer electrolytes. However, the lithium-ion conductivity of polyethylene oxide-based solid electrolytes is relatively low, resulting in low reversible capacity and poor cycling stability of the [...] Read more.
The shuttle effect in lithium–sulfur batteries, which leads to rapid capacity decay, can be effectively suppressed by solid polymer electrolytes. However, the lithium-ion conductivity of polyethylene oxide-based solid electrolytes is relatively low, resulting in low reversible capacity and poor cycling stability of the batteries. In this study, we employed the activator generated through electron transfer atom transfer radical polymerization to graft modify the surface of silica nanoparticles with a bifunctional monomer, 2-acrylamide-2-methylpropanesulfonate, which possesses sulfonic acid groups with low dissociation energy for facilitating Li+ migration and transfer, as well as amide groups capable of forming hydrogen bonds with polyethylene oxide chains. Subsequently, the modified nanoparticles were blended with polyethylene oxide to prepare a solid polymer electrolyte with low crystallinity and high ion conductivity. The resulting electrolyte demonstrated excellent and stable electrochemical performance, with a discharge-specific capacity maintained at 875.2 mAh g−1 after 200 cycles. Full article
(This article belongs to the Special Issue Polymer Composite Materials for Energy Storage)
Show Figures

Graphical abstract

Back to TopTop