Advancements in Biosensors for Foodborne Pathogens Detection

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Biosensor and Bioelectronic Devices".

Deadline for manuscript submissions: closed (30 April 2025) | Viewed by 7863

Special Issue Editors


E-Mail Website
Guest Editor
Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
Interests: aptamers; nanoscience; nanomedicine; electrochemical biosensors; fluorescent biosensors

Special Issue Information

Dear Colleagues,

Food safety is a paramount concern for both individuals and a nation's economy. The swift identification of foodborne pathogens plays a pivotal role in preserving food safety. Recent years have witnessed significant advancements in biosensor research, introducing fresh ideas in biomarker identification, miniaturization, and multiplex analysis within the realm of food safety. Additionally, innovations in microfluidics and other micro- and nano-scale devices have expanded the possibilities for deploying biosensors in on-site pathogen detection scenarios. This Special Issue offers a platform for researchers to share their unique contributions in the field of biosensors for foodborne pathogens detection, addressing this critical aspect of public health and economic stability.

The Special Issue invites submissions of original research, review articles, and short communications covering the following topics: 

  • Electrochemical biosensors
  • Fluorescent biosensors
  • Screen-printed carbon electrodes
  • Microfluidics
  • Foodborne pathogens
  • Label-free detection

Prof. Dr. Michael Danquah
Dr. Najeeb Ullah
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • pathogen detection
  • electrochemical biosensors
  • fluorescent biosensors
  • screen-printed carbon electrodes
  • aptamers
  • nanoparticles
  • microfluidics
  • lab-on-chip
  • label-free

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 9227 KiB  
Article
Nanoparticle-Enhanced Acoustic Wave Biosensor Detection of Pseudomonas aeruginosa in Food
by Sandro Spagnolo, Katharina Davoudian, Brian De La Franier, Robert Kocsis, Tibor Hianik and Michael Thompson
Biosensors 2025, 15(3), 146; https://doi.org/10.3390/bios15030146 - 25 Feb 2025
Cited by 1 | Viewed by 764
Abstract
A biosensor was designed for detecting Pseudomonas aeruginosa (P. aeruginosa) bacteria in whole milk samples. The sensing layer involved the antifouling linking molecule 3-(2-mercaptoethanoxy)propanoic acid (HS-MEG-COOH), which was covalently linked to an aptamer for binding P. aeruginosa. The aptasensor uses [...] Read more.
A biosensor was designed for detecting Pseudomonas aeruginosa (P. aeruginosa) bacteria in whole milk samples. The sensing layer involved the antifouling linking molecule 3-(2-mercaptoethanoxy)propanoic acid (HS-MEG-COOH), which was covalently linked to an aptamer for binding P. aeruginosa. The aptasensor uses the thickness shear mode (TSM) system for mass-sensitive acoustic sensing of the bacterium. High concentrations (105 CFU mL−1) of nonspecific bacteria, E. coli, S. aureus, and L. acidophilus, were tested with the aptasensor and caused negligible frequency shifts compared to P. aeruginosa. The aptasensor has high selectivity for P. aeruginosa, with an extrapolated limit of detection (LOD) of 86 CFU mL−1 in phosphate-buffered saline (PBS) and 157 CFU mL−1 in milk. To improve the sensitivity of the sensor, gold nanoparticles (AuNPs) were functionalized with the same aptamer for P. aeruginosa and flowed through the sensor following bacteria, reducing the extrapolated LOD to 68 CFU mL−1 in PBS and 46 CFU mL−1 in milk. The frequency variations in the aptasensor are proportional to various concentrations of P. aeruginosa (102–105 CFU mL−1) with and without AuNPs, respectively. The low and rapid mass-sensitive detection demonstrates the ability of the aptasensor to quantitatively identify bacterial contamination in buffer and milk. Full article
(This article belongs to the Special Issue Advancements in Biosensors for Foodborne Pathogens Detection)
Show Figures

Figure 1

20 pages, 3509 KiB  
Article
A Novel Application of B.EL.D™ Technology: Biosensor-Based Detection of Salmonella spp. in Food
by Lazaros Konstantinou, Eleni Varda, Theofylaktos Apostolou, Konstantinos Loizou, Lazaros Dougiakis, Antonios Inglezakis and Agni Hadjilouka
Biosensors 2024, 14(12), 582; https://doi.org/10.3390/bios14120582 - 29 Nov 2024
Viewed by 1326
Abstract
The prevalence of foodborne diseases is continuously increasing, causing numerous hospitalizations and deaths, as well as money loss in the agri-food sector and food supply chain worldwide. The standard analyses currently used for bacteria detection have significant limitations with the most important being [...] Read more.
The prevalence of foodborne diseases is continuously increasing, causing numerous hospitalizations and deaths, as well as money loss in the agri-food sector and food supply chain worldwide. The standard analyses currently used for bacteria detection have significant limitations with the most important being their long procedural time that can be crucial for foodborne outbreaks. In this study, a biosensor system able to perform robust and accurate detection of Salmonella spp. in meat products was developed. To achieve this, a portable device developed by EMBIO Diagnostics called B.EL.DTM (Bio Electric Diagnostics) and cell-based biosensor technology (BERA) were used. Results indicated that the new method could detect the pathogen within 24 h after a 3-min analysis and discriminate samples with and without Salmonella with high accuracy. Achieving an accuracy of 86.1% and a detection limit (LOD) of 1 log CFU g−1, this innovative technology enables rapid and sensitive identification of Salmonella spp. in meat and meat products, making it an excellent tool for pathogen screening. Full article
(This article belongs to the Special Issue Advancements in Biosensors for Foodborne Pathogens Detection)
Show Figures

Figure 1

24 pages, 5046 KiB  
Article
Ultrasensitive Electrochemical Detection of Salmonella typhimurium in Food Matrices Using Surface-Modified Bacterial Cellulose with Immobilized Phage Particles
by Wajid Hussain, Huan Wang, Xiaohan Yang, Muhammad Wajid Ullah, Jawad Hussain, Najeeb Ullah, Mazhar Ul-Islam, Mohamed F. Awad and Shenqi Wang
Biosensors 2024, 14(10), 500; https://doi.org/10.3390/bios14100500 - 14 Oct 2024
Cited by 4 | Viewed by 2386
Abstract
The rapid and sensitive detection of Salmonella typhimurium in food matrices is crucial for ensuring food safety. This study presents the development of an ultrasensitive electrochemical biosensor using surface-modified bacterial cellulose (BC) integrated with polypyrrole (Ppy) and reduced graphene oxide (RGO), further functionalized [...] Read more.
The rapid and sensitive detection of Salmonella typhimurium in food matrices is crucial for ensuring food safety. This study presents the development of an ultrasensitive electrochemical biosensor using surface-modified bacterial cellulose (BC) integrated with polypyrrole (Ppy) and reduced graphene oxide (RGO), further functionalized with immobilized S. typhimurium-specific phage particles. The BC substrate, with its ultra-fibrous and porous structure, was modified through in situ oxidative polymerization of Ppy and RGO, resulting in a highly conductive and flexible biointerface. The immobilization of phages onto this composite was facilitated by electrostatic interactions between the polycationic Ppy and the negatively charged phage capsid heads, optimizing phage orientation and enhancing bacterial capture efficiency. Morphological and chemical characterization confirmed the successful fabrication and phage immobilization. The biosensor demonstrated a detection limit of 1 CFU/mL for S. typhimurium in phosphate-buffered saline (PBS), with a linear detection range spanning 100 to 107 CFU/mL. In real samples, the sensor achieved detection limits of 5 CFU/mL in milk and 3 CFU/mL in chicken, with a linear detection range spanning 100 to 106 CFU/mL, maintaining high accuracy and reproducibility. The biosensor also effectively discriminated between live and dead bacterial cells, demonstrating its potential in real-world food safety applications. The biosensor performed excellently over a wide pH range (4–10) and remained stable for up to six weeks. Overall, the developed BC/Ppy/RGO–phage biosensor offers a promising tool for the rapid, sensitive, and selective detection of S. typhimurium, with robust performance across different food matrices. Full article
(This article belongs to the Special Issue Advancements in Biosensors for Foodborne Pathogens Detection)
Show Figures

Figure 1

20 pages, 3010 KiB  
Article
Salmonella Detection in Food Using a HEK-hTLR5 Reporter Cell-Based Sensor
by Esma Eser, Victoria A. Felton, Rishi Drolia and Arun K. Bhunia
Biosensors 2024, 14(9), 444; https://doi.org/10.3390/bios14090444 - 18 Sep 2024
Viewed by 2573
Abstract
The development of a rapid, sensitive, specific method for detecting foodborne pathogens is paramount for supplying safe food to enhance public health safety. Despite the significant improvement in pathogen detection methods, key issues are still associated with rapid methods, such as distinguishing living [...] Read more.
The development of a rapid, sensitive, specific method for detecting foodborne pathogens is paramount for supplying safe food to enhance public health safety. Despite the significant improvement in pathogen detection methods, key issues are still associated with rapid methods, such as distinguishing living cells from dead, the pathogenic potential or health risk of the analyte at the time of consumption, the detection limit, and the sample-to-result. Mammalian cell-based assays analyze pathogens’ interaction with host cells and are responsive only to live pathogens or active toxins. In this study, a human embryonic kidney (HEK293) cell line expressing Toll-Like Receptor 5 (TLR-5) and chromogenic reporter system (HEK dual hTLR5) was used for the detection of viable Salmonella in a 96-well tissue culture plate. This cell line responds to low concentrations of TLR5 agonist flagellin. Stimulation of TLR5 ligand activates nuclear factor-kB (NF-κB)—linked alkaline phosphatase (AP-1) signaling cascade inducing the production of secreted embryonic alkaline phosphatase (SEAP). With the addition of a ρ-nitrophenyl phosphate as a substrate, a colored end product representing a positive signal is quantified. The assay’s specificity was validated with the top 20 Salmonella enterica serovars and 19 non-Salmonella spp. The performance of the assay was also validated with spiked food samples. The total detection time (sample-to-result), including shortened pre-enrichment (4 h) and selective enrichment (4 h) steps with artificially inoculated outbreak-implicated food samples (chicken, peanut kernel, peanut butter, black pepper, mayonnaise, and peach), was 15 h when inoculated at 1–100 CFU/25 g sample. These results show the potential of HEK-DualTM hTLR5 cell-based functional biosensors for the rapid screening of Salmonella. Full article
(This article belongs to the Special Issue Advancements in Biosensors for Foodborne Pathogens Detection)
Show Figures

Figure 1

Back to TopTop