Natural Antioxidants in Pharmaceuticals and Dermatocosmetology

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Health Outcomes of Antioxidants and Oxidative Stress".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1849

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania
Interests: phytochemical characterization; extraction, isolation and characterization of pure bioactive compounds from plants extracts; assessment of the biological activity of plant extracts/pure active phytochemicals; in vitro, in vivo evaluations; clinical trials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

To date, a significant number of pharmaceuticals and dermatocosmetic products have natural compounds as their main active ingredients, available in various forms of extracts (standardized or not) or as pure phytochemicals. Furthermore, there is growing use of these products among the population. The connection between the antioxidant activity of natural compounds and their multitude of beneficial effects for health and dermatocosmetology is strongly validated and substantiated.

The aim of this Special Issue is to present the latest findings on natural antioxidants that can be used in the pharmaceutical and dermatocosmetic fields. Submissions should include studies on active phytochemicals, whether in their pure form or as standardized extracts, that show positive results in managing acute and/or chronic pathologies. Additionally, natural antioxidant molecules that benefit the skin and hair, from both medical and esthetic perspectives, should be reported. The potential interactions of natural antioxidant compounds with synthetic molecules, whether they potentiate or inhibit their effects, should be detailed. Furthermore, the underlying mechanisms of antioxidant effects and biological activities should be thoroughly explored.

We welcome experimental and clinical research papers, as well as in-depth reviews, for this Special Issue.

Prof. Dr. Corina Danciu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • phytochemicals
  • antioxidant
  • pharmaceuticals
  • dermatocosmetic products
  • in vitro and in vivo evaluations
  • clinical trials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

34 pages, 4688 KiB  
Article
Optimized Sambucus nigra L., Epilobium hirsutum L., and Lythrum salicaria L. Extracts: Biological Effects Supporting Their Potential in Wound Care
by Diana Antonia Safta, Ana-Maria Vlase, Anca Pop, Julien Cherfan, Rahela Carpa, Sonia Iurian, Cătălina Bogdan, Laurian Vlase and Mirela-Liliana Moldovan
Antioxidants 2025, 14(5), 521; https://doi.org/10.3390/antiox14050521 - 27 Apr 2025
Viewed by 315
Abstract
This study aimed to optimize the extraction of phytocompounds intended for wound care applications from three plant species, Sambucus nigra L. flowers and Epilobium hirsutum L. and Lythrum salicaria L. aerial parts, by using a Quality by Design approach. The effects of different [...] Read more.
This study aimed to optimize the extraction of phytocompounds intended for wound care applications from three plant species, Sambucus nigra L. flowers and Epilobium hirsutum L. and Lythrum salicaria L. aerial parts, by using a Quality by Design approach. The effects of different extraction methods (ultra-turrax and ultrasonic-assisted extraction), ethanol concentrations (30%, 50%, 70%), and extraction times (3, 5, 10 min) were studied, and during the optimization step, the polyphenol and flavonoid contents were maximized. The phytochemical profiles of the optimized HEs (herbal extracts) were assessed using LC-MS/MS methods. The antioxidant capacity of the optimized HEs was determined using DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity) TEAC (Trolox equivalent antioxidant capacity), and FRAP (ferric reducing antioxidant power) assays, while the antibacterial activity was evaluated against Escherichia coli, Pseudomonas aeruginosa, and MSSA—methicillin-sensitive Staphylococcus aureus and MRSA—methicillin-resistant Staphylococcus aureus). Cell viability and antioxidant and wound healing potential were assessed on keratinocytes and fibroblasts. The anti-inflammatory effect was assessed on fibroblasts by measuring levels of interleukins IL-6 and IL-8 and the production of nitric oxide from RAW 264.7 cells. The major compounds of the optimized HEs were rutin and chlorogenic acid. The Lythrum salicaria optimized HE showed the strongest antibacterial activity, while the Sambucus nigra optimized HE demonstrated high cell viability. Lythrum salicaria and Epilobium hirsutum optimized HEs showed increased antioxidant capacities. All extracts displayed anti-inflammatory effects, and the Epilobium hirsutum optimized HE exhibited the best in vitro wound-healing effect. Full article
(This article belongs to the Special Issue Natural Antioxidants in Pharmaceuticals and Dermatocosmetology)
Show Figures

Graphical abstract

Review

Jump to: Research

23 pages, 995 KiB  
Review
Exploring Oxidative Stress Mechanisms of Nanoparticles Using Zebrafish (Danio rerio): Toxicological and Pharmaceutical Insights
by Denisa Batir-Marin, Monica Boev, Oana Cioanca, Ionut-Iulian Lungu, George-Alexandru Marin, Ana Flavia Burlec, Andreea-Maria Mitran, Cornelia Mircea and Monica Hancianu
Antioxidants 2025, 14(4), 489; https://doi.org/10.3390/antiox14040489 - 18 Apr 2025
Viewed by 441
Abstract
Nanoparticles (NPs) have revolutionized biomedical and pharmaceutical applications due to their unique physicochemical properties. However, their widespread use has raised concerns regarding their potential toxicity, particularly mediated by oxidative stress mechanisms. This redox imbalance, primarily driven by the overproduction of reactive oxygen species [...] Read more.
Nanoparticles (NPs) have revolutionized biomedical and pharmaceutical applications due to their unique physicochemical properties. However, their widespread use has raised concerns regarding their potential toxicity, particularly mediated by oxidative stress mechanisms. This redox imbalance, primarily driven by the overproduction of reactive oxygen species (ROS), plays a central role in NP-induced toxicity, leading to cellular dysfunction, inflammation, apoptosis, and genotoxicity. Zebrafish (Danio rerio) have emerged as a powerful in vivo model for nanotoxicology, offering advantages such as genetic similarity to humans, rapid development, and optical transparency, allowing real-time monitoring of oxidative damage. This review synthesizes current findings on NP-induced oxidative stress in zebrafish, highlighting key toxicity mechanisms and case studies involving metallic (gold, silver, copper), metal oxide (zinc oxide, titanium dioxide, iron oxide), polymeric, and lipid-based NPs. The influence of NP physicochemical properties, such as size, surface charge, and functionalization, on oxidative stress responses is explored. Additionally, experimental approaches used to assess ROS generation, antioxidant enzyme activity, and oxidative damage biomarkers in zebrafish models are examined. In addition to toxicity concerns, pharmaceutical applications of antioxidant-modified NPs are evaluated, particularly their potential in drug delivery, neuroprotection, and disease therapeutics. Notably, studies show that curcumin- and quercetin-loaded nanoparticles enhance antioxidant defense and reduce neurotoxicity in zebrafish models, demonstrating their promise in neuroprotective therapies. Furthermore, cerium oxide nanoparticles, which mimic catalase and SOD enzymatic activity, have shown significant efficacy in reducing ROS and protecting against oxidative damage. Challenges in zebrafish-based nanotoxicology, the need for standardized methodologies, and future directions for optimizing NP design to minimize oxidative stress-related risks are also discussed. By integrating insights from toxicity mechanisms, case studies, and pharmaceutical strategies, this review supports the development of safer and more effective nanoparticle-based therapies while addressing the challenges of oxidative stress-related toxicity. Full article
(This article belongs to the Special Issue Natural Antioxidants in Pharmaceuticals and Dermatocosmetology)
Show Figures

Figure 1

34 pages, 17924 KiB  
Review
Natural Compounds with Beneficial Effects on Skin Collagen Type I and Mechanisms of Their Action
by Wioleta Żynda, Agnieszka Ruczaj and Anna Galicka
Antioxidants 2025, 14(4), 389; https://doi.org/10.3390/antiox14040389 - 26 Mar 2025
Viewed by 669
Abstract
The skin, as the largest external organ, is exposed to many environmental factors, such as sunlight and pollution, as well as some synthetic ingredients in cosmetic products used in excess by most people of all ages throughout their lives. Under the influence of [...] Read more.
The skin, as the largest external organ, is exposed to many environmental factors, such as sunlight and pollution, as well as some synthetic ingredients in cosmetic products used in excess by most people of all ages throughout their lives. Under the influence of these factors and with age, the amount of the key building protein, collagen type I, decreases, which leads to a deterioration in the appearance and condition of the skin. Currently, when the average life expectancy increases, the esthetic aspect and maintaining healthy skin are particularly important. In the cosmetic and pharmaceutical industries, attempts have long been made to prevent skin aging by the application of products containing natural compounds, mainly due to their high antioxidant activity. This review collects natural compounds, mainly polyphenols, with stimulating and protective effects on collagen type I in human skin fibroblasts, along with a description of the mechanisms of their action. Some of them have been tested on mice and rats, as well as in clinical trials, and in most cases, the results have been very promising. Nevertheless, there is still a need for an intensification of clinical studies in order to determine their appropriate dosage, safety, and effectiveness. Full article
(This article belongs to the Special Issue Natural Antioxidants in Pharmaceuticals and Dermatocosmetology)
Show Figures

Figure 1

Back to TopTop