Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,070)

Search Parameters:
Keywords = range shift indices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1994 KiB  
Article
Climate Change Alters Ecological Niches and Distribution of Two Major Forest Species in Korea, Accelerating the Pace of Forest Succession
by Sang Kyoung Lee, Dong-Ho Lee, Yeo Bin Park, Do Hun Ryu, Jun Mo Kim, Eui-Joo Kim, Jae Hoon Park, Ji Won Park, Kyeong Mi Cho, Ji Hyun Seo, Sang Pil Lee, Seung Jun Lee, Ji Su Ko, Hye Jeong Jang and Young Han You
Forests 2025, 16(8), 1331; https://doi.org/10.3390/f16081331 - 15 Aug 2025
Abstract
Temperate forest ecosystems in Korea are currently undergoing a successional transition from Pinus densiflora Siebold & Zucc. (evergreen conifer) communities to Quercus mongolica Fisch. ex Ledeb. (deciduous broadleaf) communities. This study aimed to assess interspecific differences in ecological responses to climate change [Representative [...] Read more.
Temperate forest ecosystems in Korea are currently undergoing a successional transition from Pinus densiflora Siebold & Zucc. (evergreen conifer) communities to Quercus mongolica Fisch. ex Ledeb. (deciduous broadleaf) communities. This study aimed to assess interspecific differences in ecological responses to climate change [Representative Concentration Pathway (RCP) 4.5] by evaluating changes in ecological niche characteristics and species distribution. Controlled-environment experiments, principal component analysis (PCA), and MaxEnt species distribution modeling were employed to quantify and predict ecological shifts in the two dominant species under climate change scenarios. Both species exhibited increases in niche breadth and interspecific overlap under climate change conditions. However, Q. mongolica showed a more pronounced increase in niche breadth compared to P. densiflora, indicating greater ecological flexibility and adaptive potential to warming conditions. According to the MaxEnt model projections, climate change is expected to result in an approximate 30% reduction in suitable habitat for P. densiflora in lowland areas. In contrast, Q. mongolica is projected to expand its suitable habitat by over 80%, notably in both low-elevation (below 800 m) and high-elevation (above 1400 m) zones, without being restricted to any specific altitudinal range. Our findings suggest that climate change may increase ecological similarity between P. densiflora and Q. mongolica, thereby raising the potential for interspecific competition. This convergence in niche traits could contribute to an accelerated successional transition, although actual competitive interactions in natural ecosystems require further empirical validation. Consequently, Korean forests are likely to transform into predominantly deciduous forest ecosystems under future climate conditions. Full article
(This article belongs to the Section Forest Ecology and Management)
18 pages, 2704 KiB  
Article
A Robust Hybrid Weighting Scheme Based on IQRBOW and Entropy for MCDM: Stability and Advantage Criteria in the VIKOR Framework
by Ali Erbey, Üzeyir Fidan and Cemil Gündüz
Entropy 2025, 27(8), 867; https://doi.org/10.3390/e27080867 - 15 Aug 2025
Abstract
In multi-criteria decision-making (MCDM) environments characterized by uncertainty and data irregularities, the reliability of weighting methods becomes critical for ensuring robust and accurate decisions. This study introduces a novel hybrid objective weighting method—IQRBOW-E (Interquartile Range-Based Objective Weighting with Entropy)—which dynamically combines the statistical [...] Read more.
In multi-criteria decision-making (MCDM) environments characterized by uncertainty and data irregularities, the reliability of weighting methods becomes critical for ensuring robust and accurate decisions. This study introduces a novel hybrid objective weighting method—IQRBOW-E (Interquartile Range-Based Objective Weighting with Entropy)—which dynamically combines the statistical robustness of the IQRBOW method with the information sensitivity of Entropy through a tunable parameter β. The method allows decision-makers to flexibly control the trade-off between robustness and information contribution, enhancing the adaptability of decision support systems. A comprehensive experimental design involving ten simulation scenarios was implemented, in which the number of criteria, alternatives, and outlier ratios were varied. The IQRBOW-E method was integrated into the VIKOR framework and evaluated through average Q values, stability ratios, SRD scores, and the Friedman test. The results indicate that the proposed hybrid approach achieves superior decision stability and performance, particularly in data environments with increasing outlier contamination. Optimal β values were shown to shift systematically depending on data conditions, highlighting the model’s sensitivity and adaptability. This study not only advances the methodological landscape of MCDM by introducing a parameterized hybrid weighting model but also contributes a robust and generalizable weighting infrastructure for modern decision-making under uncertainty. Full article
(This article belongs to the Special Issue Entropy Method for Decision Making with Uncertainty)
Show Figures

Figure 1

18 pages, 5249 KiB  
Article
Influence of the Configurations of Fuel Injection on the Flame Transfer Function of Bluff Body-Stabilized, Non-Premixed Flames
by Haitao Sun, Yan Zhao, Xiang Zhang, Suofang Wang and Yong Liu
Energies 2025, 18(16), 4349; https://doi.org/10.3390/en18164349 - 15 Aug 2025
Abstract
Combustion instability poses a significant challenge in aerospace propulsion systems, particularly in afterburners that employ bluff-body flame stabilizers. The flame transfer function (FTF) is essential for characterizing the dynamic response of flames to perturbations, which is critical for predicting and controlling these instabilities. [...] Read more.
Combustion instability poses a significant challenge in aerospace propulsion systems, particularly in afterburners that employ bluff-body flame stabilizers. The flame transfer function (FTF) is essential for characterizing the dynamic response of flames to perturbations, which is critical for predicting and controlling these instabilities. This study experimentally investigates the effect of varying the number of fuel injection holes (N = 3, 4, 5, 6) on the FTF and flame dynamics in a model afterburner combustor. Using acoustic excitations, the FTF was measured across a range of frequencies, with flame behavior analyzed via high-speed imaging and chemiluminescence techniques. Results reveal that the FTF gain exhibits dual-peak characteristics, initially decreasing and then increasing with higher N values. The frequencies of these gain peaks shift to higher values as N increases, while the time delay between velocity and heat release rate fluctuations decreases, indicating a faster flame response. Flame morphology analysis shows that higher N leads to shorter, taller flames due to enhanced fuel distribution and mixing. Detailed examination of flame dynamics indicates that different pulsation modes dominate at various frequencies, elucidating the observed FTF behavior. This research provides novel insights into the optimization of fuel injection configurations to enhance combustion stability in afterburners, advancing the development of more reliable and efficient aerospace propulsion systems. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

25 pages, 16018 KiB  
Article
Textures and Inclusions in Mengyin Diamonds: Insights on Their Formation Within the Southeastern North China Craton
by Yu-Meng Sun, Yi-Qi Wang, Liang Zhang, Li-Qiang Yang, Zhi-Yuan Chu and Hao-Shuai Wang
Minerals 2025, 15(8), 856; https://doi.org/10.3390/min15080856 - 14 Aug 2025
Abstract
Beyond its renowned gemological value, diamond serves as a vital economic mineral and a unique messenger from Earth’s deep interior, preserving invaluable geological information. Since the Mengyin region is the source of China’s greatest diamond deposits, research on the diamonds there not only [...] Read more.
Beyond its renowned gemological value, diamond serves as a vital economic mineral and a unique messenger from Earth’s deep interior, preserving invaluable geological information. Since the Mengyin region is the source of China’s greatest diamond deposits, research on the diamonds there not only adds to our understanding of their origins but also offers an essential glimpse into the development of the North China Craton’s mantle lithosphere. In this article, 50 diamond samples from Mengyin were investigated using gemological microscopy, Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, DiamondView™, and X-ray micro-computed tomography (CT) scanning technologies. The types of Mengyin diamonds are mainly Type IaAB, Type IaB, and Type IIa, and the impurity elements are N and H. Inclusions in diamonds serve as direct indicators of mantle-derived components, providing crucial constraints on the pressure–temperature (P–T) conditions during their crystallization. Mengyin diamonds have both eclogite-type and peridotite-type inclusions. It formed at depths ranging from 147 to 176 km, which corresponds to source pressures of approximately 4.45–5.35 GPa, as determined by the Raman shifts of olivine inclusions. The discovery of coesite provides key mineralogical evidence for subduction of an ancient oceanic plate in the source region. The surface morphology of diamonds varies when they are reabsorbed by melts from the mantle, reflecting distinctive features that record subsequent geological events. Distinctive surface features observed on Mengyin diamonds include fusion pits, tile-like etch patterns, and growth steps. Specifically, regular flat-bottomed negative trigons are mainly formed during diamond resorption in kimberlite melts with a low CO2 (XCO2 < ~0.5) and high H2O content. The samples exhibit varying fluorescence under DiamondView™, displaying blue, green, and a combination of blue and green colors. This diversity indicates that the diamonds have undergone a complex process of non-uniform growth. The nitrogen content of the melt composition also varies significantly throughout the different growth stages. The N3 center is responsible for the blue fluorescence, suggesting that it originated in a long-term, hot, high-nitrogen craton, and the varied ring band structure reveals localized, episodic environmental variations. Radiation and medium-temperature annealing produce H3 centers, which depict stagnation throughout the ascent of kimberlite magma and are responsible for the green fluorescence. Full article
Show Figures

Figure 1

18 pages, 3062 KiB  
Article
Origin-Dependent Molecular Ordering in Gelatin and Its Impact on Electrospun Nanofiber
by Seong Baek Yang, Yu Kyung Lee and Dong-Jun Kwon
Polymers 2025, 17(16), 2219; https://doi.org/10.3390/polym17162219 - 14 Aug 2025
Viewed by 9
Abstract
Electrospun nanofibrous mats from bovine, porcine, and fish gelatin were systematically fabricated at varying concentrations (15, 20, 25, and 30 wt.%) to investigate the influence of molecular characteristics on morphology, crystallinity, mechanical properties, thermal behavior, and solubility. Optimal ranges of viscosity (0.08–1.47 Pa·s), [...] Read more.
Electrospun nanofibrous mats from bovine, porcine, and fish gelatin were systematically fabricated at varying concentrations (15, 20, 25, and 30 wt.%) to investigate the influence of molecular characteristics on morphology, crystallinity, mechanical properties, thermal behavior, and solubility. Optimal ranges of viscosity (0.08–1.47 Pa·s), surface tension (35–50 mN·m−1), and electrical conductivity (0.18–1.42 mS·cm−1) were determined to successfully produce homogeneous fibers. Bovine and porcine gelatin, characterized by higher molecular weight and greater proline/hydroxyproline content, exhibited thicker (up to 725 ± 41 nm at 30 wt.%) and less uniform nanofibers due to higher viscosity and surface tension, restricting polymer jet stretching. Conversely, fish gelatin, with lower molecular weight and limited proline/hydroxyproline content, produced significantly thinner (as low as 205 ± 28 nm at 20 wt.%) and more uniform nanofibers. X-ray diffraction analysis revealed distinct crystallinity transitions associated with triple-helix and amorphous structures, dependent on gelatin type and concentration, including the emergence of peaks near 7.9° and 20.1° (2θ) for bovine gelatin. Mechanical tests demonstrated superior tensile strength for bovine gelatin (up to 2.9 MPa at 30 wt.%), balanced properties for porcine gelatin, and exceptional elasticity for fish gelatin. Thermal analysis indicated concentration-dependent shifts in viscoelastic behavior and damping performance. Solubility studies showed rapid dissolution of low-concentration fish gelatin fibers, moderate stability for intermediate-concentration porcine gelatin, and excellent structural retention for high-concentration bovine gelatin. These results demonstrate the potential for tailored gelatin nanofiber design to meet specific functional requirements in biomedical applications. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

47 pages, 1390 KiB  
Review
Biological, Psychosocial, and Microbial Determinants of Childhood-Onset Obsessive–Compulsive Disorder: A Narrative Review
by Alejandro Borrego-Ruiz and Juan J. Borrego
Children 2025, 12(8), 1063; https://doi.org/10.3390/children12081063 - 13 Aug 2025
Viewed by 305
Abstract
The etiology of obsessive–compulsive disorder (OCD) remains incompletely understood, but it is widely recognized as the result of a complex interplay among multiple contributing mechanisms, often emerging during childhood. This narrative review synthesizes current evidence on the etiology of childhood-onset OCD, with particular [...] Read more.
The etiology of obsessive–compulsive disorder (OCD) remains incompletely understood, but it is widely recognized as the result of a complex interplay among multiple contributing mechanisms, often emerging during childhood. This narrative review synthesizes current evidence on the etiology of childhood-onset OCD, with particular focus on whether GM alterations are involved in the pathophysiological mechanisms underlying the disorder. Specifically, the review first examines both biological and psychosocial determinants of OCD, and then explores the role of the gut microbiome (GM), including the potential of psychobiotics as a novel therapeutic approach. OCD has a strong hereditary component, involving both common polygenic variants and rare mutations. Epigenetic mechanisms such as DNA methylation and microRNA play a role in mediating gene–environment interactions and influencing OCD risk. Dysfunction and hyperactivity within cortico-striato-thalamo-cortical circuits underlie one of the neurobiological bases of OCD. Infections and autoimmune reactions can trigger or exacerbate OCD, particularly in pediatric populations. A range of psychosocial factors have been implicated in the onset of OCD, often in interaction with underlying neurobiological vulnerabilities. Current evidence indicates that GM alterations may also contribute to OCD pathophysiology through immune-mediated neuroinflammation, disrupted gut–brain signaling, and neurotransmitter imbalance. Individuals with OCD present reduced microbial diversity and lower abundance of butyrate-producing taxa, as well as altered IgA levels and increased infection susceptibility. These shifts may affect dopaminergic, glutamatergic, and serotonergic pathways, particularly via tryptophan metabolism and compromised gut integrity. Thus, the GM plays a pivotal role in OCD, constituting a promising approach for understanding its etiology and highlighting the significant clinical potential of microbial-based treatments such as psychobiotics. Nevertheless, despite progress, gaps remain in understanding childhood-onset OCD determinants, including limited longitudinal studies, incomplete characterization of the GM, scarce psychobiotic trials, and a need for integrated multidisciplinary approaches. Moreover, epidemiological evidence is compromised by reliance on lay diagnoses, questionable assessment validity, and insufficient distinction from related disorders. Full article
(This article belongs to the Section Pediatric Mental Health)
Show Figures

Figure 1

14 pages, 3356 KiB  
Article
Effects of Incorporating Small Amounts of Fe3O4 Nanoparticles into Epoxidized Natural Rubber: Chemical Interactions, Morphology and Thermal Characteristics
by Omar S. Dahham and Khalid Al-Zamili
J. Compos. Sci. 2025, 9(8), 434; https://doi.org/10.3390/jcs9080434 - 12 Aug 2025
Viewed by 215
Abstract
Nanocomposites were synthesized from epoxidized natural rubber (ENR-50) and magnetite (Fe3O4) at 1, 5, and 9 wt.%, respectively. Various analyses were conducted to gain comprehensive insight into the properties of the nanocomposites. It was found that the ring epoxide [...] Read more.
Nanocomposites were synthesized from epoxidized natural rubber (ENR-50) and magnetite (Fe3O4) at 1, 5, and 9 wt.%, respectively. Various analyses were conducted to gain comprehensive insight into the properties of the nanocomposites. It was found that the ring epoxide units can be opened and bonded with the Fe moieties of the magnetite to form an Fe-O-C structure, as shown in FTIR spectra at 690 and 700 cm−1. Peaks in UV-vis spectra at the wavelength of 297 nm shifted to 299, 303, and 309 nm for the nanocomposite samples with 1, 5, and 9 wt.% Fe3O4, respectively. XRD showed a decrease in the amorphous peak intensity, while new diffraction peaks emerged at 33° and 43°, indicative of the crystalline structure of the Fe3O4 in the nanocomposites. Based on TEM micrographs, it was found that the average size of Fe3O4 particles in the rubber matrix with 1 wt.% Fe3O4 was around 20 and 33 nm. SEM micrographs proved that nanoparticles with 1 wt.% Fe3O4 were regularly dispersed in the rubber matrix, and that magnetite nanoparticles were spherical in shape, as well as having strong interactions and bonding with the rubber matrix. A TGA thermogram showed three thermal steps of degradation across a wide temperature range, from 81 °C to 592 °C, and resistance to thermal degradation of the nanocomposite samples as compared to the rubber sample could be clearly observed. Furthermore, DCS showed higher Tg for nanocomposites at 24.4, 25.1, and 26.3 °C, respectively, compared to purified ENR-50 at −18.6 °C. Full article
Show Figures

Figure 1

14 pages, 233 KiB  
Article
Ten-Year Trends in Hepatocellular Carcinoma Mortality: Examining the Interaction Between Fibrosis Score and Patient Age
by Ayrton Bangolo, Hadrian Hoang-Vu Tran, Budoor Alqinai, Rishabh Goyal, Shehwar Ahmed, Aamna Qasim, Gabriela Rojas, Shubham Madan, Helena Barbosa, Zainab Mustafa, Risham Waseem, Gabriel Ingersoll, Hamza Khan, Alison Guzzetti, Jonathan Daniel, Samiya Parkar, Aakriti Tiwari, Sarah Lafleur, Rajasekhar Cingapagu, Saliha Y. Amasyali, Eric Pin-Shiuan Chen and Simcha Weissmanadd Show full author list remove Hide full author list
Diseases 2025, 13(8), 256; https://doi.org/10.3390/diseases13080256 - 12 Aug 2025
Viewed by 203
Abstract
Background: Hepatocellular carcinoma (HCC) remains a major cause of cancer-related mortality worldwide, with survival outcomes influenced by a range of demographic and pathological factors. While cirrhosis is a well-established risk factor, recent evidence shows that HCC can also develop in patients with only [...] Read more.
Background: Hepatocellular carcinoma (HCC) remains a major cause of cancer-related mortality worldwide, with survival outcomes influenced by a range of demographic and pathological factors. While cirrhosis is a well-established risk factor, recent evidence shows that HCC can also develop in patients with only mild to moderate liver fibrosis. However, there is limited understanding of how fibrosis severity interacts with other clinical variables, such as patient age, to affect mortality. This study aims to explore how fibrosis scores relate to both overall and cancer-specific mortality in US HCC patients, with an emphasis on how this relationship may shift across different age groups. Methods: We utilized data from the Surveillance, Epidemiology, and End Results (SEER) database to identify 15,796 adult patients diagnosed with HCC between 2010 and 2021. Baseline demographics, disease characteristics, and treatment variables were examined. Mortality outcomes were evaluated using Cox proportional hazard regression. Variables significant at p < 0.1 in univariate analysis were included in multivariate models to identify independent predictors of mortality (with hazard ratios [HRs] > 1 signifying increased risk). A secondary analysis assessed how age modifies the association between fibrosis score and mortality. Results: The study population was predominantly male (77.2%), with most patients aged 60–79 (59.6%) and presenting with localized disease (61%). A majority had advanced liver fibrosis or cirrhosis (81.7%) and lived in large urban areas (62.9%). Crude comparisons indicated that male sex, older age, single status, advanced tumor stage, lower income, and cirrhosis were linked to worse outcomes. In adjusted models, independent predictors of increased mortality included male sex, older age, unmarried status, and more advanced disease stage. Receipt of surgery or chemotherapy was associated with a lower risk of death. Notably, the influence of fibrosis on mortality was found to be greater in older patients than in their younger counterparts. Conclusions: This analysis identifies key prognostic indicators in HCC and suggests that the relationship between fibrosis and survival is not uniform across age groups. These findings support the need for age-specific clinical management strategies and highlight the potential benefit of early detection and appropriate interventions, even in non-cirrhotic patients. Full article
15 pages, 1900 KiB  
Article
Lessons from Four Years (2021–2024) of Klebsiella Pneumoniae Resistance Surveillance Epidemiological Trends in a Romanian Intensive Care Unit
by Mihai Sava, Bogdan Ioan Vintila, Alina Simona Bereanu, Anca Maria Fratila and Ioana Roxana Codru
Antibiotics 2025, 14(8), 825; https://doi.org/10.3390/antibiotics14080825 - 12 Aug 2025
Viewed by 302
Abstract
Background: Klebsiella pneumoniae represents a major cause of healthcare-associated infections in intensive care units, with resistance profiles ranging from multidrug-resistant to extensively drug-resistant and pandrug-resistant. Critically ill patients, who often require invasive devices and prolonged antibiotic therapy, are especially vulnerable to colonization [...] Read more.
Background: Klebsiella pneumoniae represents a major cause of healthcare-associated infections in intensive care units, with resistance profiles ranging from multidrug-resistant to extensively drug-resistant and pandrug-resistant. Critically ill patients, who often require invasive devices and prolonged antibiotic therapy, are especially vulnerable to colonization and infection by these strains. Surveillance data on resistance trends and specimen-specific patterns in Romanian intensive care units (ICUs) remain limited. Methods: We conducted a four-year surveillance study (2021–2024) in a tertiary Romanian ICU, analyzing K. pneumoniae isolates collected from diverse clinical specimens. Resistance phenotypes were classified as MDR, XDR, PDR, or susceptible based on standard definitions. Trends over time were assessed using Cramér’s V and correspondence analysis, while stratification by specimen type evaluated associations between anatomical site and resistance profiles. Results: A total of 254 K. pneumoniae isolates were analyzed. MDR strains predominated in 2021 and 2022 but sharply declined by 2024 (from 80% to 8.3%). In parallel, XDR and PDR phenotypes increased substantially, indicating a shift toward more complex resistance profiles. A significant temporal association was found (Cramér’s V = 0.43), with 2024 marked by a sharp decline in MDR isolates and a predominance of XDR and PDR phenotypes, reflecting an advanced resistance profile. Specimen-type analysis showed tracheal aspirates as the main reservoir for resistant strains, followed by urine and blood cultures, with a weaker but meaningful association (Cramér’s V = 0.24). Conclusions: These findings reveal a change in resistance patterns in ICU-acquired K. pneumoniae infections, with MDR strains being displaced by XDR and PDR phenotypes. These findings highlight the urgent need for time- and specimen-informed resistance monitoring and adaptive antimicrobial stewardship. Without targeted interventions, gains made in controlling MDR strains risk being rapidly eclipsed by the spread of highly resistant organisms. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

18 pages, 4583 KiB  
Article
Bright Blue Light Emission of ZnCl2-Doped CsPbCl1Br2 Perovskite Nanocrystals with High Photoluminescence Quantum Yield
by Bo Feng, Youbin Fang, Jin Wang, Xi Yuan, Jihui Lang, Jian Cao, Jie Hua and Xiaotian Yang
Micromachines 2025, 16(8), 920; https://doi.org/10.3390/mi16080920 - 9 Aug 2025
Viewed by 289
Abstract
The future development of perovskite light-emitting diodes (LEDs) is significantly limited by the poor stability and low brightness of the pure-blue emission in the wavelength range of 460–470 nm. In this study, the Cl/Br element ratio in CsPbClxBr3−x perovskite nanocrystals [...] Read more.
The future development of perovskite light-emitting diodes (LEDs) is significantly limited by the poor stability and low brightness of the pure-blue emission in the wavelength range of 460–470 nm. In this study, the Cl/Br element ratio in CsPbClxBr3−x perovskite nanocrystals (NCs) was modulated to precisely control their blue emission in the 428–512 nm spectral region. Then, the undoped CsPbCl1Br2 and the ZnCl2-doped CsPbCl1Br2 perovskite NCs were synthesized via the hot-injection method and investigated using variable-temperature photoluminescence (PL) spectroscopy. The PL emission peak of the ZnCl2-doped CsPbCl1Br2 perovskite NCs exhibits a blue shift from 475 nm to 460 nm with increasing ZnCl2 doping concentration. Additionally, the ZnCl2-doped CsPbCl1Br2 perovskite NCs show a high photoluminescence quantum yield (PLQY). The variable-temperature PL spectroscopy results show that the ZnCl2-doped CsPbCl1Br2 perovskite NCs have a larger exciton binding energy than the CsPbCl1Br2 perovskite NCs, which is indicative of a potentially higher PL intensity. To assess the stability of the perovskite NCs, high-temperature experiments and ultraviolet-irradiation experiments were conducted. The results indicate that zinc doping is beneficial for improving the stability of the perovskite NCs. The ZnCl2-doped CsPbCl1Br2 perovskite NCs were post-treated using didodecylammonium bromide, and after the post-treatment, the PLQY increased to 83%. This is a high PLQY value for perovskite NC-LEDs in the blue spectral range, and it satisfies the requirements of practical display applications. This work thus provides a simple preparation method for pure blue light-emitting materials. Full article
(This article belongs to the Special Issue Advanced Optoelectronic Materials/Devices and Their Applications)
Show Figures

Figure 1

21 pages, 65608 KiB  
Article
Saline Peatland Degradation in the Mezzano Lowland: 66 Years of Agricultural Impacts on Carbon and Soil Biogeochemistry
by Aaron Sobbe, Valentina Brombin, Enzo Rizzo and Gianluca Bianchini
Land 2025, 14(8), 1621; https://doi.org/10.3390/land14081621 - 9 Aug 2025
Viewed by 225
Abstract
The conversion of wetlands into croplands often leads to significant losses of peat soil salinity and soil organic matter (SOM), though quantifying these changes is challenging due to limited historical data. In this study, we compared current soil physicochemical properties with rare historical [...] Read more.
The conversion of wetlands into croplands often leads to significant losses of peat soil salinity and soil organic matter (SOM), though quantifying these changes is challenging due to limited historical data. In this study, we compared current soil physicochemical properties with rare historical data from the Mezzano Lowland (ML) in Northeastern Italy, a former wetland drained over 60 years ago. The transformation, which affected approximately 18,100 hectares, was achieved through the construction of a network of drainage canals and pumping stations capable of removing large volumes of water, enabling intensive agricultural use. Results showed a marked decrease in electrical conductivity (EC) and sulphate concentration, indicating extensive salt leaching from the upper peat soil layers. EC dropped from historical values up to 196 mS/cm (1967–1968) to a current maximum of 4.93 mS/cm, while sulphate levels declined by over 90%. SOM also showed significant depletion, especially in deeper layers (50–100 cm), with losses ranging from 50 to 60 wt%, due to increased aeration and microbial activity post-drainage. These climatic and environmental changes, including a marked reduction in soil salinity and sulphate concentrations due to prolonged leaching, have likely shifted the Mezzano Lowland from a carbon sink to a net source of CO2 and CH4 by promoting microbial processes that enhance methane production under anaerobic conditions. To detect residual peat layers, we used Ground-Penetrating Radar (GPR), which, combined with soil sampling, proved effective for tracking long-term peat soil changes. This approach can inform sustainable land management strategies to prevent further carbon loss and maintain peat soil stability. Full article
Show Figures

Figure 1

19 pages, 3104 KiB  
Article
Predicting Range Shifts in the Distribution of Arctic/Boreal Plant Species Under Climate Change Scenarios
by Yan Zhang, Shaomei Li, Yuanbo Su, Bingyu Yang and Xiaojun Kou
Diversity 2025, 17(8), 558; https://doi.org/10.3390/d17080558 - 7 Aug 2025
Viewed by 339
Abstract
Climate warming is anticipated to significantly alter the distribution and composition of plant species in the Arctic, thereby cascading through food webs and affecting both associated fauna and entire ecosystems. To elucidate the trend in plant distribution in response to climate change, we [...] Read more.
Climate warming is anticipated to significantly alter the distribution and composition of plant species in the Arctic, thereby cascading through food webs and affecting both associated fauna and entire ecosystems. To elucidate the trend in plant distribution in response to climate change, we employed the MaxEnt model to project the future ranges of 25 representative Arctic and Circumpolar plant species (including grasses and shrubs). Species distribution data, in conjunction with bioclimatic variables derived from climate projections of three selected General Circulation Models (GCMs), ESM2, IPSL, and MPIE, were utilized to fit the MaxEnt models. Subsequently, we predicted the potential distributions of these species under three Shared Socioeconomic Pathways (SSPs)—SSP126, SSP245, and SSP585—across a timeline spanning 2010, 2050, 2100, 2200, 2250, and 2300 AD. Range shift indices were applied to quantify changes in plant distribution and range sizes. Our results show that the ranges of nearly all species are projected to diminish progressively over time, with a more pronounced rate of reduction under higher emission scenarios. The species are generally expected to shift northward, with the distances of these shifts positively correlated with both the time intervals from the current state and the intensity of thermal forcing associated with the SSPs. Arctic species (A_Spps) are anticipated to face higher extinction risks compared to Boreal–Arctic species (B_Spps). Additional indices, such as range gain, loss, and overlap, consistently corroborate these patterns. Notably, the peak range shift speeds differ markedly between SSP245 and SSP585, with the latter extending beyond 2100 AD. In conclusion, under all SSPs, A_Spps are generally expected to experience more significant range shifts than B_Spps. In the SSP585 scenario all species are projected to face substantial range reductions, with Arctic species being more severely affected and consequently facing the highest extinction risks. These findings provide valuable insights for developing conservation recommendations for polar plant species and have significant ecological and socioeconomic implications. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

14 pages, 1971 KiB  
Article
High-Density Arrayed Spectrometer with Microlens Array Grating for Multi-Channel Parallel Spectral Analysis
by Fangyuan Zhao, Zhigang Feng and Shuonan Shan
Sensors 2025, 25(15), 4833; https://doi.org/10.3390/s25154833 - 6 Aug 2025
Viewed by 323
Abstract
To enable multi-channel parallel spectral analysis in array-based devices such as micro-light-emitting diodes (Micro-LEDs) and line-scan spectral confocal systems, the development of compact array spectrometers has become increasingly important. In this work, a novel spectrometer architecture based on a microlens array grating (MLAG) [...] Read more.
To enable multi-channel parallel spectral analysis in array-based devices such as micro-light-emitting diodes (Micro-LEDs) and line-scan spectral confocal systems, the development of compact array spectrometers has become increasingly important. In this work, a novel spectrometer architecture based on a microlens array grating (MLAG) is proposed, which addresses the major limitations of conventional spectrometers, including limited parallel detection capability, bulky structures, and insufficient spatial resolution. By integrating dispersion and focusing within a monolithic device, the system enables simultaneous acquisition across more than 2000 parallel channels within a 10 mm × 10 mm unit consisting of an f = 4 mm microlens and a 600 lines/mm blazed grating. Optimized microlens and aperture alignment allows for flexible control of the divergence angle of the incident light, and the system theoretically achieves nanometer-scale spectral resolution across a 380–780 nm wavelength range, with inter-channel measurement deviation below 1.25%. Experimental results demonstrate that this spectrometer system can theoretically support up to 2070 independently addressable subunits. At a wavelength of 638 nm, the coefficient of variation (CV) of spot spacing among array elements is as low as 1.11%, indicating high uniformity. The spectral repeatability precision is better than 1.0 nm, and after image enhancement, the standard deviation of the diffracted light shift is reduced to just 0.26 nm. The practical spectral resolution achieved is as fine as 3.0 nm. This platform supports wafer-level spectral screening of high-density Micro-LEDs, offering a practical hardware solution for high-precision industrial inline sorting, such as Micro-LED defect inspection. Full article
Show Figures

Figure 1

17 pages, 1708 KiB  
Article
Research on Financial Stock Market Prediction Based on the Hidden Quantum Markov Model
by Xingyao Song, Wenyu Chen and Junyi Lu
Mathematics 2025, 13(15), 2505; https://doi.org/10.3390/math13152505 - 4 Aug 2025
Viewed by 590
Abstract
Quantum finance, as a key application scenario of quantum computing, showcases multiple significant advantages of quantum machine learning over traditional machine learning methods. This paper first aims to overcome the limitations of the hidden quantum Markov model (HQMM) in handling continuous data and [...] Read more.
Quantum finance, as a key application scenario of quantum computing, showcases multiple significant advantages of quantum machine learning over traditional machine learning methods. This paper first aims to overcome the limitations of the hidden quantum Markov model (HQMM) in handling continuous data and proposes an innovative method to convert continuous data into discrete-time sequence data. Second, a hybrid quantum computing model is developed to forecast stock market trends. The model was used to predict 15 stock indices from the Shanghai and Shenzhen Stock Exchanges between June 2018 and June 2021. Experimental results demonstrate that the proposed quantum model outperforms classical algorithmic models in handling higher complexity, achieving improved efficiency, reduced computation time, and superior predictive performance. This validation of quantum advantage in financial forecasting enables the practical deployment of quantum-inspired prediction models by investors and institutions in trading environments. This quantum-enhanced model empowers investors to predict market regimes (bullish/bearish/range-bound) using real-time data, enabling dynamic portfolio adjustments, optimized risk controls, and data-driven allocation shifts. Full article
Show Figures

Figure 1

21 pages, 7111 KiB  
Article
Seasonal Variation in Energy Balance, Evapotranspiration and Net Ecosystem Production in a Desert Ecosystem of Dengkou, Inner Mongolia, China
by Muhammad Zain Ul Abidin, Huijie Xiao, Sanaullah Magsi, Fang Hongxin, Komal Muskan, Phuocthoi Hoang and Muhammad Azher Hassan
Water 2025, 17(15), 2307; https://doi.org/10.3390/w17152307 - 3 Aug 2025
Viewed by 375
Abstract
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes [...] Read more.
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes interact in one of the world’s most water-limited environments. This arid research area received an average of 109.35 mm per annum precipitation over the studied period, classifying the region as a typical arid ecosystem. Seasonal patterns were observed in daily air temperature, with extremes ranging from −20.6 °C to 29.6 °C. Temporal variations in sensible heat flux (H), latent heat flux (LE), and net radiation (Rn) peaked during summer season. The average ground heat flux (G) was mostly positive throughout the observation period, indicating heat transmission from atmosphere to soil, but showed negative values during the winter season. The energy balance ratio for the studied period was in the range of 0.61 to 0.80, indicating challenges in achieving energy closure and ecological shifts. ET exhibited two annual peaks influenced by vegetation growth and climate change, with annual ET exceeding annual precipitation, except in 2021. Net ecosystem production (NEP) from 2019 to 2020 revealed that the Dengkou desert were a net source of carbon, indicating the carbon loss from the ecosystem. In 2021, the Dengkou ecosystem shifted to become a net carbon sink, effectively sequestrating carbon. However, this was sharply reversed in 2022, resulting in a significant net release of carbon. The study findings highlight the complex interactions between energy balance components, ET, and NEP in desert ecosystems, providing insights into sustainable water management and carbon neutrality strategies in arid regions under climate change effect. Full article
(This article belongs to the Special Issue The Observation and Modeling of Surface Air Hydrological Factors)
Show Figures

Graphical abstract

Back to TopTop