Effects of Incorporating Small Amounts of Fe3O4 Nanoparticles into Epoxidized Natural Rubber: Chemical Interactions, Morphology and Thermal Characteristics
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Purification of ENR-50
2.3. Synthesis of ENR-50/Fe3O4 Nanocomposite Materials
2.4. Characterization of ENR-50/Fe3O4 Nanocomposite Materials
2.4.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.2. X-Ray Diffraction (X-RD)
2.4.3. Thermal Gravimetric Analysis (TGA)
2.4.4. Differential Scanning Calorimetry (DSC)
2.4.5. Scanning Electron Microscopy (SEM)
2.4.6. Transmission Electron Microscopy (TEM)
2.4.7. Ultraviolet–Visible (UV–Vis) Microscopy
3. Results and Discussion
3.1. Structure
3.2. Morphology
3.3. Thermal Characteristics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hassan, T.; Salam, A.; Khan, A.; Khan, S.U.; Khanzada, H.; Wasim, M.; Khan, M.Q.; Kim, I.S. Functional nanocomposites and their potential applications: A review. J. Polym. Res. 2021, 28, 36. [Google Scholar] [CrossRef]
- Darwish, M.S.; Mostafa, M.H.; Al-Harbi, L.M. Polymeric nanocomposites for environmental and industrial applications. Int. J. Mol. Sci. 2022, 23, 1023. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Tran, H.V.; Xu, S.; Lee, T.R. Fe3O4 nanoparticles: Structures, synthesis, magnetic properties, surface functionalization, and emerging applications. Appl. Sci. 2021, 11, 11301. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Chen, G.; Liu, G.; Huang, X.; Xu, X.; Li, L.; Zhang, Y.; Wang, J.; Jin, M.; Xu, D.; et al. A review on recent advances in the applications of composite Fe3O4 magnetic nanoparticles in the food industry. Crit. Rev. Food Sci. Nutr. 2024, 64, 1110–1138. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Zhang, X.; Kang, Y.; Sun, P.; Liu, H.; Xiao, Z.; Zhao, D. Magnetic microcapsules based on Fe3O4 nanoparticles: Preparation, properties, and applications. Mater. Today Commun. 2024, 39, 108660. [Google Scholar] [CrossRef]
- Nordin, A.H.; Ahmad, Z.; Husna, S.M.N.; Ilyas, R.A.; Azemi, A.K.; Ismail, N.; Nordin, M.L.; Ngadi, N.; Siti, N.H.; Nabgan, W.; et al. The state of the art of natural polymer functionalized Fe3O4 magnetic nanoparticle composites for drug delivery applications: A review. Gels 2023, 9, 121. [Google Scholar] [CrossRef]
- Mallakpour, S.; Tukhani, M.; Hussain, C.M. Sustainable plant and microbes-mediated preparation of Fe3O4 nanoparticles and industrial application of its chitosan, starch, cellulose, and dextrin-based nanocomposites as catalysts. Int. J. Biol. Macromol. 2021, 179, 429–447. [Google Scholar] [CrossRef] [PubMed]
- Faustini, M.; Nicole, L.; Ruiz-Hitzky, E.; Sanchez, C. History of organic–inorganic hybrid materials: Prehistory, art, science, and advanced applications. Adv. Funct. Mater. 2018, 28, 1704158. [Google Scholar] [CrossRef]
- Tian, J.; Feng, Y.K.; Xu, Y.S. Synthesis of magnetite nanoparticles with PDLLA corona. J. Polym. Res. 2006, 13, 343–347. [Google Scholar] [CrossRef]
- Durmus, Z.; Kavas, H.; Toprak, M.S.; Baykal, A.; Altınçekiç, T.G.; Aslan, A.; Bozkurt, A.; Coşgun, S. L-lysine coated iron oxide nanoparticles: Synthesis, structural and conductivity characterization. J. Alloys Compd. 2009, 484, 371–376. [Google Scholar] [CrossRef]
- Koneracka, M.; Múčková, M.; Závišová, V.; Tomašovičová, N.; Kopčanský, P.; Timko, M.; Juríková, A.; Csach, K.; Kavečanský, V.; Lancz, G. Encapsulation of anticancer drug and magnetic particles in biodegradable polymernanospheres. J. Phys. Condens. Matter 2008, 20, 204151. [Google Scholar] [CrossRef]
- Arsalani, N.; Fattahi, H.; Nazarpoor, M. Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Express Polym. Lett. 2010, 4, 329–338. [Google Scholar] [CrossRef]
- Unal, B.; Toprak, M.S.; Durmus, Z.E.H.R.A.; Sözeri, H.; Baykal, A. Synthesis, structural and conductivity characterization of alginic acid–Fe3O4 nanocomposite. J. Nanoparticle Res. 2010, 12, 3039–3048. [Google Scholar] [CrossRef]
- Reddy, M.J.; Chu, P.P.; Kumar, J.S.; Rao, U.S. Inhibited crystallization and its effect on conductivity in a nano-sized Fe oxide composite PEO solid electrolyte. J. Power Sources 2006, 161, 535–540. [Google Scholar] [CrossRef]
- Montoya, P.; Jaramillo, F.; Calderón, J.; De Torresi, S.C.; Torresi, R.M. Evidence of redox interactions between polypyrrole and Fe3O4 in polypyrrole–Fe3O4 composite films. Electrochim. Acta 2010, 55, 6116–6122. [Google Scholar] [CrossRef]
- Ashjari, M.; Mahdavian, A.R.; Ebrahimi, N.G.; Mosleh, Y. Efficient dispersion of magnetite nanoparticles in the polyurethane matrix through solution mixing and investigation of the nanocomposite properties. J. Inorg. Organomet. Polym. Mater. 2010, 20, 213–219. [Google Scholar] [CrossRef]
- Ding, X.; Han, D.; Wang, Z.; Xu, X.; Niu, L.; Zhang, Q. Micelle-assisted synthesis of polyaniline/magnetite nanorods by in situ self-assembly process. J. Colloid Interface Sci. 2008, 320, 341–345. [Google Scholar] [CrossRef]
- Ahmad, S.H.; Abdullah, M.H.; Hui, D.; Yusoff, A.N.; Puryanti, D. Magnetic and microwave absorbing properties of magnetite–thermoplastic natural rubber nanocomposites. J. Magn. Magn. Mater. 2010, 322, 3401–3409. [Google Scholar] [CrossRef]
- Mahmood, W.A.K.; Azarian, M.H. Thermal, surface, nanomechanical and electrical properties of epoxidized natural rubber (ENR-50)/polyaniline composite films. Curr. Appl. Phys. 2015, 15, 599–607. [Google Scholar] [CrossRef]
- Hamzah, R.; Bakar, M.A.; Dahham, O.S.; Zulkepli, N.N.; Dahham, S.S. A structural study of epoxidized natural rubber (ENR-50) ring opening under mild acidic condition. J. Appl. Polym. Sci. 2016, 133, 44123. [Google Scholar] [CrossRef]
- Dahham, O.S.; Hamzah, R.; Bakar, M.A.; Zulkepli, N.N.; Dahham, S.S.; Ting, S.S. NMR study of ring opening reaction of epoxidized natural rubber in presence of potassium hydroxide/isopropanol solution. Polym. Test. 2017, 59, 55–66. [Google Scholar] [CrossRef]
- Azman, W.W.M.N.; Jaafar, J.; Salleh, W.N.W.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Rasdi, F.R.M. Highly selective SPEEK/ENR blended polymer electrolyte membranes for direct methanol fuel cell. Mater. Today Energy 2020, 17, 100427. [Google Scholar] [CrossRef]
- Mahmood, W.A.K.; Khan, M.M.R.; Azarian, M.H. Sol-gel synthesis and morphology, thermal and optical properties of epoxidized natural rubber/zirconia hybrid films. J. Non-Cryst. Solids 2013, 378, 152–157. [Google Scholar] [CrossRef]
- Sengloyluan, K. Silica-Reinforced Natural Rubber: Use of Natural Rubber Grafted with Chemical Functionalities as Compatibilizer. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2015. [Google Scholar]
- Wei, K.K.; Leng, T.P.; Keat, Y.C.; Osman, H.; Ying, L.B. Enhancing compatibility in epoxy/vulcanized natural rubber (VNR)/Graphene nano-platelets (GNP) system using epoxidized natural rubber (ENR-50). Compos. Part B Eng. 2019, 174, 107058. [Google Scholar] [CrossRef]
- Sharifuddin, S.M.; Mat Nor, M.S.; Pabli, F.A.M.; Luangchuang, P.; Chueangchayaphan, W.; Sulaiman, M.A. Thermal and dynamic mechanical behaviours of CCTO/ENR-25 composite. In Materials Science Forum; Trans Tech Publications Ltd.: Baech, Switzerland, 2020; Volume 1010, pp. 274–279. [Google Scholar]
- Barrera, G.; Sciancalepore, C.; Messori, M.; Allia, P.; Tiberto, P.; Bondioli, F. Magnetite-epoxy nanocomposites obtained by the reactive suspension method: Microstructural, thermo-mechanical and magnetic properties. Eur. Polym. J. 2017, 94, 354–365. [Google Scholar] [CrossRef]
- Dahham, O.S.; Zulkepli, N.N. Robust interface on ENR-50/TiO2 nanohybrid material based sol-gel technique: Insights into synthesis, characterization and applications in optical. Arab. J. Chem. 2020, 13, 6568–6579. [Google Scholar] [CrossRef]
- Dahham, O.S.; Hamzah, R.; Noriman, N.Z.; Alakrach, A.M.; Idrus, S.S.; Shayfull, Z.; Adam, T. The influences of zirconium dioxide on ENR-25/ZrO2 composites: FTIR and TGA Analysis. J. Phys. Conf. Ser. 2018, 1019, 012055. [Google Scholar] [CrossRef]
- Alzamili, K.; Dahham, O.S. Synthesis and characterization of nano hybrid materials from epoxidized natural rubber/zirconium dioxide (ENR-50/ZrO2). AIP Conf. Proc. 2025, 3169, 050008. [Google Scholar]
- Takai, Z.I.; Mustafa, M.K.; Asman, S.; Sekak, K.A. Preparation and characterization of magnetite (Fe3O4) nanoparticles by sol-gel method. Int. J. Nanoelectron. Mater 2019, 12, 37–46. [Google Scholar]
- Bakar, M.A.; Tan, W.L.; Bakar, N.A. A simple synthesis of size-reduce magnetite nano-crystals via aqueous to toluene phase-transfer method. J. Magn. Magn. Mater. 2007, 314, 1–6. [Google Scholar] [CrossRef]
- Wen, X.; Yang, J.; He, B.; Gu, Z. Preparation of monodisperse magnetite nanoparticles under mild conditions. Curr. Appl. Phys. 2008, 8, 535–541. [Google Scholar] [CrossRef]
- Motaung, T.E.; Luyt, A.S.; Thomas, S. Morphology and properties of NR/EPDM rubber blends filled with small amounts of titania nanoparticles. Polym. Compos. 2011, 32, 1289–1296. [Google Scholar] [CrossRef]
- Bautin, V.A.; Rytov, R.A.; Nalench, Y.A.; Chmelyuk, N.S.; Antoshina, I.A.; Usov, N.A. Specific absorption rate in quasispherical and elongated aggregates of magnetite nanoparticles: Experimental characterization and numerical simulation. Ceram. Int. 2023, 49, 16379–16384. [Google Scholar] [CrossRef]
- Bijarimi, M.; Ahmad, S.; Rasid, R. Mechanical, thermal and morphological properties of poly (lactic acid)/epoxidized natural rubber blends. J. Elastomers Plast. 2014, 46, 338–354. [Google Scholar] [CrossRef]
- Kassaee, M.Z.; Motamedi, E.; Majdi, M. Magnetic Fe3O4-graphene oxide/polystyrene: Fabrication and characterization of a promising nanocomposite. Chem. Eng. J. 2011, 172, 540–549. [Google Scholar] [CrossRef]
- Dallas, P.; Georgakilas, V.; Niarchos, D.; Komninou, P.; Kehagias, T.; Petridis, D. Synthesis, characterization and thermal properties of polymer/magnetite nanocomposites. Nanotechnology 2006, 17, 2046. [Google Scholar] [CrossRef]
Characteristic | Value/Unit |
---|---|
M.Wt. | 600,000 g/mol |
MV | 75 |
Tg | −21 °C |
ρ | 0.94 g/cm3 |
Epoxide | 50 mol% |
Specimens | (n – π *) Transition (nm) |
---|---|
Purified ENR-50 | 297 |
ENR-50/Fe3O4 (1 wt.% of Fe3O4) | 299 |
ENR-50/Fe3O4 (5 wt.% of Fe3O4) | 303 |
ENR-50/Fe3O4 (9 wt.% of Fe3O4) | 309 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahham, O.S.; Al-Zamili, K. Effects of Incorporating Small Amounts of Fe3O4 Nanoparticles into Epoxidized Natural Rubber: Chemical Interactions, Morphology and Thermal Characteristics. J. Compos. Sci. 2025, 9, 434. https://doi.org/10.3390/jcs9080434
Dahham OS, Al-Zamili K. Effects of Incorporating Small Amounts of Fe3O4 Nanoparticles into Epoxidized Natural Rubber: Chemical Interactions, Morphology and Thermal Characteristics. Journal of Composites Science. 2025; 9(8):434. https://doi.org/10.3390/jcs9080434
Chicago/Turabian StyleDahham, Omar S., and Khalid Al-Zamili. 2025. "Effects of Incorporating Small Amounts of Fe3O4 Nanoparticles into Epoxidized Natural Rubber: Chemical Interactions, Morphology and Thermal Characteristics" Journal of Composites Science 9, no. 8: 434. https://doi.org/10.3390/jcs9080434
APA StyleDahham, O. S., & Al-Zamili, K. (2025). Effects of Incorporating Small Amounts of Fe3O4 Nanoparticles into Epoxidized Natural Rubber: Chemical Interactions, Morphology and Thermal Characteristics. Journal of Composites Science, 9(8), 434. https://doi.org/10.3390/jcs9080434