High-Density Arrayed Spectrometer with Microlens Array Grating for Multi-Channel Parallel Spectral Analysis
Abstract
1. Introduction
2. Structure and Operating Principle of Multi-Channel Spectrometers
2.1. Structural Composition of Multi-Channel Spectrometers
2.2. Operating Principle of Microlens Array Grating Spectrometers
3. Experimental Validation of the Array-Based Spectrometer
3.1. Construction and Calibration of the Array Light Source System
3.2. Subunit Uniformity Test
3.3. Spectrometer Channel Performance Testing
3.3.1. Single-Unit Testing in the Array-Based Spectrometer
3.3.2. Offset Correction
3.3.3. Spot Image Enhancement Processing
- 1.
- Contrast enhancement for each spot and its local background using linear mapping:
- 2.
- Nonlinear filtering of brightness using:
- 3.
- Thresholding to remove low-brightness pixels. The filtered result is shown in Figure 8d.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurfess, T.R. Precision manufacturing. In The Mechanical Systems Design Handbook; CRC Press: Boca Raton, FL, USA, 2017; pp. 151–179. [Google Scholar]
- Fathy, A.; Gnambodoe-Capochichi, M.; Sabry, Y.M.; Anwar, M.; Ghoname, A.O.; Saeed, A.; Leprince-Wang, Y.; Khalil, D.; Bourouina, T. Potential of a miniature spectral analyzer for district-scale monitoring of multiple gaseous air pollutants. Sensors 2023, 23, 6343. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Li, Y.; Zhang, Y.; Jiang, X.; Chen, Y.; Qu, G.; Zhang, X.; Xiao, S.; Han, J.; Yu, S.; et al. Compact angle-resolved metasurface spectrometer. Nat. Mater. 2024, 23, 71–78. [Google Scholar] [CrossRef]
- Rahman, M.M. Recommendations on the measurement techniques of atmospheric pollutants from in situ and satellite observations: A review. Arab. J. Geosci. 2023, 16, 326. [Google Scholar] [CrossRef]
- Chen, C.; Gu, H.; Liu, S. Ultra-simplified diffraction-based computational spectrometer. Light Sci. Appl. 2024, 13, 9. [Google Scholar] [CrossRef]
- Sato, R.; Li, X.; Fischer, A.; Chen, L.C.; Chen, C.; Shimomura, R.; Gao, W. Signal processing and artificial intelligence for dual-detection confocal probes. Int. J. Precis. Eng. Manuf. 2024, 25, 199–223. [Google Scholar] [CrossRef]
- Bai, J.; Li, J.; Wang, X.; Li, X. Research progress of high precision chromatic confocal displacement measurement technology. Laser Optoelectron. Prog. 2023, 60, 0312014. [Google Scholar] [CrossRef]
- Sheppard, C.J. The development of microscopy for super-resolution: Confocal microscopy, and image scanning microscopy. Appl. Sci. 2021, 11, 8981. [Google Scholar] [CrossRef]
- Xu, B.; Jia, Z.; Li, X.; Chen, Y.L.; Shimizu, Y.; Ito, S.; Gao, W. Surface form metrology of micro-optics. In Proceedings of the International Conference on Optics in Precision Engineering and Nanotechnology (icOPEN2013), Singapore, 9–11 April 2013; SPIE: Bellingham, WA, USA, 2013; Volume 8769, p. 876902. [Google Scholar] [CrossRef]
- Sato, R.; Shimizu, Y.; Shimizu, H.; Matsukuma, H.; Gao, W. Confocal probe based on the second harmonic generation for measurement of linear and angular displacements. Opt. Express 2023, 31, 11982–11993. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Li, X.; Wang, X.; Wang, J.; Ni, K.; Zhou, Q. Self-reference dispersion correction for chromatic confocal displacement measurement. Opt. Lasers Eng. 2021, 140, 106540. [Google Scholar] [CrossRef]
- Berkovic, G.; Zilberman, S.; Shafir, E.; Rubin, D. Chromatic confocal displacement sensing at oblique incidence angles. Appl. Opt. 2020, 59, 3183–3186. [Google Scholar] [CrossRef]
- STIL S.A.S. (Marposs Group). Chromatic Confocal Sensor. 2025. Available online: https://www.stil-sensors.com/ (accessed on 24 June 2025).
- Bai, J.; Li, X.; Wang, X.; Zhou, Q.; Ni, K. Chromatic confocal displacement sensor with optimized dispersion probe and modified centroid peak extraction algorithm. Sensors 2019, 19, 3592. [Google Scholar] [CrossRef] [PubMed]
- Kurtev, K.I.; Trujillo-Sevilla, J.M.; Rodríguez-Ramos, J.M. Long-Distance Measurements Using a Chromatic Confocal Sensor. Appl. Sci. 2024, 14, 9943. [Google Scholar] [CrossRef]
- Bai, J.; Li, X.; Zhou, Q.; Ni, K.; Wang, X. Improved chromatic confocal displacement-sensor based on a spatial-bandpass-filter and an X-shaped fiber-coupler. Opt. Express 2019, 27, 10961–10973. [Google Scholar] [CrossRef]
- Siebert, M.; Hagemeier, S.; Pahl, T.; Serbes, H.; Lehmann, P. Modeling of fiber-coupled confocal and interferometric confocal distance sensors. Meas. Sci. Technol. 2022, 33, 075104. [Google Scholar] [CrossRef]
- Bai, J.; Wang, X.; Li, X.; Zhou, Q.; Ni, K. Design and testing of a chromatic dispersion system for displacement application by using a spatial-bandpass-filter. In Proceedings of the Tenth International Symposium on Precision Engineering Measurements and Instrumentation, Kunming, China, 8–10 August 2018; SPIE: Bellingham, WA, USA, 2019; Volume 11053, pp. 905–911. [Google Scholar] [CrossRef]
- Choi, Y.M.; Yoo, H.; Kang, D. Large-area thickness measurement of transparent multi-layer films based on laser confocal reflection sensor. Measurement 2020, 153, 107390. [Google Scholar] [CrossRef]
- Bai, J.; Li, J.; Wang, X.; Zhou, Q.; Ni, K.; Li, X. A new method to measure spectral reflectance and film thickness using a modified chromatic confocal sensor. Opt. Lasers Eng. 2022, 154, 107019. [Google Scholar] [CrossRef]
- Karatay, A.; Ataç, E. Homodyne detection based confocal phase diffraction method for thickness characterization of ultra-thin dielectric films coated on optical fibers. Opt. Laser Technol. 2025, 191, 113299. [Google Scholar] [CrossRef]
- Li, J.; Hua, Z.; Bai, J.; Zhou, Q.; Wang, X.; Ni, K.; Li, X. Film thickness measurement by double-wavelength infrared transmittance method. In Proceedings of the Optical Metrology and Inspection for Industrial Applications VIII, Nantong, China, 10–12 October 2021; SPIE: Bellingham, WA, USA, 2021; Volume 11899, pp. 121–127. [Google Scholar] [CrossRef]
- Bai, J.; Chen, H.; Chen, J.; Yang, H.; Li, X.; Shi, Y.; Song, J. Normal incident optical reflectance spectroscopy for thin-film thickness measurement with genetic algorithm. Measurement 2025, 256, 118511. [Google Scholar] [CrossRef]
- Liu, T.; Hong, Y.; Wu, J.; Zhu, W.; Ju, B. A new method for measuring multilayer thickness using a chromatic confocal sensor. Nanomanuf. Metrol. 2024, 7, 22. [Google Scholar] [CrossRef]
- Bai, J.; Wang, Y.; Wang, X.; Zhou, Q.; Ni, K.; Li, X. Three-probe error separation with chromatic confocal sensors for roundness measurement. Nanomanuf. Metrol. 2021, 4, 247–255. [Google Scholar] [CrossRef]
- Psota, P.; Stašík, M.; Kredba, J.; Lédl, V.; Nečásek, J. Measurement of radius of curvature directly in the interferometer confocal position. Appl. Opt. 2021, 60, 4485–4490. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bai, J.; Huang, G.; Zhou, Q.; Wang, X.; Li, X. High precision roundness measurement with two chromatic confocal sensors. In Proceedings of the Optical Metrology and Inspection for Industrial Applications VIII, Nantong, China, 10–12 October 2021; SPIE: Bellingham, WA, USA, 2021; Volume 11899, pp. 171–176. [Google Scholar] [CrossRef]
- Filmetrics Inc. (KLA Corp.). F3-Series Reflectance Measurement System. 2025. Available online: https://www.filmetrics.com/products/ (accessed on 24 June 2025).
- Bai, J.; Li, J.; Xue, G.; Wang, X.; Zhou, Q.; Li, X. A modified chromatic confocal system for spectral reflectance measurement. In Proceedings of the Optical Design and Testing XI, Nantong, China, 10–19 October 2021; SPIE: Bellingham, WA, USA, 2021; Volume 11895, pp. 32–38. [Google Scholar] [CrossRef]
- Huang, G.; Bai, J.; Feng, F.; Zeng, L.; Feng, P.; Li, X. A hybrid strategy for profile measurement of micro gear teeth. Micromachines 2023, 14, 1729. [Google Scholar] [CrossRef]
- Ramirez-Hernandez, M.A.; Alonso-Murias, M.; Monzon-Hernandez, D. Polymer-Capped Fiber Fabry-Perot Interferometer for Large Range Displacement Sensing. J. Light. Technol. 2024, 42, 3430–3437. [Google Scholar] [CrossRef]
- Hoang, A.T.; Vu, T.T.; Pham, D.Q.; Vu, T.T.; Nguyen, T.D.; Tran, V.H. High precision displacement measuring interferometer based on the active modulation index control method. Measurement 2023, 214, 112819. [Google Scholar] [CrossRef]
- Kwak, H.; Kim, J. Semiconductor multilayer nanometrology with machine learning. Nanomanuf. Metrol. 2023, 6, 15. [Google Scholar] [CrossRef]
- Bao, J.; Bawendi, M.G. A colloidal quantum dot spectrometer. Nature 2015, 523, 67–70. [Google Scholar] [CrossRef]
- Wilkes, T.C.; McGonigle, A.J.; Willmott, J.R.; Pering, T.D.; Cook, J.M. Low-cost 3D printed 1 nm resolution smartphone sensor-based spectrometer: Instrument design and application in ultraviolet spectroscopy. Opt. Lett. 2017, 42, 4323–4326. [Google Scholar] [CrossRef]
- Xue, Q.; Yang, Y.; Ma, W.; Zhang, H.; Zhang, D.; Lan, X.; Gao, L.; Zhang, J.; Tang, J. Advances in Miniaturized Computational Spectrometers. Adv. Sci. 2024, 11, 2404448. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Liu, B.; Lu, Z.; Wang, Y.; Zheng, Z.; Song, J.; Zhong, X.; Wang, F. Miniaturized on-chip spectrometer enabled by electrochromic modulation. Light. Sci. Appl. 2024, 13, 278. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.G.; Das, S.; Shafi, A.M.; Wang, L.; Cui, X.; Nigmatulin, F.; Ahmed, F.; Liapis, A.C.; Cai, W.; Yang, Z.; et al. Broadband miniaturized spectrometers with a van der Waals tunnel diode. Nat. Commun. 2024, 15, 571. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, X.; Ni, K.; Tian, R.; Pang, J. Holographic fabrication of large-constant concave gratings for wide-range flat-field spectrometers with the addition of a concave lens. Opt. Express 2016, 24, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ni, K.; Zhou, Q.; Yan, P.; Pang, J.; Wang, X. Improved master-replica separation process for fabrication of a blazed concave grating by using a combination-type convex grating. Appl. Opt. 2017, 56, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Pang, J.; Li, X.; Ni, K.; Tian, R. Concave grating miniature spectrometer with an expanded spectral band by using two entrance slits. Chin. Opt. Lett. 2015, 13, 110501. [Google Scholar] [CrossRef]
- Li, X.; Ni, K.; Zhou, Q.; Wang, X.; Tian, R.; Pang, J. Fabrication of a concave grating with a large line spacing via a novel dual-beam interference lithography method. Opt. Express 2016, 24, 10759–10766. [Google Scholar] [CrossRef]
- Zhou, Q.; Pang, J.; Li, X.; Ni, K.; Tian, R. Improving the spectral resolution of flat-field concave grating miniature spectrometers by dividing a wide spectral band into two narrow ones. Appl. Opt. 2015, 54, 9450–9455. [Google Scholar] [CrossRef]
- Luo, L.; Shan, S.; Li, X. A review: Laser interference lithography for diffraction gratings and their applications in encoders and spectrometers. Sensors 2024, 24, 6617. [Google Scholar] [CrossRef]
- Li, Y.; Sun, X.; Zheng, X. High-Resolution Spectrometers in Exploring Planetary Atmospheres: Current Status and Advancements. In Proceedings of the International Symposium of Space Optical Instruments and Applications, Beijing, China, 15–17 November 2023; Springer: Singapore, 2023; pp. 366–381. [Google Scholar] [CrossRef]
- Suzuki, T.; Ottevaere, H.; Nie, Y. Miniaturized multi-channel confocal fluorescence detection using freeform optics and spectrometry. Opt. Laser Technol. 2025, 189, 113061. [Google Scholar] [CrossRef]
- Li, C.; Qi, H.; Han, X.; Zhao, X.; Zhang, Y.; Huang, J.; Peng, W.; Chen, K. Ultrahigh-speed phase demodulation of a Fabry–Perot sensor based on fiber array parallel spectral detection. Opt. Lett. 2024, 49, 714–717. [Google Scholar] [CrossRef] [PubMed]
- Danz, N.; Höfer, B.; Förster, E.; Flügel-Paul, T.; Harzendorf, T.; Dannberg, P.; Leitel, R.; Kleinle, S.; Brunner, R. Miniature integrated micro-spectrometer array for snap shot multispectral sensing. Opt. Express 2019, 27, 5719–5728. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, X.; Li, T.; Gu, G.; Li, H.; Shao, Y.; Jiang, X.; Li, B. Multi-channel hyperspectral imaging spectrometer design for ultraviolet detection in the atmosphere of Venus. Remote Sens. 2024, 16, 1099. [Google Scholar] [CrossRef]
- Walter, P.; Kamalov, A.; Gatton, A.; Driver, T.; Bhogadi, D.; Castagna, J.C.; Cheng, X.; Shi, H.; Obaid, R.; Cryan, J.; et al. Multi-resolution electron spectrometer array for future free-electron laser experiments. Synchrotron Radiat. 2021, 28, 1364–1376. [Google Scholar] [CrossRef]
- Xia, G.; Pan, Q.; Pan, Q.; Li, Y.; Yu, D.; Zhu, J. Dual-channel Raman spectrometer device based on multi-field-of-view spectrometer for on-line detection. Vib. Spectrosc. 2024, 134, 103732. [Google Scholar] [CrossRef]
- Nicolai, J.; Jean-Ruel, H. Multi-Channel and Dual-Range Spectrum Analyzer for Low-Cost Parallel TFBG Sensing. In Proceedings of the Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, Québec City, QC, Canada, 28 July–1 August 2024; Optica Publishing Group: Washington, DC, USA, 2024; p. BTh1A.4. [Google Scholar] [CrossRef]
- Dugmore, S.K. Understanding Chromotropic Materials with Combined insitu Neutron Diffraction and Raman Spectroscopy. Ph.D. Thesis, Keele University, Keele, UK, 2024. [Google Scholar]
- Ocean Optics. MX2500 Series. 2025. Available online: https://oceanoptics.cn (accessed on 24 June 2025).
- HORIBA. HORIBA OEM. 2025. Available online: https://www.horiba.com (accessed on 24 June 2025).
- Bogacz, S.A.; Holzer, B.J.; Osborne, J.A. An Energy Recovery Linac for the LHC. In The Future of the Large Hadron Collider: A Super-Accelerator with Multiple Possible Lives; World Scientific: Singapore, 2024; pp. 305–320. [Google Scholar] [CrossRef]
- Avrutsky, I.; Chaganti, K.; Salakhutdinov, I.; Auner, G. Concept of a miniature optical spectrometer using integrated optical and micro-optical components. Appl. Opt. 2006, 45, 7811–7817. [Google Scholar] [CrossRef]
- Shan, S.; Liu, P.; Li, J.; Bai, J.; Wang, X.; Li, X. Fabrication of a micro lens array-grating for a miniature spectrometer. In Proceedings of the Optical Design and Testing XII, Online, 5–11 December 2022; SPIE: Bellingham, WA, USA, 2022; Volume 12315, pp. 325–334. [Google Scholar] [CrossRef]
- Ni, K.; Hu, H.; Li, X.; Zhou, Q.; Wang, X.; Zhang, J. Fabrication of Grating-Fresnel lens by using PDMS based soft lithography. In Proceedings of the Holography, Diffractive Optics, and Applications VII, Beijing, China, 12–14 October 2016; SPIE: Bellingham, WA, USA, 2016; Volume 10022, pp. 184–189. [Google Scholar] [CrossRef]
- Traut, S.; Herzig, H.P. Holographically recorded gratings on microlenses for a miniaturized spectrometer array. Opt. Eng. 2000, 39, 290–298. [Google Scholar] [CrossRef]
- Hirano, T.; Shimatani, N.; Kintaka, K.; Nishio, K.; Awatsuji, Y.; Ura, S. Combined blazed grating and microlens array for color image sensing. Jpn. J. Appl. Phys. 2014, 53, 032501. [Google Scholar] [CrossRef]
- Shi, J.; Huang, Y.S.; Peng, L.N.; Ni, Z.J.; Zhang, D.W. Grating/microlens arrays fabricated by hot-melting, self-assembly and replication. Opt. Mater. 2020, 104, 109733. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, X.; Geng, M.; Hu, H.; Ni, K.; Zhong, L.; Yan, P.; Wang, X. Economic fabrication of a novel hybrid planar Grating/Fresnel lens for miniature spectrometers. Opt. Express 2018, 26, 6079–6089. [Google Scholar] [CrossRef] [PubMed]
- Geng, M.; Zhou, Q.; Li, X.; Lu, H.; Wang, W.; Liu, Y.; Ni, K.; Hui, L. Design and fabrication of a variable-line-space grating surface for a Fresnel-grating lens based miniature spectrometer. In Proceedings of the SPIE/COS Photonics Asia 2018, Beijing, China, 11–13 October 2018; Volume 10818, pp. 367–373. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Zhou, Q.; Ni, K.; Pang, J.; Tian, R. Design of a variable-line-spacing grating pattern for spectrometers based on a grating Fresnel device. Opt. Lett. 2016, 41, 1470–1473. [Google Scholar] [CrossRef]
- Shan, S.; Li, J.; Liu, P.; Li, Q.; Wang, X.; Li, X. A Microlens Array Grating for Miniature Multi-Channel Spectrometers. Sensors 2023, 23, 8381. [Google Scholar] [CrossRef]
- Fathy, A.; Sabry, Y.M.; Nazeer, S.; Bourouina, T.; Khalil, D.A. On-chip parallel Fourier transform spectrometer for broadband selective infrared spectral sensing. Microsyst. Nanoeng. 2020, 6, 10. [Google Scholar] [CrossRef]
- Hao, Q.; Song, Y.; Cao, J.; Liu, H.; Liu, Q.; Li, J.; Luo, Q.; Cheng, Y.; Cui, H.; Liu, L. The development of snapshot multispectral imaging technology based on artificial compound eyes. Electronics 2023, 12, 812. [Google Scholar] [CrossRef]
- Chen, L.R.; Moslemi, P.; Ma, M.; Adams, R. Simultaneous multi-channel microwave photonic signal processing. Photonics 2017, 4, 44. [Google Scholar] [CrossRef]
No. | X Interval | Y Interval |
---|---|---|
1 | 564 | 563 |
2 | 577 | 574 |
3 | 573 | 576 |
4 | 576 | 568 |
5 | 584 | 580 |
6 | 575 | 573 |
CV (%) | 1.25 | 1.11 |
Parameter Combination | Full Width at Half Maximum | SD of Pixel Center Distance | ||
---|---|---|---|---|
Mean | SD | 520 nm | 450 nm | |
1 | 10.565 | 1.626 | 0.527 | 0.575 |
2 | 7.957 | 1.518 | 0.548 | 0.594 |
3 | 5.913 | 1.608 | 0.552 | 0.585 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Feng, Z.; Shan, S. High-Density Arrayed Spectrometer with Microlens Array Grating for Multi-Channel Parallel Spectral Analysis. Sensors 2025, 25, 4833. https://doi.org/10.3390/s25154833
Zhao F, Feng Z, Shan S. High-Density Arrayed Spectrometer with Microlens Array Grating for Multi-Channel Parallel Spectral Analysis. Sensors. 2025; 25(15):4833. https://doi.org/10.3390/s25154833
Chicago/Turabian StyleZhao, Fangyuan, Zhigang Feng, and Shuonan Shan. 2025. "High-Density Arrayed Spectrometer with Microlens Array Grating for Multi-Channel Parallel Spectral Analysis" Sensors 25, no. 15: 4833. https://doi.org/10.3390/s25154833
APA StyleZhao, F., Feng, Z., & Shan, S. (2025). High-Density Arrayed Spectrometer with Microlens Array Grating for Multi-Channel Parallel Spectral Analysis. Sensors, 25(15), 4833. https://doi.org/10.3390/s25154833