Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,675)

Search Parameters:
Keywords = rainfall index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8562 KiB  
Article
Deep-Learning-Based Multi-Channel Satellite Precipitation Forecasting Enhanced by Cloud Phase Classification
by Yuhang Jiang, Wei Cheng, Shudong Wang, Shuangshuang Bian, Jingzhe Sun, Yayun Li and Juanjuan Liu
Remote Sens. 2025, 17(16), 2853; https://doi.org/10.3390/rs17162853 (registering DOI) - 16 Aug 2025
Abstract
Clouds are closely related to precipitation, as their type, microphysical characteristics, and dynamic properties determine the intensity, duration, and form of rainfall. While geostationary satellites offer continuous cloud-top observations, they cannot capture the full three-dimensional structure of clouds, limiting the accuracy of precipitation [...] Read more.
Clouds are closely related to precipitation, as their type, microphysical characteristics, and dynamic properties determine the intensity, duration, and form of rainfall. While geostationary satellites offer continuous cloud-top observations, they cannot capture the full three-dimensional structure of clouds, limiting the accuracy of precipitation forecasting based on geostationary satellite data. However, cloud–precipitation relationships contain valuable physical information that can be leveraged to improve forecasting performance. To further enhance the precision of satellite precipitation forecasting, this study proposes a multi-channel satellite precipitation forecasting method that integrates cloud classification products. The method combines precipitation-prior information from Himawari-8 satellite cloud classification products with multi-channel satellite observations to generate precipitation forecasts for the next four hours. This approach further exploits the potential of satellite observations in precipitation forecasting. Experimental results show that integrating cloud classification products improves the Critical Success Index by 8.0%, improves the Correlation Coefficient by 5.8%, and reduces the Mean Squared Error by 3.0%, but increases the MAE by 4.5%. It is proven that this method can effectively improve the accuracy of multi-channel satellite precipitation forecasting. Full article
Show Figures

Figure 1

35 pages, 10243 KiB  
Article
Effect of Environmental Variability on Lobster Stocks (Panulirus) in Waters off Brazil and Cuba
by Raul Cruz, Antônio G. Ferreira, João V. M. Santana, Marina T. Torresa, Juliana C. Gaeta, Jessica L. S. Da Silva, Carlos G. Barreto, Carlos A. Borda, Jade O. Abreu, Rafael D. Viana, Francisco R. de Lima and Israel H. A. Cintra
Diversity 2025, 17(8), 572; https://doi.org/10.3390/d17080572 - 15 Aug 2025
Abstract
We evaluated the impact of environmental variability on lobster Panulirus argus and Panulirus laevicauda resources in the waters off Brazil and southern Cuba. This study also covered aspects of larval recruitment associated with the availability of fishing resources in the Southern and Northern [...] Read more.
We evaluated the impact of environmental variability on lobster Panulirus argus and Panulirus laevicauda resources in the waters off Brazil and southern Cuba. This study also covered aspects of larval recruitment associated with the availability of fishing resources in the Southern and Northern Hemispheres. Satellite-generated environmental data were sampled from 18 stations, 6 of which were in the sea off southern Cuba, 6 of which were in the coastal region of Brazil, and 6 of which were offshore near Brazil, covering important lobster fishing grounds and phyllosoma-rich areas of ocean surface circulation along the offshore boundary. The Southern Oscillation Index (SOI) was used to quantify the global ocean–atmosphere variability. Other environmental parameters included in the analysis were the monthly coastal sea levels, surface temperature (SST), salinity, wind/current speed, chlorophyll-a (Chl-a) concentrations, rainfall (RF), and Amazon River discharge (ARD). Variations in the level of puerulus settlement, juveniles, and population harvest in the coastal region of Brazil and Cuba were used to better understand the impact of environmental variability on organisms in their larval stages and their subsequent recruitment to fisheries. The surface temperature, chlorophyll-a concentration, and wind/current patterns were significantly associated with the variability in puerulus settlement. Larger-scale processes (as proxied by the SOI) affected RF, ARD, and sea levels, which reached a maximum during La Niña. As for Brazil, the full-year landings prediction model included Chl-a concentration, SST, RF, and ARD and their association with lobster landings (LLs). The landing predictions for Cuba were based on fluctuations in the Chl-a concentration and SST. Full article
(This article belongs to the Special Issue Ecology and Biogeography of Marine Benthos—2nd Edition)
Show Figures

Graphical abstract

25 pages, 9293 KiB  
Article
A Performance Evaluation and Statistical Analysis of IMERG Precipitation Products During Medicane Daniel (September 2023) in the Thessaly Plain, Greece
by Evangelos Leivadiotis and Aris Psilovikos
Water 2025, 17(16), 2401; https://doi.org/10.3390/w17162401 - 14 Aug 2025
Abstract
The precise estimation of precipitation is key to understanding and mitigating the effects of extreme weather conditions, especially in areas susceptible to Mediterranean cyclones. This work assesses the performance of the integrated multi-satellite retrievals for GPM (IMERG) precipitation products during the extreme Mediterranean [...] Read more.
The precise estimation of precipitation is key to understanding and mitigating the effects of extreme weather conditions, especially in areas susceptible to Mediterranean cyclones. This work assesses the performance of the integrated multi-satellite retrievals for GPM (IMERG) precipitation products during the extreme Mediterranean cyclone “Medicane Daniel” that affected the Thessaly Plain in Central Greece in early September 2023. Three IMERG versions (final run (FR), early run (ER), and late run (LR)) were inter-compared with gauge-based interpolated rainfall estimates using inverse distance weighting (IDW) and ordinary kriging techniques. Pixel-wise and categorical verification metrics, such as the probability of detection (POD), false alarm ratio (FAR), critical success index (CSI), and Peirce skill score (PSS), were calculated for rainfall thresholds between 50 mm and 400 mm. It was found that the IMERG final run agreed most with the ground observations, with a correlation coefficient (R) of 0.87, RMSE of 138.8 mm, and CSI up to 0.995 at the 100 mm threshold when the IDW interpolation was used. Kriging produced slightly better spatial accuracy overall, as indicated by a lower RMSE (14.5 mm) and higher correlation (R = 0.99). The results indicate the benefit of combining satellite precipitation data with ground-based observations through spatial interpolation for the enhanced monitoring of extreme weather events over complex terrain. Kriging is suggested when greater spatial reliability is needed, while IMERG-FR is found to be a reliable satellite product for quick response analysis during heavy precipitation events. The study emphasizes the importance of blending satellite precipitation estimates and ground observations via spatial interpolation methods, i.e., kriging and IDW, allowing for a more localized and precise validation of intense weather events. Full article
(This article belongs to the Special Issue Sustainable and Efficient Water Use in the Face of Climate Change)
Show Figures

Figure 1

21 pages, 8772 KiB  
Article
Assessing Hydropower Impacts on Flood and Drought Hazards in the Lancang–Mekong River Using CNN-LSTM Machine Learning
by Muzi Zhang, Boying Chi, Hongbin Gu, Jian Zhou, Honggang Chen, Weiwei Wang, Yicheng Wang, Juanjuan Chen, Xueqian Yang and Xuan Zhang
Water 2025, 17(15), 2352; https://doi.org/10.3390/w17152352 - 7 Aug 2025
Viewed by 321
Abstract
The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available [...] Read more.
The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available hydrometeorological observation data and satellite remote sensing monitoring data from 2001 to 2020, a machine learning model of the Lancang–Mekong Basin was developed to reconstruct the basin’s hydrological processes, and identify the occurrence patterns and influencing mechanisms of water-related hazards. The results show that, against the background of climate change, the Lancang–Mekong Basin is affected by the increasing frequency and intensity of extreme precipitation events. In particular, Rx1day, Rx5day, R10mm, and R95p (extreme precipitation indicators determined by the World Meteorological Organization’s Expert Group on Climate Change Monitoring and Extreme Climate Events) in the northwestern part of the Mekong River Basin show upward trends, with the average maximum daily rainfall increasing by 1.8 mm/year and the total extreme precipitation increasing by 18 mm/year on average. The risks of flood and drought disasters will continue to rise. The flood peak period is mainly concentrated in August and September, with the annual maximum flood peak ranging from 5600 to 8500 m3/s. The Stung Treng Station exhibits longer drought duration, greater severity, and higher peak intensity than the Chiang Saen and Pakse Stations. At the Pakse Station, climate change and hydropower development have altered the non-drought proportion by −12.50% and +15.90%, respectively. For the Chiang Saen Station, the fragmentation degree of the drought index time series under the baseline, naturalized, and hydropower development scenarios is 0.901, 1.16, and 0.775, respectively. These results indicate that hydropower development has effectively reduced the frequency of rapid drought–flood transitions within the basin, thereby alleviating pressure on drought management efforts. The regulatory role of the cascade reservoirs in the Lancang River can mitigate risks posed by climate change, weaken adverse effects, reduce flood peak flows, alleviate hydrological droughts in the dry season, and decrease flash drought–flood transitions in the basin. The research findings can enable basin managers to proactively address climate change, develop science-based technical pathways for hydropower dispatch, and formulate adaptive disaster prevention and mitigation strategies. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

28 pages, 19171 KiB  
Article
Spatiotemporal Evolution of Precipitation Concentration in the Yangtze River Basin (1960–2019): Associations with Extreme Heavy Precipitation and Validation Using GPM IMERG
by Tao Jin, Yuliang Zhou, Ping Zhou, Ziling Zheng, Rongxing Zhou, Yanqi Wei, Yuliang Zhang and Juliang Jin
Remote Sens. 2025, 17(15), 2732; https://doi.org/10.3390/rs17152732 - 7 Aug 2025
Viewed by 309
Abstract
Precipitation concentration reflects the uneven temporal distribution of rainfall. It plays a critical role in water resource management and flood–drought risk under climate change. However, its long-term trends, associations with atmospheric teleconnections as potential drivers, and links to extreme heavy precipitation events remain [...] Read more.
Precipitation concentration reflects the uneven temporal distribution of rainfall. It plays a critical role in water resource management and flood–drought risk under climate change. However, its long-term trends, associations with atmospheric teleconnections as potential drivers, and links to extreme heavy precipitation events remain poorly understood in complex basins like the Yangtze River Basin. This study analyzes these aspects using ground station data from 1960 to 2019 and conducts a comparison using the Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (GPM IMERG) satellite product. We calculated three indices—Daily Precipitation Concentration Index (PCID), Monthly Precipitation Concentration Index (PCIM), and Seasonal Precipitation Concentration Index (SPCI)—to quantify rainfall unevenness, selected for their ability to capture multi-scale variability and associations with extremes. Key methods include Mann–Kendall trend tests for detecting changes, Hurst exponents for persistence, Pettitt detection for abrupt shifts, random forest modeling to assess atmospheric teleconnections, and hot spot analysis for spatial clustering. Results show a significant basin-wide decrease in PCID, driven by increased frequency of small-to-moderate rainfall events, with strong spatial synchrony to extreme heavy precipitation indices. PCIM is most strongly associated with El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). GPM IMERG captures PCIM patterns well but underestimates PCID trends and magnitudes, highlighting limitations in daily-scale resolution. These findings provide a benchmark for satellite product improvement and support adaptive strategies for extreme precipitation risks in changing climates. Full article
(This article belongs to the Special Issue Remote Sensing in Hydrometeorology and Natural Hazards)
Show Figures

Figure 1

23 pages, 11564 KiB  
Article
Cloud-Based Assessment of Flash Flood Susceptibility, Peak Runoff, and Peak Discharge on a National Scale with Google Earth Engine (GEE)
by Ivica Milevski, Bojana Aleksova, Aleksandar Valjarević and Pece Gorsevski
Atmosphere 2025, 16(8), 945; https://doi.org/10.3390/atmos16080945 - 7 Aug 2025
Viewed by 748
Abstract
Flash floods, exacerbated by climate change and land use alterations, are among the most destructive natural hazards globally, leading to significant damage and loss of life. In this context, the Flash Flood Potential Index (FFPI), which is a terrain and land surface-based model, [...] Read more.
Flash floods, exacerbated by climate change and land use alterations, are among the most destructive natural hazards globally, leading to significant damage and loss of life. In this context, the Flash Flood Potential Index (FFPI), which is a terrain and land surface-based model, and Google Earth Engine (GEE) were used to assess flood-prone zones across North Macedonia’s watersheds. The presented GEE-based assessment was accomplished by a custom script that automates the FFPI calculation process by integrating key factors derived from publicly available sources. These factors, which define susceptibility to torrential floods, include slope (Copernicus GLO-30 DEM), land cover (Copernicus GLO-30 DEM), soil type (SoilGrids), vegetation (ESA World Cover), and erodibility (CHIRPS). The spatial distribution of average FFPI values across 1396 small catchments (10–100 km2) revealed that a total of 45.4% of the area exhibited high to very high susceptibility, with notable spatial variability. The CHIRPS rainfall data (2000–2024) that combines satellite imagery and in situ measurements was used to estimate peak 24 h runoff and discharge. To improve the accuracy of CHIRPS, the data were adjusted by 30–50% to align with meteorological station records, along with normalized FFPI values as runoff coefficients. Validation against 328 historical river flood and flash flood records confirmed that 73.2% of events aligned with moderate to very high flash flood susceptibility catchments, underscoring the model’s reliability. Thus, the presented cloud-based scenario highlights the potential of the GEE’s efficacy in scalability and robustness for flash flood modeling and regional risk management at national scale. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

22 pages, 1247 KiB  
Article
Evaluating and Predicting Urban Greenness for Sustainable Environmental Development
by Chun-Che Huang, Wen-Yau Liang, Tzu-Liang (Bill) Tseng and Chia-Ying Chan
Processes 2025, 13(8), 2465; https://doi.org/10.3390/pr13082465 - 4 Aug 2025
Viewed by 345
Abstract
With the rapid pace of urbanization, cities are increasingly facing severe challenges related to environmental pollution, ecological degradation, and climate change. Extreme climate events—such as heatwaves, droughts, heavy rainfall, and wildfires—have intensified public concern about sustainability, environmental protection, and low-carbon development. Ensuring environmental [...] Read more.
With the rapid pace of urbanization, cities are increasingly facing severe challenges related to environmental pollution, ecological degradation, and climate change. Extreme climate events—such as heatwaves, droughts, heavy rainfall, and wildfires—have intensified public concern about sustainability, environmental protection, and low-carbon development. Ensuring environmental preservation while maintaining residents’ quality of life has become a central focus of urban governance. In this context, evaluating green indicators and predicting urban greenness is both necessary and urgent. This study incorporates international frameworks such as the EU Green City Index, the European Green Capital Award, and the United Nations Sustainable Development Goals to assess urban sustainability. The Extreme Gradient Boosting (XGBoost) algorithm is employed to predict the green level of cities and to develop multiple optimized models. Comparative analysis with traditional models demonstrates that XGBoost achieves superior performance, with an accuracy of 0.84 and an F1-score of 0.81. Case study findings identify “Greenhouse Gas Emissions per Person” and “Per Capita Emissions from Transport” as the most critical indicators. These results provide practical guidance for policymakers, suggesting that targeted regulations based on these key factors can effectively support emission reduction and urban sustainability goals. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

23 pages, 28189 KiB  
Article
Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia
by Manel Mersni, Dhekra Souissi, Adnen Amiri, Abdelaziz Sebei, Mohamed Hédi Inoubli and Hans-Balder Havenith
Geosciences 2025, 15(8), 297; https://doi.org/10.3390/geosciences15080297 - 3 Aug 2025
Viewed by 885
Abstract
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. [...] Read more.
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. The used database covers 286 landslides, including ten landslide factor maps: rainfall, slope, aspect, topographic roughness index, lithology, land use and land cover, distance from streams, drainage density, lineament density, and distance from roads. The AHP and ANN approaches were applied to classify the factors by analyzing the correlation relationship between landslide distribution and the significance of associated factors. The Landslide Susceptibility Index result reveals five susceptible zones organized from very low to very high risk, where the zones with the highest risks are associated with the combination of extreme amounts of rainfall and steep slope. The performance of the models was confirmed utilizing the area under the Relative Operating Characteristic (ROC) curves. The computed ROC curve (AUC) values (0.720 for ANN and 0.651 for AHP) convey the advantage of the ANN method compared to the AHP method. The overlay of the landslide inventory data locations of historical landslides and susceptibility maps shows the concordance of the results, which is in favor of the established model reliability. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

23 pages, 10868 KiB  
Article
Quantitative Analysis and Nonlinear Response of Vegetation Dynamic to Driving Factors in Arid and Semi-Arid Regions of China
by Shihao Liu, Dazhi Yang, Xuyang Zhang and Fangtian Liu
Land 2025, 14(8), 1575; https://doi.org/10.3390/land14081575 - 1 Aug 2025
Viewed by 325
Abstract
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive [...] Read more.
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive to climate change, and climate change and large-scale ecological restoration have led to significant changes in the dynamic of dryland vegetation. However, few studies have explored the nonlinear relationships between these factors and vegetation dynamic. In this study, we integrated trend analysis (using the Mann–Kendall test and Theil–Sen estimation) and machine learning algorithms (XGBoost-SHAP model) based on long time-series remote sensing data from 2001 to 2020 to quantify the nonlinear response patterns and threshold effects of bioclimatic variables, topographic features, soil attributes, and anthropogenic factors on vegetation dynamic. The results revealed the following key findings: (1) The kNDVI in the study area showed an overall significant increasing trend (p < 0.01) during the observation period, of which 26.7% of the area showed a significant increase. (2) The water content index (Bio 23, 19.6%), the change in land use (15.2%), multi-year average precipitation (pre, 15.0%), population density (13.2%), and rainfall seasonality (Bio 15, 10.9%) were the key factors driving the dynamic change of vegetation, with the combined contribution of natural factors amounting to 64.3%. (3) Among the topographic factors, altitude had a more significant effect on vegetation dynamics, with higher altitude regions less likely to experience vegetation greening. Both natural and anthropogenic factors exhibited nonlinear responses and interactive effects, contributing to the observed dynamic trends. This study provides valuable insights into the driving mechanisms behind the condition of vegetation in arid and semi-arid regions of China and, by extension, in other arid regions globally. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

26 pages, 8762 KiB  
Article
Clustered Rainfall-Induced Landslides in Jiangwan Town, Guangdong, China During April 2024: Characteristics and Controlling Factors
by Ruizeng Wei, Yunfeng Shan, Lei Wang, Dawei Peng, Ge Qu, Jiasong Qin, Guoqing He, Luzhen Fan and Weile Li
Remote Sens. 2025, 17(15), 2635; https://doi.org/10.3390/rs17152635 - 29 Jul 2025
Viewed by 287
Abstract
On 20 April 2024, an extreme rainfall event occurred in Jiangwan Town Shaoguan City, Guangdong Province, China, where a historic 24 h precipitation of 206 mm was recorded. This triggered extensive landslides that destroyed residential buildings, severed roads, and drew significant societal attention. [...] Read more.
On 20 April 2024, an extreme rainfall event occurred in Jiangwan Town Shaoguan City, Guangdong Province, China, where a historic 24 h precipitation of 206 mm was recorded. This triggered extensive landslides that destroyed residential buildings, severed roads, and drew significant societal attention. Rapid acquisition of landslide inventories, distribution patterns, and key controlling factors is critical for post-disaster emergency response and reconstruction. Based on high-resolution Planet satellite imagery, landslide areas in Jiangwan Town were automatically extracted using the Normalized Difference Vegetation Index (NDVI) differential method, and a detailed landslide inventory was compiled. Combined with terrain, rainfall, and geological environmental factors, the spatial distribution and causes of landslides were analyzed. Results indicate that the extreme rainfall induced 1426 landslides with a total area of 4.56 km2, predominantly small-to-medium scale. Landslides exhibited pronounced clustering and linear distribution along river valleys in a NE–SW orientation. Spatial analysis revealed concentrations on slopes between 200–300 m elevation with gradients of 20–30°. Four machine learning models—Logistic Regression, Support Vector Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost)—were employed to assess landslide susceptibility mapping (LSM) accuracy. RF and XGBoost demonstrated superior performance, identifying high-susceptibility zones primarily on valley-side slopes in Jiangwan Town. Shapley Additive Explanations (SHAP) value analysis quantified key drivers, highlighting elevation, rainfall intensity, profile curvature, and topographic wetness index as dominant controlling factors. This study provides an effective methodology and data support for rapid rainfall-induced landslide identification and deep learning-based susceptibility assessment. Full article
(This article belongs to the Special Issue Study on Hydrological Hazards Based on Multi-Source Remote Sensing)
Show Figures

Figure 1

23 pages, 2129 KiB  
Article
GIS-Based Flood Susceptibility Mapping Using AHP in the Urban Amazon: A Case Study of Ananindeua, Brazil
by Lianne Pimenta, Lia Duarte, Ana Cláudia Teodoro, Norma Beltrão, Dênis Gomes and Renata Oliveira
Land 2025, 14(8), 1543; https://doi.org/10.3390/land14081543 - 27 Jul 2025
Viewed by 600
Abstract
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess [...] Read more.
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess flood-prone zones in Ananindeua, Pará, Brazil. Five geoenvironmental criteria—rainfall, land use and land cover (LULC), slope, soil type, and drainage density—were selected and weighted using AHP to generate a composite flood susceptibility index. The results identified rainfall and slope as the most influential criteria, with both contributing to over 184 km2 of high-susceptibility area. Spatial patterns showed that flood-prone zones are concentrated in flat urban areas with high drainage density and extensive impermeable surfaces. CHIRPS rainfall data were validated using Pearson’s correlation (r = 0.83) and the Nash–Sutcliffe efficiency (NS = 0.97), confirming the reliability of the precipitation input. The final susceptibility map, categorized into low, medium, and high classes, was validated using flood events derived from Sentinel-1 SAR data (2019–2025), of which 97.2% occurred in medium- or high-susceptibility zones. These findings demonstrate the model’s strong predictive performance and highlight the role of unplanned urban expansion, land cover changes, and inadequate drainage in increasing flood risk. Although specific to Ananindeua, the proposed methodology can be adapted to other urban areas in Brazil, provided local conditions and data availability are considered. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

29 pages, 8706 KiB  
Article
An Integrated Risk Assessment of Rockfalls Along Highway Networks in Mountainous Regions: The Case of Guizhou, China
by Jinchen Yang, Zhiwen Xu, Mei Gong, Suhua Zhou and Minghua Huang
Appl. Sci. 2025, 15(15), 8212; https://doi.org/10.3390/app15158212 - 23 Jul 2025
Viewed by 299
Abstract
Rockfalls, among the most common natural disasters, pose risks such as traffic congestion, casualties, and substantial property damage. Guizhou Province, with China’s fourth-longest highway network, features mountainous terrain prone to frequent rockfall incidents annually. Consequently, assessing highway rockfall risks in Guizhou Province is [...] Read more.
Rockfalls, among the most common natural disasters, pose risks such as traffic congestion, casualties, and substantial property damage. Guizhou Province, with China’s fourth-longest highway network, features mountainous terrain prone to frequent rockfall incidents annually. Consequently, assessing highway rockfall risks in Guizhou Province is crucial for safeguarding the lives and travel of residents. This study evaluates highway rockfall risk through three key components: susceptibility, hazard, and vulnerability. Susceptibility was assessed using information content and logistic regression methods, considering factors such as elevation, slope, normalized difference vegetation index (NDVI), aspect, distance from fault, relief amplitude, lithology, and rock weathering index (RWI). Hazard assessment utilized a fuzzy analytic hierarchy process (AHP), focusing on average annual rainfall and daily maximum rainfall. Socioeconomic factors, including GDP, population density, and land use type, were incorporated to gauge vulnerability. Integration of these assessments via a risk matrix yielded comprehensive highway rockfall risk profiles. Results indicate a predominantly high risk across Guizhou Province, with high-risk zones covering 41.19% of the area. Spatially, the western regions exhibit higher risk levels compared to eastern areas. Notably, the Bijie region features over 70% of its highway mileage categorized as high risk or above. Logistic regression identified distance from fault lines as the most negatively correlated factor affecting highway rockfall susceptibility, whereas elevation gradient demonstrated a minimal influence. This research provides valuable insights for decision-makers in formulating highway rockfall prevention and control strategies. Full article
Show Figures

Figure 1

15 pages, 13565 KiB  
Article
RGB Imaging and Irrigation Management Reveal Water Stress Thresholds in Three Urban Shrubs in Northern China
by Yuan Niu, Xiaotian Xu, Wenxu Huang, Jiaying Li, Shaoning Li, Na Zhao, Bin Li, Chengyang Xu and Shaowei Lu
Plants 2025, 14(15), 2253; https://doi.org/10.3390/plants14152253 - 22 Jul 2025
Viewed by 281
Abstract
The context of global climate change, water stress has a significant impact on the ecological function and landscape value of urban greening shrubs. In this study, three typical greening shrubs (Euonymus japonicus, Ligustrum × vicaryi, and Berberis thunbergii var. atropurpurea) in [...] Read more.
The context of global climate change, water stress has a significant impact on the ecological function and landscape value of urban greening shrubs. In this study, three typical greening shrubs (Euonymus japonicus, Ligustrum × vicaryi, and Berberis thunbergii var. atropurpurea) in North China were subjected to a two-year field-controlled experiment (2022–2023) with four water treatments: full irrigation, deficit irrigation, natural rainfall, and extreme drought. The key findings are as follows: (1) Extreme drought reduced the color indices substantially—the GCC of E. japonicus decreased by 40% (2023); the RCC of B. thunbergii var. atropurpurea declined by 35% (2022); and the color indices of L. × vicaryi remained stable (variation < 15%). (2) Early-season soil water content (SWC) strongly correlated with the color index of E. japonicus (r2 = 0.42, p < 0.05) but weakly with B. thunbergii (r2 = 0.28), suggesting species-specific drought-tolerance mechanisms like reduced leaf area. (3) Deficit irrigation (SWC ≈ 40%) maintained color indices between fully irrigated and drought-stressed levels. Notably, B. thunbergii retained high redness (RCC > 0.8) at an SWC ≈ 40%; E. japonicus required an SWC > 60% to preserve greenness (GCC). The research results provide a scientific basis for urban greening plant screening and water-saving irrigation strategies, and expand the application scenarios of color coordinates in plant physiological and ecological research. Full article
Show Figures

Graphical abstract

24 pages, 3066 KiB  
Article
Urban Flood Susceptibility Mapping Using GIS and Analytical Hierarchy Process: Case of City of Uvira, Democratic Republic of Congo
by Isaac Bishikwabo, Hwaba Mambo, John Kowa Kamanda, Chérifa Abdelbaki, Modester Alfred Nanyunga and Navneet Kumar
GeoHazards 2025, 6(3), 38; https://doi.org/10.3390/geohazards6030038 - 21 Jul 2025
Viewed by 496
Abstract
The city of Uvira, located in the eastern Democratic Republic of Congo (DRC), is increasingly experiencing flood events with devastating impacts on human life, infrastructure, and livelihoods. This study evaluates flood susceptibility in Uvira using Geographic Information Systems (GISs), and an Analytical Hierarchy [...] Read more.
The city of Uvira, located in the eastern Democratic Republic of Congo (DRC), is increasingly experiencing flood events with devastating impacts on human life, infrastructure, and livelihoods. This study evaluates flood susceptibility in Uvira using Geographic Information Systems (GISs), and an Analytical Hierarchy Process (AHP)-based Multi-Criteria Decision Making approach. It integrates eight factors contributing to flood occurrence: distance from water bodies, elevation, slope, rainfall intensity, drainage density, soil type, topographic wetness index, and land use/land cover. The results indicate that proximity to water bodies, drainage density and slope are the most influential factors driving flood susceptibility in Uvira. Approximately 87.3% of the city’s land area is classified as having high to very high flood susceptibility, with the most affected zones concentrated along major rivers and the shoreline of Lake Tanganyika. The reliability of the AHP-derived weights is validated by a consistency ratio of 0.008, which falls below the acceptable threshold of 0.1. This research provides valuable insights to support urban planning and inform flood management strategies. Full article
Show Figures

Figure 1

32 pages, 6735 KiB  
Article
Flood Hazard Assessment Through AHP, Fuzzy AHP, and Frequency Ratio Methods: A Comparative Analysis
by Nikoleta Taoukidou, Dimitrios Karpouzos and Pantazis Georgiou
Water 2025, 17(14), 2155; https://doi.org/10.3390/w17142155 - 19 Jul 2025
Viewed by 483
Abstract
Floods are the biggest hydrometeorological disaster, affecting millions annually. Thus, flood hazard assessment is crucial and plays a pivotal role in rational water management. This study was undertaken to evaluate flood hazards through the application of MCDM methods and a bivariate statistical model [...] Read more.
Floods are the biggest hydrometeorological disaster, affecting millions annually. Thus, flood hazard assessment is crucial and plays a pivotal role in rational water management. This study was undertaken to evaluate flood hazards through the application of MCDM methods and a bivariate statistical model integrated with GIS. The methodologies applied were AHP, fuzzy AHP, and the frequency ratio. Eight flood-related criteria were considered—elevation, flow accumulation, geology, slope, land use/land cover (LULC), distance from the drainage network, drainage density, and rainfall index—for the construction of a Flood Hazard Map for each methodology, with the aim to delineate the regions within the study area most prone to flooding. The results demonstrated that around 34% of the Chalkidiki regional unit presents a high and very high hazard to the occurrence of floods. The comparison of the maps generated using DSC demonstrated that all models are capable of delineating high and very high hazard areas with overlap values varying from 0.8 to 0.98. The validation results indicated that the models exhibit sufficient performance in flood hazard mapping with AUC-ROC scores of 66.6%, 65.7%, and 76.5% for the AHP, FAHP, and FR models, respectively. Full article
(This article belongs to the Special Issue Machine Learning Models for Flood Hazard Assessment)
Show Figures

Figure 1

Back to TopTop