Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (912)

Search Parameters:
Keywords = radiotherapy resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1748 KiB  
Review
Neutrophil Dynamics in Response to Cancer Therapies
by Huazhen Xu, Xiaojun Chen, Yuqing Lu, Nihao Sun, Karis E. Weisgerber, Manzhu Xu and Ren-Yuan Bai
Cancers 2025, 17(15), 2593; https://doi.org/10.3390/cancers17152593 - 7 Aug 2025
Abstract
Neutrophils are increasingly recognized as key players in the tumor microenvironment (TME), displaying functional plasticity that enables them to either promote or inhibit cancer progression. Depending on environmental cues, tumor-associated neutrophils (TANs) may polarize toward antitumor “N1” or protumor “N2” phenotypes, exerting diverse [...] Read more.
Neutrophils are increasingly recognized as key players in the tumor microenvironment (TME), displaying functional plasticity that enables them to either promote or inhibit cancer progression. Depending on environmental cues, tumor-associated neutrophils (TANs) may polarize toward antitumor “N1” or protumor “N2” phenotypes, exerting diverse effects on tumor growth, metastasis, immune modulation, and treatment response. While previous studies have focused on the pathological roles of TANs in cancer, less attention has been given to how cancer therapies themselves influence the behavior of TANs. This review provides a comprehensive synthesis of current knowledge regarding the dynamics of TANs in response to major cancer treatment modalities, including chemotherapy, radiotherapy, cell-based immunotherapies, and oncolytic viral and bacterial therapies. We discuss how these therapies influence TAN recruitment, polarization, and effector functions within the TME, and highlight key molecular regulators involved. By consolidating mechanistic and translational insights, this review emphasizes the potential to therapeutically reprogram TANs to enhance treatment efficacy. A deeper understanding of context-dependent TAN roles will be essential for developing more effective, neutrophil-informed cancer therapies. Full article
(This article belongs to the Special Issue The Role of Neutrophils in Tumor Progression and Metastasis)
Show Figures

Figure 1

26 pages, 1203 KiB  
Review
Deciphering the Role of Functional Ion Channels in Cancer Stem Cells (CSCs) and Their Therapeutic Implications
by Krishna Samanta, Gali Sri Venkata Sai Rishma Reddy, Neeraj Kumar Sharma and Pulak Kar
Int. J. Mol. Sci. 2025, 26(15), 7595; https://doi.org/10.3390/ijms26157595 - 6 Aug 2025
Abstract
Despite advances in medicine, cancer remains one of the foremost global health concerns. Conventional treatments like surgery, radiotherapy, and chemotherapy have advanced with the emergence of targeted and immunotherapy approaches. However, therapeutic resistance and relapse remain major barriers to long-term success in cancer [...] Read more.
Despite advances in medicine, cancer remains one of the foremost global health concerns. Conventional treatments like surgery, radiotherapy, and chemotherapy have advanced with the emergence of targeted and immunotherapy approaches. However, therapeutic resistance and relapse remain major barriers to long-term success in cancer treatment, often driven by cancer stem cells (CSCs). These rare, resilient cells can survive therapy and drive tumour regrowth, urging deeper investigation into the mechanisms underlying their persistence. CSCs express ion channels typical of excitable tissues, which, beyond electrophysiology, critically regulate CSC fate. However, the underlying regulatory mechanisms of these channels in CSCs remain largely unexplored and poorly understood. Nevertheless, the therapeutic potential of targeting CSC ion channels is immense, as it offers a powerful strategy to disrupt vital signalling pathways involved in numerous pathological conditions. In this review, we explore the diverse repertoire of ion channels expressed in CSCs and highlight recent mechanistic insights into how these channels modulate CSC behaviours, dynamics, and functions. We present a concise overview of ion channel-mediated CSC regulation, emphasizing their potential as novel diagnostic markers and therapeutic targets, and identifying key areas for future research. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs 2.0)
Show Figures

Graphical abstract

30 pages, 2414 KiB  
Review
Melittin-Based Nanoparticles for Cancer Therapy: Mechanisms, Applications, and Future Perspectives
by Joe Rizkallah, Nicole Charbel, Abdallah Yassine, Amal El Masri, Chris Raffoul, Omar El Sardouk, Malak Ghezzawi, Therese Abou Nasr and Firas Kreidieh
Pharmaceutics 2025, 17(8), 1019; https://doi.org/10.3390/pharmaceutics17081019 - 6 Aug 2025
Abstract
Melittin, a cytolytic peptide derived from honeybee venom, has demonstrated potent anticancer activity through mechanisms such as membrane disruption, apoptosis induction, and modulation of key signaling pathways. Melittin exerts its anticancer activity by interacting with key molecular targets, including downregulation of the PI3K/Akt [...] Read more.
Melittin, a cytolytic peptide derived from honeybee venom, has demonstrated potent anticancer activity through mechanisms such as membrane disruption, apoptosis induction, and modulation of key signaling pathways. Melittin exerts its anticancer activity by interacting with key molecular targets, including downregulation of the PI3K/Akt and NF-κB signaling pathways, and by inducing mitochondrial apoptosis through reactive oxygen species generation and cytochrome c release. However, its clinical application is hindered by its systemic and hemolytic toxicity, rapid degradation in plasma, poor pharmacokinetics, and immunogenicity, necessitating the development of targeted delivery strategies to enable safe and effective treatment. Nanoparticle-based delivery systems have emerged as a promising strategy for overcoming these challenges, offering improved tumor targeting, reduced off-target effects, and enhanced stability. This review provides a comprehensive overview of the mechanisms through which melittin exerts its anticancer effects and evaluates the development of various melittin-loaded nanocarriers, including liposomes, polymeric nanoparticles, dendrimers, micelles, and inorganic systems. It also summarizes the preclinical evidence for melittin nanotherapy across a wide range of cancer types, highlighting both its cytotoxic and immunomodulatory effects. The potential of melittin nanoparticles to overcome multidrug resistance and synergize with chemotherapy, immunotherapy, photothermal therapy, and radiotherapy is discussed. Despite promising in vitro and in vivo findings, its clinical translation remains limited. Key barriers include toxicity, manufacturing scalability, regulatory approval, and the need for more extensive in vivo validation. A key future direction is the application of computational tools, such as physiologically based pharmacokinetic modeling and artificial-intelligence-based modeling, to streamline development and guide its clinical translation. Addressing these challenges through focused research and interdisciplinary collaboration will be essential to realizing the full therapeutic potential of melittin-based nanomedicines in oncology. Overall, this review synthesizes the findings from over 100 peer-reviewed studies published between 2008 and 2025, providing an up-to-date assessment of melittin-based nanomedicine strategies across diverse cancer types. Full article
(This article belongs to the Special Issue Development of Novel Tumor-Targeting Nanoparticles, 2nd Edition)
Show Figures

Figure 1

23 pages, 1642 KiB  
Review
The Multifaceted Role of Autophagy in Nasopharyngeal Carcinoma: Translational Perspectives on Pathogenesis, Biomarkers, Treatment Resistance, and Emerging Therapies
by Abdul L. Shakerdi, Emma Finnegan, Yin-Yin Sheng and Graham P. Pidgeon
Cancers 2025, 17(15), 2577; https://doi.org/10.3390/cancers17152577 - 5 Aug 2025
Abstract
Background: Nasopharyngeal carcinoma (NPC) is an epithelial malignancy arising from the nasopharyngeal mucosa. Despite treatment advances such as the use of intensity-modulated radiotherapy and immune checkpoint inhibitors, resistance remains a significant clinical challenge. Many tumours are also diagnosed at an advanced stage associated [...] Read more.
Background: Nasopharyngeal carcinoma (NPC) is an epithelial malignancy arising from the nasopharyngeal mucosa. Despite treatment advances such as the use of intensity-modulated radiotherapy and immune checkpoint inhibitors, resistance remains a significant clinical challenge. Many tumours are also diagnosed at an advanced stage associated with poor prognosis. Objective: This review aims to explore the biological roles of autophagy in NPC, primarily highlighting its involvement in disease pathogenesis and treatment resistance. Methods: We performed a review of the recent literature examining the role of autophagy-related pathways in NPC pathogenesis, biomarker discovery, and therapeutic targeting. Results: Autophagy plays a dual role in NPC as it contributes to both tumour suppression and progression. It is involved in tumour initiation, metastasis, immune modulation, and treatment resistance. Autophagy-related genes such as SQSTM1, Beclin-1, and AURKA may serve as prognostic and therapeutic biomarkers. Various strategies are being investigated for their role to modulate autophagy using pharmacologic inhibitors, RNA interventions, and natural compounds. Conclusions: Further research into autophagy’s context-dependent roles in NPC may inform the development of personalised therapies and allow progress in translational and precision oncology. Full article
Show Figures

Figure 1

26 pages, 3179 KiB  
Review
Glioblastoma: A Multidisciplinary Approach to Its Pathophysiology, Treatment, and Innovative Therapeutic Strategies
by Felipe Esparza-Salazar, Renata Murguiondo-Pérez, Gabriela Cano-Herrera, Maria F. Bautista-Gonzalez, Ericka C. Loza-López, Amairani Méndez-Vionet, Ximena A. Van-Tienhoven, Alejandro Chumaceiro-Natera, Emmanuel Simental-Aldaba and Antonio Ibarra
Biomedicines 2025, 13(8), 1882; https://doi.org/10.3390/biomedicines13081882 - 2 Aug 2025
Viewed by 255
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, [...] Read more.
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, microbiome interactions, and molecular dysregulations involving gangliosides and sphingolipids. Current diagnostic strategies, including imaging, histopathology, immunohistochemistry, and emerging liquid biopsy techniques, are explored for their role in improving early detection and monitoring. Treatment remains challenging, with standard therapies—surgery, radiotherapy, and temozolomide—offering limited survival benefits. Innovative therapies are increasingly being explored and implemented, including immune checkpoint inhibitors, CAR-T cell therapy, dendritic and peptide vaccines, and oncolytic virotherapy. Advances in nanotechnology and personalized medicine, such as individualized multimodal immunotherapy and NanoTherm therapy, are also discussed as strategies to overcome the blood–brain barrier and tumor heterogeneity. Additionally, stem cell-based approaches show promise in targeted drug delivery and immune modulation. Non-conventional strategies such as ketogenic diets and palliative care are also evaluated for their adjunctive potential. While novel therapies hold promise, GBM’s complexity demands continued interdisciplinary research to improve prognosis, treatment response, and patient quality of life. This review underscores the urgent need for personalized, multimodal strategies in combating this devastating malignancy. Full article
Show Figures

Figure 1

23 pages, 4589 KiB  
Review
The Novel Achievements in Oncological Metabolic Radio-Therapy: Isotope Technologies, Targeted Theranostics, Translational Oncology Research
by Elena V. Uspenskaya, Ainaz Safdari, Denis V. Antonov, Iuliia A. Valko, Ilaha V. Kazimova, Aleksey A. Timofeev and Roman A. Zubarev
Med. Sci. 2025, 13(3), 107; https://doi.org/10.3390/medsci13030107 - 1 Aug 2025
Viewed by 217
Abstract
Background/Objectives. This manuscript presents an overview of advances in oncological radiotherapy as an effective treatment method for cancerous tumors, focusing on mechanisms of action within metabolite–antimetabolite systems. The urgency of this topic is underscored by the fact that cancer remains one of the [...] Read more.
Background/Objectives. This manuscript presents an overview of advances in oncological radiotherapy as an effective treatment method for cancerous tumors, focusing on mechanisms of action within metabolite–antimetabolite systems. The urgency of this topic is underscored by the fact that cancer remains one of the leading causes of death worldwide: as of 2022, approximately 20 million new cases were diagnosed globally, accounting for about 0.25% of the total population. Given prognostic models predicting a steady increase in cancer incidence to 35 million cases by 2050, there is an urgent need for the latest developments in physics, chemistry, molecular biology, pharmacy, and strict adherence to oncological vigilance. The purpose of this work is to demonstrate the relationship between the nature and mechanisms of past diagnostic and therapeutic oncology approaches, their current improvements, and future prospects. Particular emphasis is placed on isotope technologies in the production of therapeutic nuclides, focusing on the mechanisms of formation of simple and complex theranostic compounds and their classification according to target specificity. Methods. The methodology involved searching, selecting, and analyzing information from PubMed, Scopus, and Web of Science databases, as well as from available official online sources over the past 20 years. The search was structured around the structure–mechanism–effect relationship of active pharmaceutical ingredients (APIs). The manuscript, including graphic materials, was prepared using a narrative synthesis method. Results. The results present a sequential analysis of materials related to isotope technology, particularly nucleus stability and instability. An explanation of theranostic principles enabled a detailed description of the action mechanisms of radiopharmaceuticals on various receptors within the metabolite–antimetabolite system using specific drug models. Attention is also given to radioactive nanotheranostics, exemplified by the mechanisms of action of radioactive nanoparticles such as Tc-99m, AuNPs, wwAgNPs, FeNPs, and others. Conclusions. Radiotheranostics, which combines the diagnostic properties of unstable nuclei with therapeutic effects, serves as an effective adjunctive and/or independent method for treating cancer patients. Despite the emergence of resistance to both chemotherapy and radiotherapy, existing nuclide resources provide protection against subsequent tumor metastasis. However, given the unfavorable cancer incidence prognosis over the next 25 years, the development of “preventive” drugs is recommended. Progress in this area will be facilitated by modern medical knowledge and a deeper understanding of ligand–receptor interactions to trigger apoptosis in rapidly proliferating cells. Full article
(This article belongs to the Special Issue Feature Papers in Section Cancer and Cancer-Related Diseases)
Show Figures

Figure 1

21 pages, 3935 KiB  
Article
The HIV Protease Inhibitor Ritonavir Reverts the Mesenchymal Phenotype Induced by Inflammatory Cytokines in Normal and Tumor Oral Keratinocytes to an Epithelial One, Increasing the Radiosensitivity of Tumor Oral Keratinocytes
by Silvia Pomella, Lucrezia D’Archivio, Matteo Cassandri, Francesca Antonella Aiello, Ombretta Melaiu, Francesco Marampon, Rossella Rota and Giovanni Barillari
Cancers 2025, 17(15), 2519; https://doi.org/10.3390/cancers17152519 - 30 Jul 2025
Viewed by 169
Abstract
Background/Objectives: During the repair of a wounded epithelium, keratinocytes become invasive via the epithelial-to-mesenchymal transition (EMT) process. Usually temporary and controlled, EMT persists in a chronically inflamed epithelium and is exacerbated in epithelial dysplasia and dysregulated in invasive carcinomas. Here we investigated the [...] Read more.
Background/Objectives: During the repair of a wounded epithelium, keratinocytes become invasive via the epithelial-to-mesenchymal transition (EMT) process. Usually temporary and controlled, EMT persists in a chronically inflamed epithelium and is exacerbated in epithelial dysplasia and dysregulated in invasive carcinomas. Here we investigated the effects that IL-1 beta, IL-6, and IL-8, inflammatory cytokines expressed in specimens from OPMDs and OSCCs, have on NOKs and OSCC cells. Methods: AKT activation and EMT induction were assessed along with cellular invasiveness. Results: IL-1 beta, IL-6, and IL-8 induced EMT in NOKs, ex novo conferring them invasive capacity. The same cytokines exacerbated the constitutive EMT and invasiveness of OSCC cells. Since these phenomena were accompanied by AKT activation, we tested whether they could be influenced by RTV, a long-used anti-HIV drug that was previously found to block the activation of human AKT and exert antitumor effects. We observed that therapeutic amounts of RTV counteract all the above-mentioned tumorigenic activities of ILs. Finally, consistent with the key role that AKT and EMT play in OSCC radio-resistance, RTV increased OSCC cells’ sensitivity to therapeutic doses of ionizing radiation. Conclusions: These preliminary in vitro findings encourage the use of RTV to prevent the malignant evolution of OPMDs, reduce the risk of OSCC metastasis, and improve the outcomes of anti-OSCC radiotherapy. Full article
Show Figures

Figure 1

37 pages, 13718 KiB  
Review
Photothermal and Photodynamic Strategies for Diagnosis and Therapy of Alzheimer’s Disease by Modulating Amyloid-β Aggregation
by Fengli Gao, Yupeng Hou, Yaru Wang, Linyuan Liu, Xinyao Yi and Ning Xia
Biosensors 2025, 15(8), 480; https://doi.org/10.3390/bios15080480 - 24 Jul 2025
Viewed by 508
Abstract
Amyloid-β (Aβ) aggregates are considered as the important factors of Alzheimer’s disease (AD). Multifunctional materials have shown significant effects in the diagnosis and treatment of AD by modulating the aggregation of Aβ and production of reactive oxygen species (ROS). Compared to traditional surgical [...] Read more.
Amyloid-β (Aβ) aggregates are considered as the important factors of Alzheimer’s disease (AD). Multifunctional materials have shown significant effects in the diagnosis and treatment of AD by modulating the aggregation of Aβ and production of reactive oxygen species (ROS). Compared to traditional surgical treatment and radiotherapy, phototherapy has the advantages, including short response time, significant efficacy, and minimal side effects in disease diagnosis and treatment. Recent studies have shown that local thermal energy or singlet oxygen generated by irradiating certain organic molecules or nanomaterials with specific laser wavelengths can effectively degrade Aβ aggregates and depress the generation of ROS, promoting progress in AD diagnosis and therapy. Herein, we outline the development of photothermal therapy (PTT) and photodynamic therapy (PDT) strategies for the diagnosis and therapy of AD by modulating Aβ aggregation. The materials mainly include organic photothermal agents or photosensitizers, polymer materials, metal nanoparticles, quantum dots, carbon-based nanomaterials, etc. In addition, compared to traditional fluorescent dyes, aggregation-induced emission (AIE) molecules have the advantages of good stability, low background signals, and strong resistance to photobleaching for bioimaging. Some AIE-based materials exhibit excellent photothermal and photodynamic effects, showing broad application prospects in the diagnosis and therapy of AD. We further summarize the advances in the detection of Aβ aggregates and phototherapy of AD using AIE-based materials. Full article
(This article belongs to the Special Issue Biosensors Based on Self-Assembly and Boronate Affinity Interaction)
Show Figures

Figure 1

28 pages, 732 KiB  
Systematic Review
Preclinical Trials of Cancer Stem Cells Targeted by Metal-Based Coordination Complexes: A Systematic Review
by Ana Caroline Mafra Bezerra, Lucas Elohim Cardoso Viana Baptista, Maria Núbia Alencar Couto and Milton Masahiko Kanashiro
Pharmaceutics 2025, 17(7), 931; https://doi.org/10.3390/pharmaceutics17070931 - 18 Jul 2025
Viewed by 589
Abstract
Background/Objective: Cancer stem cells (CSCs) are a self-renewing subpopulation within tumors that contribute to heterogeneity and resistance to conventional cancer therapies, including chemotherapy and radiotherapy. Despite growing interest in CSCs as therapeutic targets, effective compounds against these cells remain limited. This systematic [...] Read more.
Background/Objective: Cancer stem cells (CSCs) are a self-renewing subpopulation within tumors that contribute to heterogeneity and resistance to conventional cancer therapies, including chemotherapy and radiotherapy. Despite growing interest in CSCs as therapeutic targets, effective compounds against these cells remain limited. This systematic review aims to assess the potential of metal-based coordination complexes as anti-CSC agents in preclinical models. Methods: A systematic literature search was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Twenty-seven original in vitro studies were included, all evaluating the cytotoxic effects of metal-based compounds on cancer cell lines enriched with CSC subpopulations. To ensure methodological rigor, all articles underwent a critical appraisal by independent reviewers who resolved discrepancies through consensus, and only studies meeting predefined quality criteria were included. Results: Several metal complexes, particularly copper-based compounds, demonstrated significant cytotoxicity toward CSCs, mainly through the induction of apoptosis. Breast cancer was the most frequently studied tumor type. Many studies reported modulation of CSC-related markers, including EPCAM, CD44, CD133, CD24, SOX2, KLF4, Oct4, NOTCH1, ALDH1, CXCR4, and HES1, suggesting effects on CSC maintenance pathways. Most studies were conducted in the United Kingdom and relied on in vitro models. Conclusions: Metal coordination complexes, especially those containing copper, show promise as therapeutic agents targeting CSCs. However, further in vivo studies and mechanistic investigations are essential to advance their translational potential. Full article
(This article belongs to the Topic Recent Advances in Anticancer Strategies, 2nd Edition)
Show Figures

Figure 1

15 pages, 2992 KiB  
Article
Radiotherapy Upregulates the Expression of Membrane-Bound Negative Complement Regulator Proteins on Tumor Cells and Limits Complement-Mediated Tumor Cell Lysis
by Yingying Liang, Lixin Mai, Jonathan M. Schneeweiss, Ramon Lopez Perez, Michael Kirschfink and Peter E. Huber
Cancers 2025, 17(14), 2383; https://doi.org/10.3390/cancers17142383 - 18 Jul 2025
Viewed by 414
Abstract
Background/Objectives: Radiotherapy (RT) is a mainstay of clinical cancer therapy that causes broad immune responses. The complement system is a pivotal effector mechanism in the innate immune response, but the impact of RT is less well understood. This study investigates the interaction [...] Read more.
Background/Objectives: Radiotherapy (RT) is a mainstay of clinical cancer therapy that causes broad immune responses. The complement system is a pivotal effector mechanism in the innate immune response, but the impact of RT is less well understood. This study investigates the interaction between RT and the complement system as a possible approach to improve immune responses in cancer treatment. Methods: Human solid cancer (lung, prostate, liver, breast cancer), lymphoma, and leukemia cells were irradiated using X-rays and treated with polyclonal antibodies or anti-CD20 monoclonal antibodies, respectively. Chromium release assay was applied to measure cell lysis after radiation with or without complement-activating antibody treatment. The expression of membrane-bound complement regulatory proteins (mCRPs; CD46, CD55, CD59), which confer resistance against complement activation, CD20 expression, apoptosis, and radiation-induced DNA double-strand breaks (γH2AX), was measured by flow cytometry. The radiosensitivity of tumor cells was assessed by colony-forming assay. Results: We demonstrate that RT profoundly impacts complement function by upregulating the expression of membrane-bound complement regulatory proteins (mCRPs) on tumor cells in a dose- and time-dependent manner. Impaired complement-mediated tumor cell lysis could thus potentially contribute to radiotherapeutic resistance. We also observed RT-induced upregulation of CD20 expression on lymphoma and leukemic cells. Notably, complement activation prior to RT proved more effective in inducing RT-dependent early apoptosis compared to post-irradiation treatment. While complement modulation does not significantly alter RT-induced DNA-damage repair mechanisms or intrinsic radiosensitivity in cancer cells, our results suggest that combining RT with complement-based anti-cancer therapy may enhance complement-dependent cytotoxicity (CDC) and apoptosis in tumor cells. Conclusions: This study sheds light on the complex interplay between RT and the complement system, offering insights into potential novel combinatorial therapeutic strategies and a potential sequential structure for certain tumor types. Full article
(This article belongs to the Special Issue Combination Immunotherapy for Cancer Treatment)
Show Figures

Figure 1

18 pages, 5900 KiB  
Article
Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Modulate Chemoradiotherapy Response in Cervical Cancer Spheroids
by Kesara Nittayaboon, Piyatida Molika, Rassanee Bissanum, Kittinun Leetanaporn, Nipha Chumsuwan and Raphatphorn Navakanitworakul
Pharmaceuticals 2025, 18(7), 1050; https://doi.org/10.3390/ph18071050 - 17 Jul 2025
Viewed by 373
Abstract
Background: Bone marrow mesenchymal stem cells (BM-MSCs) are significant in chemo- and radiotherapy resistance. Previous research has focused on BM-MSCs, demonstrating their functional involvement in cancer progression as mediators in the tumor microenvironment. They play multiple roles in tumorigenesis, angiogenesis, and metastasis. BM-MSC-derived [...] Read more.
Background: Bone marrow mesenchymal stem cells (BM-MSCs) are significant in chemo- and radiotherapy resistance. Previous research has focused on BM-MSCs, demonstrating their functional involvement in cancer progression as mediators in the tumor microenvironment. They play multiple roles in tumorigenesis, angiogenesis, and metastasis. BM-MSC-derived exosomes (BM-MSCs-exo) are small vesicles, typically 50–300 nm in diameter, isolated from BM-MSCs. Some studies have demonstrated the tumor-suppressive effects of BM-MSCs-exo. Objective: This study aimed to investigate their role in modulating the impact of chemoradiotherapy (CRT) in different types of cervical cancer spheroid cells. Methods: The spheroids after treatment were subject to size measurement, cell viability, and caspase activity. Then, the molecular mechanism was elucidated by Western blot analysis. Results: We observed a reduction in spheroid size and an increase in cell death in HeLa spheroids, while no significant changes in size or cell viability were found in SiHa spheroids. At the molecular level, CRT treatment combined with BM-MSCs-exo in HeLa spheroids induced apoptosis through the activation of the NF-κB pathway, specifically via the NF-κB1 (P50) transcription factor, leading to the upregulation of apoptosis-related molecules. In contrast, CRT combined with BM-MSCs-exo in SiHa spheroids exhibited an opposing effect: although cellular viability decreased, caspase activity also decreased, which correlated with increased HSP27 expression and the subsequent downregulation of apoptotic molecules. Conclusion: Our study provides deeper insight into the potential of BM-MSCs-exo in cervical cancer treatment, supporting the development of more effective and safer therapeutic strategies for clinical application. Full article
(This article belongs to the Special Issue 2D and 3D Culture Systems: Current Trends and Biomedical Applications)
Show Figures

Figure 1

22 pages, 2320 KiB  
Review
Use of Radiomics in Characterizing Tumor Hypoxia
by Mohan Huang, Helen K. W. Law and Shing Yau Tam
Int. J. Mol. Sci. 2025, 26(14), 6679; https://doi.org/10.3390/ijms26146679 - 11 Jul 2025
Viewed by 505
Abstract
Tumor hypoxia involves limited oxygen supply within the tumor microenvironment and is closely associated with aggressiveness, metastasis, and resistance to common cancer treatment modalities such as chemotherapy and radiotherapy. Traditional methodologies for hypoxia assessment, such as the use of invasive probes and clinical [...] Read more.
Tumor hypoxia involves limited oxygen supply within the tumor microenvironment and is closely associated with aggressiveness, metastasis, and resistance to common cancer treatment modalities such as chemotherapy and radiotherapy. Traditional methodologies for hypoxia assessment, such as the use of invasive probes and clinical biomarkers, are generally not very suitable for routine clinical applications. Radiomics provides a non-invasive approach to hypoxia assessment by extracting quantitative features from medical images. Thus, radiomics is important in diagnosis and the formulation of a treatment strategy for tumor hypoxia. This article discusses the various imaging techniques used for the assessment of tumor hypoxia including magnetic resonance imaging (MRI), positron emission tomography (PET), and computed tomography (CT). It introduces the use of radiomics with machine learning and deep learning for extracting quantitative features, along with its possible clinical use in hypoxic tumors. This article further summarizes the key challenges hindering the clinical translation of radiomics, including the lack of imaging standardization and the limited availability of hypoxia-labeled datasets. It also highlights the potential of integrating radiomics with multi-omics to enhance hypoxia visualization and guide personalized cancer treatment. Full article
Show Figures

Figure 1

47 pages, 2757 KiB  
Review
Influence of Hypoxia on Tumor Heterogeneity, DNA Repair, and Cancer Therapy: From Molecular Insights to Therapeutic Strategies
by Dominika Kunachowicz, Paulina Tomecka, Mikołaj Sędzik, Jarosław Kalinin, Jacek Kuźnicki and Nina Rembiałkowska
Cells 2025, 14(14), 1057; https://doi.org/10.3390/cells14141057 - 10 Jul 2025
Viewed by 744
Abstract
Hypoxia, characterized by a reduction in tissue oxygen levels, is a hallmark of many solid tumors and affects a range of cellular processes, including DNA repair. In low-oxygen conditions, cancer cells often suppress key DNA repair pathways such as homologous recombination (HR), leading [...] Read more.
Hypoxia, characterized by a reduction in tissue oxygen levels, is a hallmark of many solid tumors and affects a range of cellular processes, including DNA repair. In low-oxygen conditions, cancer cells often suppress key DNA repair pathways such as homologous recombination (HR), leading to the accumulation of DNA damage and increased genomic instability. These changes not only drive tumor progression but also contribute to resistance against conventional therapies. Hypoxia significantly reduces the effectiveness of oxygen-dependent treatments, including radiotherapy and many chemotherapeutic agents. To address this limitation, bioreductive drugs have been developed that become selectively activated in hypoxic environments, providing targeted cytotoxic effects within oxygen-deprived tumor regions. Additionally, the rapid growth of tumors often results in disorganized and inefficient vasculature, further impairing the delivery of oxygen and therapeutic agents. This review explores the molecular mechanisms by which hypoxia disrupts DNA repair and contributes to treatment resistance. It also presents emerging therapeutic strategies aimed at targeting the hypoxic tumor microenvironment to improve treatment efficacy and patient outcomes. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

28 pages, 3171 KiB  
Article
Valproic Acid Reduces Invasiveness and Cellular Growth in 2D and 3D Glioblastoma Cell Lines
by Francesca Giordano, Martina Forestiero, Adele Elisabetta Leonetti, Giuseppina Daniela Naimo, Alessandro Marrone, Francesca De Amicis, Stefania Marsico, Loredana Mauro and Maria Luisa Panno
Int. J. Mol. Sci. 2025, 26(14), 6600; https://doi.org/10.3390/ijms26146600 - 9 Jul 2025
Viewed by 397
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor, with a poor prognosis and low survival. Its treatment includes complete surgical resection followed by radiotherapy combined with temozolomide (TMZ). GBM contains glial stem cells (GSCs), which contribute to tumor progression, invasiveness, and drug [...] Read more.
Glioblastoma (GBM) is the most common malignant brain tumor, with a poor prognosis and low survival. Its treatment includes complete surgical resection followed by radiotherapy combined with temozolomide (TMZ). GBM contains glial stem cells (GSCs), which contribute to tumor progression, invasiveness, and drug resistance. The histone deacetylase (HDAC) inhibitor valproic acid (VA) has been shown to be a potent antitumor and cytostatic agent. In this study, we tested the effects of VA on glioma cell proliferation, migration, and apoptosis using T98G monolayer and spheroid cells. T98G and U-87MG glioblastoma cell viability was determined by MTT. Cell cycle and ROS levels were analyzed by flow cytometry, and gene and protein levels were detected, respectively, by RT-PCR and immunoblotting. VA reduces cell viability in 2D and 3D T98G and U-87MG cells and blocks the cell cycle at the G0/G1 with decreased levels of cyclin D1. VA addresses apoptosis and ROS production. In addition, VA significantly decreases the mRNA levels of the mesenchymal markers, and it counteracts cell migration, also decreasing MMP2. The results confirm the inhibitory effect of VA on the growth of the T98G and U-87MG cell lines and its ability to counteract migration in both 2D and 3D cellular models. Full article
Show Figures

Figure 1

20 pages, 18100 KiB  
Article
Targeting p-FGFR1Y654 Enhances CD8+ T Cells Infiltration and Overcomes Immunotherapy Resistance in Esophageal Squamous Cell Carcinoma by Regulating the CXCL8–CXCR2 Axis
by Hong Luo, Liwei Wang, Hui Gao, Daijun Zhou, Yu Qiu, Lijia Yang, Jing Li, Dan Du, Xiaoli Huang, Yu Zhao, Zhongchun Qi, Yue Zhang, Xuemei Huang, Lihan Sun, Tao Xu and Dong Li
Biomedicines 2025, 13(7), 1667; https://doi.org/10.3390/biomedicines13071667 - 8 Jul 2025
Viewed by 507
Abstract
Background: Esophageal squamous cell carcinoma (ESCC) is a fatal malignant tumor. Several studies have demonstrated that immune checkpoint inhibitors can provide clinical benefits to patients with ESCC. However, the single-agent efficacy of these agents remains limited. Although combination therapies (e.g., radiotherapy, chemotherapy) can [...] Read more.
Background: Esophageal squamous cell carcinoma (ESCC) is a fatal malignant tumor. Several studies have demonstrated that immune checkpoint inhibitors can provide clinical benefits to patients with ESCC. However, the single-agent efficacy of these agents remains limited. Although combination therapies (e.g., radiotherapy, chemotherapy) can help to overcome immunotherapy resistance in ESCC, their severe side effects limit clinical application. This study aimed to explore new resistance mechanisms to immunotherapy in ESCC and identify novel molecular targets to overcome immunotherapy resistance. Methods: We employed immunohistochemistry staining to examine the p-FGFR1Y654 in tumor samples obtained from 103 patients with ESCC, in addition to evaluating CD8+ T cell infiltration. In vitro expression, western blotting, CCK-8, 5-bromo-2′-deoxyuridine incorporation assays, and migration assays were used to confirm the impact of AZD4547 on p-FGFR1Y654 expression and the proliferation and migration in ESCC cell lines. Through RNA sequencing analysis, databases such as the Cancer Genome Atlas (TCGA) and Gene Set Cancer Analysis (GSCA), and the reconstruction of transgenic mice using the humanized immune system, we validated the correlation between the expression of p-FGFR1Y654 and CD8+ T cell infiltration. We also explored how p-FGFR1Y654 recruits myeloid-derived suppressor cells (MDSCs) through the CXCL8–CXCR2 axis to suppress the therapeutic efficacy of immunotherapy in ESCC. Finally, the tumor-suppressive effects of AZD4547 combined with immunotherapy were confirmed in vivo in tumor-bearing mice with a humanized immune system. Results: We found that the inhibition of p-FGFR1Y654 expression in ESCC can enhance CD8+ T cell infiltration by suppressing the CXCL8-–XCR2 recruitment of MDSCs. AZD4547, combined with immunotherapy, further promotes immunotherapeutic efficacy in ESCC. Conclusions: In conclusion, our study presents a promising model for combination therapy in ESCC immunotherapy. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

Back to TopTop