Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,119)

Search Parameters:
Keywords = radiomics feature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 885 KiB  
Article
MRI-Based Radiomics for Outcome Stratification in Pediatric Osteosarcoma
by Esther Ngan, Dolores Mullikin, Ashok J. Theruvath, Ananth V. Annapragada, Ketan B. Ghaghada, Andras A. Heczey and Zbigniew A. Starosolski
Cancers 2025, 17(15), 2586; https://doi.org/10.3390/cancers17152586 - 6 Aug 2025
Abstract
Background/Objectives: Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents; the survival rate is as low as 24%. Accurate prediction of clinical outcomes remains a challenge due to tumor heterogeneity and the complexity of pediatric cases. This study [...] Read more.
Background/Objectives: Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents; the survival rate is as low as 24%. Accurate prediction of clinical outcomes remains a challenge due to tumor heterogeneity and the complexity of pediatric cases. This study aims to improve predictions of progressive disease, therapy response, relapse, and survival in pediatric OS using MRI-based radiomics and machine learning methods. Methods: Pre-treatment contrast-enhanced coronal T1-weighted MR scans were collected from 63 pediatric OS patients, with an additional nine external cases used for validation. Three strategies were considered for target region segmentation (whole-tumor, tumor sampling, and bone/soft tissue) and used for MRI-based radiomics. These were then combined with clinical features to predict OS clinical outcomes. Results: The mean age of OS patients was 11.8 ± 3.5 years. Most tumors were located in the femur (65%). Osteoblastic subtype was the most common histological classification (79%). The majority of OS patients (79%) did not have evidence of metastasis at diagnosis. Progressive disease occurred in 27% of patients, 59% of patients showed adequate therapy response, 25% experienced relapse after therapy, and 30% died from OS. Classification models based on bone/soft tissue segmentation generally performed the best, with certain clinical features improving performance, especially for therapy response and mortality. The top performing classifier in each outcome achieved 0.94–1.0 validation ROC AUC and 0.63–1.0 testing ROC AUC, while those without radiomic features (RFs) generally performed suboptimally. Conclusions: This study demonstrates the strong predictive capabilities of MRI-based radiomics and multi-region segmentations for predicting clinical outcomes in pediatric OS. Full article
(This article belongs to the Special Issue The Roles of Deep Learning in Cancer Radiotherapy)
Show Figures

Figure 1

14 pages, 1848 KiB  
Article
RadiomiX for Radiomics Analysis: Automated Approaches to Overcome Challenges in Replicability
by Harel Kotler, Luca Bergamin, Fabio Aiolli, Elena Scagliori, Angela Grassi, Giulia Pasello, Alessandra Ferro, Francesca Caumo and Gisella Gennaro
Diagnostics 2025, 15(15), 1968; https://doi.org/10.3390/diagnostics15151968 - 5 Aug 2025
Abstract
Background/Objectives: To simplify the decision-making process in radiomics by employing RadiomiX, an algorithm designed to automatically identify the best model combination and validate them across multiple environments was developed, thus enhancing the reliability of results. Methods: RadiomiX systematically tests classifier and feature [...] Read more.
Background/Objectives: To simplify the decision-making process in radiomics by employing RadiomiX, an algorithm designed to automatically identify the best model combination and validate them across multiple environments was developed, thus enhancing the reliability of results. Methods: RadiomiX systematically tests classifier and feature selection method combinations known to be suitable for radiomic datasets to determine the best-performing configuration across multiple train–test splits and K-fold cross-validation. The framework was validated on four public retrospective radiomics datasets including lung nodules, metastatic breast cancer, and hepatic encephalopathy using CT, PET/CT, and MRI modalities. Model performance was assessed using the area under the receiver-operating-characteristic curve (AUC) and accuracy metrics. Results: RadiomiX achieved superior performance across four datasets: LLN (AUC = 0.850 and accuracy = 0.785), SLN (AUC = 0.845 and accuracy = 0.754), MBC (AUC = 0.889 and accuracy = 0.833), and CHE (AUC = 0.837 and accuracy = 0.730), significantly outperforming original published models (p < 0.001 for LLN/SLN and p = 0.023 for MBC accuracy). When original published models were re-evaluated using ten-fold cross-validation, their performance decreased substantially: LLN (AUC = 0.783 and accuracy = 0.731), SLN (AUC = 0.748 and accuracy = 0.714), MBC (AUC = 0.764 and accuracy = 0.711), and CHE (AUC = 0.755 and accuracy = 0.677), further highlighting RadiomiX’s methodological advantages. Conclusions: Systematically testing model combinations using RadiomiX has led to significant improvements in performance. This emphasizes the potential of automated ML as a step towards better-performing and more reliable radiomic models. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

15 pages, 1361 KiB  
Article
Radiomics with Clinical Data and [18F]FDG-PET for Differentiating Between Infected and Non-Infected Intracavitary Vascular (Endo)Grafts: A Proof-of-Concept Study
by Gijs D. van Praagh, Francine Vos, Stijn Legtenberg, Marjan Wouthuyzen-Bakker, Ilse J. E. Kouijzer, Erik H. J. G. Aarntzen, Jean-Paul P. M. de Vries, Riemer H. J. A. Slart, Lejla Alic, Bhanu Sinha and Ben R. Saleem
Diagnostics 2025, 15(15), 1944; https://doi.org/10.3390/diagnostics15151944 - 2 Aug 2025
Viewed by 206
Abstract
Objective: We evaluated the feasibility of a machine-learning (ML) model based on clinical features and radiomics from [18F]FDG PET/CT images to differentiate between infected and non-infected intracavitary vascular grafts and endografts (iVGEI). Methods: Three ML models were developed: one based on [...] Read more.
Objective: We evaluated the feasibility of a machine-learning (ML) model based on clinical features and radiomics from [18F]FDG PET/CT images to differentiate between infected and non-infected intracavitary vascular grafts and endografts (iVGEI). Methods: Three ML models were developed: one based on pre-treatment criteria to diagnose a vascular graft infection (“MAGIC-light features”), another using radiomics features from diagnostic [18F]FDG-PET scans, and a third combining both datasets. The training set included 92 patients (72 iVGEI-positive, 20 iVGEI-negative), and the external test set included 20 iVGEI-positive and 12 iVGEI-negative patients. The abdominal aorta and iliac arteries in the PET/CT scans were automatically segmented using SEQUOIA and TotalSegmentator and manually adjusted, extracting 96 radiomics features. The best-performing models for the MAGIC-light features and PET-radiomics features were selected from 343 unique models. Most relevant features were combined to test three final models using ROC analysis, accuracy, sensitivity, and specificity. Results: The combined model achieved the highest AUC in the test set (mean ± SD: 0.91 ± 0.02) compared with the MAGIC-light-only model (0.85 ± 0.06) and the PET-radiomics model (0.73 ± 0.03). The combined model also achieved a higher accuracy (0.91 vs. 0.82) than the diagnosis based on all the MAGIC criteria and a comparable sensitivity and specificity (0.70 and 1.00 vs. 0.76 and 0.92, respectively) while providing diagnostic information at the initial presentation. The AUC for the combined model was significantly higher than the PET-radiomics model (p = 0.02 in the bootstrap test), while other comparisons were not statistically significant. Conclusions: This study demonstrated the potential of ML models in supporting diagnostic decision making for iVGEI. A combined model using pre-treatment clinical features and PET-radiomics features showed high diagnostic performance and specificity, potentially reducing overtreatment and enhancing patient outcomes. Full article
(This article belongs to the Special Issue Artificial Intelligence-Driven Radiomics in Medical Diagnosis)
Show Figures

Figure 1

14 pages, 2889 KiB  
Article
Ensuring Reproducibility and Deploying Models with the Image2Radiomics Framework: An Evaluation of Image Processing on PanNET Model Performance
by Florent Tixier, Felipe Lopez-Ramirez, Emir A. Syailendra, Alejandra Blanco, Ammar A. Javed, Linda C. Chu, Satomi Kawamoto and Elliot K. Fishman
Cancers 2025, 17(15), 2552; https://doi.org/10.3390/cancers17152552 - 1 Aug 2025
Viewed by 181
Abstract
Background/Objectives: To evaluate the importance of image processing in a previously validated model for detecting pancreatic neuroendocrine tumors (PanNETs) and to introduce Image2Radiomics, a new framework that ensures reproducibility of the image processing pipeline and facilitates the deployment of radiomics models. Methods: A [...] Read more.
Background/Objectives: To evaluate the importance of image processing in a previously validated model for detecting pancreatic neuroendocrine tumors (PanNETs) and to introduce Image2Radiomics, a new framework that ensures reproducibility of the image processing pipeline and facilitates the deployment of radiomics models. Methods: A previously validated model for identifying PanNETs from CT images served as the reference. Radiomics features were re-extracted using Image2Radiomics and compared to those from the original model using performance metrics. The impact of nine alterations to the image processing pipeline was evaluated. Prediction discrepancies were quantified using the mean ± SD of absolute differences in PanNET probability and the percentage of classification disagreement. Results: The reference model was successfully replicated with Image2Radiomics, achieving a Cohen’s kappa coefficient of 1. Alterations to the image processing pipeline led to reductions in model performance, with AUC dropping from 0.87 to 0.71 when image windowing was removed. Prediction disagreements were observed in up to 45% of patients. Even minor changes, such as switching the library used for spatial resampling, resulted in up to 21% disagreement. Conclusions: Reproducing image processing pipelines remains challenging and limits the clinical deployment of radiomics models. While this study is limited to one model and imaging modality, the findings underscore a common risk in radiomics reproducibility. The Image2Radiomics framework addresses this issue by allowing researchers to define and share complete processing pipelines in a standardized way, improving reproducibility and facilitating model deployment in clinical and multicenter settings. Full article
Show Figures

Figure 1

23 pages, 5770 KiB  
Article
Assessment of Influencing Factors and Robustness of Computable Image Texture Features in Digital Images
by Diego Andrade, Howard C. Gifford and Mini Das
Tomography 2025, 11(8), 87; https://doi.org/10.3390/tomography11080087 (registering DOI) - 31 Jul 2025
Viewed by 129
Abstract
Background/Objectives: There is significant interest in using texture features to extract hidden image-based information. In medical imaging applications using radiomics, AI, or personalized medicine, the quest is to extract patient or disease specific information while being insensitive to other system or processing variables. [...] Read more.
Background/Objectives: There is significant interest in using texture features to extract hidden image-based information. In medical imaging applications using radiomics, AI, or personalized medicine, the quest is to extract patient or disease specific information while being insensitive to other system or processing variables. While we use digital breast tomosynthesis (DBT) to show these effects, our results would be generally applicable to a wider range of other imaging modalities and applications. Methods: We examine factors in texture estimation methods, such as quantization, pixel distance offset, and region of interest (ROI) size, that influence the magnitudes of these readily computable and widely used image texture features (specifically Haralick’s gray level co-occurrence matrix (GLCM) textural features). Results: Our results indicate that quantization is the most influential of these parameters, as it controls the size of the GLCM and range of values. We propose a new multi-resolution normalization (by either fixing ROI size or pixel offset) that can significantly reduce quantization magnitude disparities. We show reduction in mean differences in feature values by orders of magnitude; for example, reducing it to 7.34% between quantizations of 8–128, while preserving trends. Conclusions: When combining images from multiple vendors in a common analysis, large variations in texture magnitudes can arise due to differences in post-processing methods like filters. We show that significant changes in GLCM magnitude variations may arise simply due to the filter type or strength. These trends can also vary based on estimation variables (like offset distance or ROI) that can further complicate analysis and robustness. We show pathways to reduce sensitivity to such variations due to estimation methods while increasing the desired sensitivity to patient-specific information such as breast density. Finally, we show that our results obtained from simulated DBT images are consistent with what we see when applied to clinical DBT images. Full article
Show Figures

Figure 1

14 pages, 2727 KiB  
Article
A Multimodal MRI-Based Model for Colorectal Liver Metastasis Prediction: Integrating Radiomics, Deep Learning, and Clinical Features with SHAP Interpretation
by Xin Yan, Furui Duan, Lu Chen, Runhong Wang, Kexin Li, Qiao Sun and Kuang Fu
Curr. Oncol. 2025, 32(8), 431; https://doi.org/10.3390/curroncol32080431 - 30 Jul 2025
Viewed by 165
Abstract
Purpose: Predicting colorectal cancer liver metastasis (CRLM) is essential for prognostic assessment. This study aims to develop and validate an interpretable multimodal machine learning framework based on multiparametric MRI for predicting CRLM, and to enhance the clinical interpretability of the model through [...] Read more.
Purpose: Predicting colorectal cancer liver metastasis (CRLM) is essential for prognostic assessment. This study aims to develop and validate an interpretable multimodal machine learning framework based on multiparametric MRI for predicting CRLM, and to enhance the clinical interpretability of the model through SHapley Additive exPlanations (SHAP) analysis and deep learning visualization. Methods: This multicenter retrospective study included 463 patients with pathologically confirmed colorectal cancer from two institutions, divided into training (n = 256), internal testing (n = 111), and external validation (n = 96) sets. Radiomics features were extracted from manually segmented regions on axial T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI). Deep learning features were obtained from a pretrained ResNet101 network using the same MRI inputs. A least absolute shrinkage and selection operator (LASSO) logistic regression classifier was developed for clinical, radiomics, deep learning, and combined models. Model performance was evaluated by AUC, sensitivity, specificity, and F1-score. SHAP was used to assess feature contributions, and Grad-CAM was applied to visualize deep feature attention. Results: The combined model integrating features across the three modalities achieved the highest performance across all datasets, with AUCs of 0.889 (training), 0.838 (internal test), and 0.822 (external validation), outperforming single-modality models. Decision curve analysis (DCA) revealed enhanced clinical net benefit from the integrated model, while calibration curves confirmed its good predictive consistency. SHAP analysis revealed that radiomic features related to T2WI texture (e.g., LargeDependenceLowGrayLevelEmphasis) and clinical biomarkers (e.g., CA19-9) were among the most predictive for CRLM. Grad-CAM visualizations confirmed that the deep learning model focused on tumor regions consistent with radiological interpretation. Conclusions: This study presents a robust and interpretable multiparametric MRI-based model for noninvasively predicting liver metastasis in colorectal cancer patients. By integrating handcrafted radiomics and deep learning features, and enhancing transparency through SHAP and Grad-CAM, the model provides both high predictive performance and clinically meaningful explanations. These findings highlight its potential value as a decision-support tool for individualized risk assessment and treatment planning in the management of colorectal cancer. Full article
(This article belongs to the Section Gastrointestinal Oncology)
Show Figures

Graphical abstract

23 pages, 4210 KiB  
Article
CT-Based Habitat Radiomics Combining Multi-Instance Learning for Early Prediction of Post-Neoadjuvant Lymph Node Metastasis in Esophageal Squamous Cell Carcinoma
by Qinghe Peng, Shumin Zhou, Runzhe Chen, Jinghui Pan, Xin Yang, Jinlong Du, Hongdong Liu, Hao Jiang, Xiaoyan Huang, Haojiang Li and Li Chen
Bioengineering 2025, 12(8), 813; https://doi.org/10.3390/bioengineering12080813 - 28 Jul 2025
Viewed by 367
Abstract
Early prediction of lymph node metastasis (LNM) following neoadjuvant therapy (NAT) is crucial for timely treatment optimization in esophageal squamous cell carcinoma (ESCC). This study developed and validated a computed tomography-based radiomic model for predicting pathologically confirmed LNM status at the time of [...] Read more.
Early prediction of lymph node metastasis (LNM) following neoadjuvant therapy (NAT) is crucial for timely treatment optimization in esophageal squamous cell carcinoma (ESCC). This study developed and validated a computed tomography-based radiomic model for predicting pathologically confirmed LNM status at the time of surgery in ESCC patients after NAT. A total of 469 ESCC patients from Sun Yat-sen University Cancer Center were retrospectively enrolled and randomized into a training cohort (n = 328) and a test cohort (n = 141). Three signatures were constructed: the tumor-habitat-based signature (Habitat_Rad), derived from radiomic features of three tumor subregions identified via K-means clustering; the multiple instance learning-based signature (MIL_Rad), combining features from 2.5D deep learning models; and the clinicoradiological signature (Clinic), developed through multivariate logistic regression. A combined radiomic nomogram integrating these signatures outperformed the individual models, achieving areas under the curve (AUCs) of 0.929 (95% CI, 0.901–0.957) and 0.852 (95% CI, 0.778–0.925) in the training and test cohorts, respectively. The decision curve analysis confirmed a high net clinical benefit, highlighting the nomogram’s potential for accurate LNM prediction after NAT and guiding individualized therapy. Full article
(This article belongs to the Special Issue Machine Learning Methods for Biomedical Imaging)
Show Figures

Graphical abstract

15 pages, 1233 KiB  
Article
Predicting Stroke Etiology with Radiomics: A Retrospective Study
by Jacobo Porto-Álvarez, Antonio Jesús Mosqueira Martínez, Javier Martínez Fernández, José L. Taboada Arcos, Miguel Blanco Ulla, José M. Pumar, María Santamaría, Emilio Rodríguez Castro, Ramón Iglesias Rey, Pablo Hervella, Pedro Vieites Pérez, Manuel Taboada Muñiz, Roberto García-Figueiras and Miguel Souto Bayarri
Med. Sci. 2025, 13(3), 98; https://doi.org/10.3390/medsci13030098 - 26 Jul 2025
Viewed by 293
Abstract
Background/Objectives: The composition of the thrombus is not taken into account in the etiology determination of patients with acute ischemic stroke (AIS); however, it varies depending on the origin of the thrombus, as atherothrombotic thrombi contain more red blood cells and cardioembolic [...] Read more.
Background/Objectives: The composition of the thrombus is not taken into account in the etiology determination of patients with acute ischemic stroke (AIS); however, it varies depending on the origin of the thrombus, as atherothrombotic thrombi contain more red blood cells and cardioembolic thrombi contain more fibrin and platelets. Radiomics has the potential to provide quantitative imaging data that may vary depending on the composition of thrombi. The aim of this study is to predict cardioembolic and atherothrombotic thrombi using radiomic features (RFs) from non-contrast computed tomography (NCCT) brain scans. Methods: A total of 845 RFs were extracted from each of the 41 patients included in the study. A predictive model was used to classify patients as either cardioembolic or atherothrombotic, and the results were compared with the TOAST criteria-based classification. Results: Ten RFs (one shape feature and nine texture features) were found to demonstrate a statistically significant correlation with cardioembolic or atherothrombotic origins. The predictive radiomics model achieved an area under the curve (AUC) of 0.842 and an accuracy of 0.902 (p < 0.001) in classifying stroke etiology. Conclusions: Radiomics based on NCCT can help to determine the etiology of AIS. Full article
Show Figures

Figure 1

16 pages, 589 KiB  
Article
CT-Based Radiomics Enhance Respiratory Function Analysis for Lung SBRT
by Alice Porazzi, Mattia Zaffaroni, Vanessa Eleonora Pierini, Maria Giulia Vincini, Aurora Gaeta, Sara Raimondi, Lucrezia Berton, Lars Johannes Isaksson, Federico Mastroleo, Sara Gandini, Monica Casiraghi, Gaia Piperno, Lorenzo Spaggiari, Juliana Guarize, Stefano Maria Donghi, Łukasz Kuncman, Roberto Orecchia, Stefania Volpe and Barbara Alicja Jereczek-Fossa
Bioengineering 2025, 12(8), 800; https://doi.org/10.3390/bioengineering12080800 - 25 Jul 2025
Viewed by 446
Abstract
Introduction: Radiomics is the extraction of non-invasive and reproducible quantitative imaging features, which may yield mineable information for clinical practice implementation. Quantification of lung function through radiomics could play a role in the management of patients with pulmonary lesions. The aim of this [...] Read more.
Introduction: Radiomics is the extraction of non-invasive and reproducible quantitative imaging features, which may yield mineable information for clinical practice implementation. Quantification of lung function through radiomics could play a role in the management of patients with pulmonary lesions. The aim of this study is to test the capability of radiomic features to predict pulmonary function parameters, focusing on the diffusing capacity of lungs to carbon monoxide (DLCO). Methods: Retrospective data were retrieved from electronical medical records of patients treated with Stereotactic Body Radiation Therapy (SBRT) at a single institution. Inclusion criteria were as follows: (1) SBRT treatment performed for primary early-stage non-small cell lung cancer (ES-NSCLC) or oligometastatic lung nodules, (2) availability of simulation four-dimensional computed tomography (4DCT) scan, (3) baseline spirometry data availability, (4) availability of baseline clinical data, and (5) written informed consent for the anonymized use of data. The gross tumor volume (GTV) was segmented on 4DCT reconstructed phases representing the moment of maximum inhalation and maximum exhalation (Phase 0 and Phase 50, respectively), and radiomic features were extracted from the lung parenchyma subtracting the lesion/s. An iterative algorithm was clustered based on correlation, while keeping only those most associated with baseline and post-treatment DLCO. Three models were built to predict DLCO abnormality: the clinical model—containing clinical information; the radiomic model—containing the radiomic score; the clinical-radiomic model—containing clinical information and the radiomic score. For the models just described, the following were constructed: Model 1 based on the features in Phase 0; Model 2 based on the features in Phase 50; Model 3 based on the difference between the two phases. The AUC was used to compare their performances. Results: A total of 98 patients met the inclusion criteria. The Charlson Comorbidity Index (CCI) scored as the clinical variable most associated with baseline DLCO (p = 0.014), while the most associated features were mainly texture features and similar among the two phases. Clinical-radiomic models were the best at predicting both baseline and post-treatment abnormal DLCO. In particular, the performances for the three clinical-radiomic models at predicting baseline abnormal DLCO were AUC1 = 0.72, AUC2 = 0.72, and AUC3 = 0.75, for Model 1, Model 2, and Model 3, respectively. Regarding the prediction of post-treatment abnormal DLCO, the performances of the three clinical-radiomic models were AUC1 = 0.91, AUC2 = 0.91, and AUC3 = 0.95, for Model 1, Model 2, and Model 3, respectively. Conclusions: This study demonstrates that radiomic features extracted from healthy lung parenchyma on a 4DCT scan are associated with baseline pulmonary function parameters, showing that radiomics can add a layer of information in surrogate models for lung function assessment. Preliminary results suggest the potential applicability of these models for predicting post-SBRT lung function, warranting validation in larger, prospective cohorts. Full article
(This article belongs to the Special Issue Engineering the Future of Radiotherapy: Innovations and Challenges)
Show Figures

Figure 1

27 pages, 2617 KiB  
Article
Monte Carlo Gradient Boosted Trees for Cancer Staging: A Machine Learning Approach
by Audrey Eley, Thu Thu Hlaing, Daniel Breininger, Zarindokht Helforoush and Nezamoddin N. Kachouie
Cancers 2025, 17(15), 2452; https://doi.org/10.3390/cancers17152452 - 24 Jul 2025
Viewed by 328
Abstract
Machine learning algorithms are commonly employed for classification and interpretation of high-dimensional data. The classification task is often broken down into two separate procedures, and different methods are applied to achieve accurate results and produce interpretable outcomes. First, an effective subset of high-dimensional [...] Read more.
Machine learning algorithms are commonly employed for classification and interpretation of high-dimensional data. The classification task is often broken down into two separate procedures, and different methods are applied to achieve accurate results and produce interpretable outcomes. First, an effective subset of high-dimensional features must be extracted and then the selected subset will be used to train a classifier. Gradient Boosted Trees (GBT) is an ensemble model and, particularly due to their robustness, ability to model complex nonlinear interactions, and feature interpretability, they are well suited for complex applications. XGBoost (eXtreme Gradient Boosting) is a high-performance implementation of GBT that incorporates regularization, parallel computation, and efficient tree pruning that makes it a suitable efficient, interpretable, and scalable classifier with potential applications to medical data analysis. In this study, a Monte Carlo Gradient Boosted Trees (MCGBT) model is proposed for both feature reduction and classification. The proposed MCGBT method was applied to a lung cancer dataset for feature identification and classification. The dataset contains 107 radiomics which are quantitative imaging biomarkers extracted from CT scans. A reduced set of 12 radiomics were identified, and patients were classified into different cancer stages. Cancer staging accuracy of 90.3% across 100 independent runs was achieved which was on par with that obtained using the full set of 107 radiomics, enabling lean and deployable classifiers. Full article
(This article belongs to the Section Cancer Informatics and Big Data)
Show Figures

Figure 1

19 pages, 1282 KiB  
Article
The Role of Radiomic Analysis and Different Machine Learning Models in Prostate Cancer Diagnosis
by Eleni Bekou, Ioannis Seimenis, Athanasios Tsochatzis, Karafyllia Tziagkana, Nikolaos Kelekis, Savas Deftereos, Nikolaos Courcoutsakis, Michael I. Koukourakis and Efstratios Karavasilis
J. Imaging 2025, 11(8), 250; https://doi.org/10.3390/jimaging11080250 - 23 Jul 2025
Viewed by 327
Abstract
Prostate cancer (PCa) is the most common malignancy in men. Precise grading is crucial for the effective treatment approaches of PCa. Machine learning (ML) applied to biparametric Magnetic Resonance Imaging (bpMRI) radiomics holds promise for improving PCa diagnosis and prognosis. This study investigated [...] Read more.
Prostate cancer (PCa) is the most common malignancy in men. Precise grading is crucial for the effective treatment approaches of PCa. Machine learning (ML) applied to biparametric Magnetic Resonance Imaging (bpMRI) radiomics holds promise for improving PCa diagnosis and prognosis. This study investigated the efficiency of seven ML models to diagnose the different PCa grades, changing the input variables. Our studied sample comprised 214 men who underwent bpMRI in different imaging centers. Seven ML algorithms were compared using radiomic features extracted from T2-weighted (T2W) and diffusion-weighted (DWI) MRI, with and without the inclusion of Prostate-Specific Antigen (PSA) values. The performance of the models was evaluated using the receiver operating characteristic curve analysis. The models’ performance was strongly dependent on the input parameters. Radiomic features derived from T2WI and DWI, whether used independently or in combination, demonstrated limited clinical utility, with AUC values ranging from 0.703 to 0.807. However, incorporating the PSA index significantly improved the models’ efficiency, regardless of lesion location or degree of malignancy, resulting in AUC values ranging from 0.784 to 1.00. There is evidence that ML methods, in combination with radiomic analysis, can contribute to solving differential diagnostic problems of prostate cancers. Also, optimization of the analysis method is critical, according to the results of our study. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

19 pages, 2931 KiB  
Article
Prediction of Breast Cancer Response to Neoadjuvant Therapy with Machine Learning: A Clinical, MRI-Qualitative, and Radiomics Approach
by Rami Hajri, Charles Aboudaram, Nathalie Lassau, Tarek Assi, Leony Antoun, Joana Mourato Ribeiro, Magali Lacroix-Triki, Samy Ammari and Corinne Balleyguier
Life 2025, 15(8), 1165; https://doi.org/10.3390/life15081165 - 23 Jul 2025
Viewed by 376
Abstract
Background: Pathological complete response (pCR) serves as a prognostic surrogate endpoint for long-term clinical outcomes in breast cancer patients receiving neoadjuvant systemic therapy (NAST). This study aims to develop and evaluate machine learning-based biomarkers for predicting pCR and recurrence-free survival (RFS). Methods: This [...] Read more.
Background: Pathological complete response (pCR) serves as a prognostic surrogate endpoint for long-term clinical outcomes in breast cancer patients receiving neoadjuvant systemic therapy (NAST). This study aims to develop and evaluate machine learning-based biomarkers for predicting pCR and recurrence-free survival (RFS). Methods: This retrospective monocentric study included 235 women (mean age 46 ± 11 years) with non-metastatic breast cancer treated with NAST. We developed various machine learning models using clinical features (age, genetic mutations, TNM stage, hormonal receptor expression, HER2 status, and histological grade), along with morphological features (size, T2 signal, and surrounding edema) and radiomics data extracted from pre-treatment MRI. Patients were divided into training and test groups with different MRI models. A customized machine learning pipeline was implemented to handle these diverse data types, consisting of feature selection and classification components. Results: The models demonstrated superior prediction ability using radiomics features, with the best model achieving an AUC of 0.72. Subgroup analysis revealed optimal performance in triple-negative breast cancer (AUC of 0.80) and HER2-positive subgroups (AUC of 0.65). Conclusion: Machine learning models incorporating clinical, qualitative, and radiomics data from pre-treatment MRI can effectively predict pCR in breast cancer patients receiving NAST, particularly among triple-negative and HER2-positive breast cancer subgroups. Full article
(This article belongs to the Special Issue New Insights Into Artificial Intelligence in Medical Imaging)
Show Figures

Figure 1

19 pages, 2950 KiB  
Article
Nomogram Based on the Most Relevant Clinical, CT, and Radiomic Features, and a Machine Learning Model to Predict EGFR Mutation Status in Non-Small Cell Lung Cancer
by Anass Benfares, Abdelali yahya Mourabiti, Badreddine Alami, Sara Boukansa, Ikram Benomar, Nizar El Bouardi, Moulay Youssef Alaoui Lamrani, Hind El Fatimi, Bouchra Amara, Mounia Serraj, Mohammed Smahi, Abdeljabbar Cherkaoui, Mamoun Qjidaa, Ahmed Lakhssassi, Mohammed Ouazzani Jamil, Mustapha Maaroufi and Hassan Qjidaa
J. Respir. 2025, 5(3), 11; https://doi.org/10.3390/jor5030011 - 23 Jul 2025
Viewed by 305
Abstract
Background: This study aimed to develop a nomogram based on the most relevant clinical, CT, and radiomic features comprising 11 key signatures (2 clinical, 2 CT-based, and 7 radiomic) for the non-invasive prediction of the EGFR mutation status and to support the timely [...] Read more.
Background: This study aimed to develop a nomogram based on the most relevant clinical, CT, and radiomic features comprising 11 key signatures (2 clinical, 2 CT-based, and 7 radiomic) for the non-invasive prediction of the EGFR mutation status and to support the timely initiation of tyrosine kinase inhibitor (TKI) therapy in patients with non-small cell lung cancer (NSCLC) adenocarcinoma. Methods: Retrospective real-world data were collected from 521 patients with histologically confirmed NSCLC adenocarcinoma who underwent CT imaging and either surgical resection or pathological biopsy for EGFR mutation testing. Five Random Forest classification models were developed and trained on various datasets constructed by combining clinical, CT, and radiomic features extracted from CT image regions of interest (ROIs), with and without feature preselection. Results: The model trained exclusively on the most relevant clinical, CT, and radiomic features demonstrated superior predictive performance compared to the other models, with strong discrimination between EGFR-mutant and wild-type cases (AUC = 0.88; macro-average = 0.90; micro-average = 0.89; precision = 0.90; recall = 0.94; F1-score = 0.91; and accuracy = 0.87). Conclusions: A nomogram constructed using a Random Forest model trained solely on the most informative clinical, CT, and radiomic features outperformed alternative approaches in the non-invasive prediction of the EGFR mutation status, offering a promising decision-support tool for precision treatment planning in NSCLC. Full article
Show Figures

Figure 1

19 pages, 507 KiB  
Review
Radiomics and Radiogenomics in Differentiating Progression, Pseudoprogression, and Radiation Necrosis in Gliomas
by Sohil Reddy, Tyler Lung, Shashank Muniyappa, Christine Hadley, Benjamin Templeton, Joel Fritz, Daniel Boulter, Keshav Shah, Raj Singh, Simeng Zhu, Jennifer K. Matsui and Joshua D. Palmer
Biomedicines 2025, 13(7), 1778; https://doi.org/10.3390/biomedicines13071778 - 21 Jul 2025
Viewed by 449
Abstract
Over recent decades, significant advancements have been made in the treatment and imaging of gliomas. Conventional imaging techniques, such as MRI and CT, play critical roles in glioma diagnosis and treatment but often fail to distinguish between tumor pseudoprogression (Psp) and radiation necrosis [...] Read more.
Over recent decades, significant advancements have been made in the treatment and imaging of gliomas. Conventional imaging techniques, such as MRI and CT, play critical roles in glioma diagnosis and treatment but often fail to distinguish between tumor pseudoprogression (Psp) and radiation necrosis (RN) versus true progression (TP). Emerging fields like radiomics and radiogenomics are addressing these challenges by extracting quantitative features from medical images and correlating them with genomic data, respectively. This article will discuss several studies that show how radiomic features (RFs) can aid in better patient stratification and prognosis. Radiogenomics, particularly in predicting biomarkers such as MGMT promoter methylation and 1p/19q codeletion, shows potential in non-invasive diagnostics. Radiomics also offers tools for predicting tumor recurrence (rBT), essential for treatment management. Further research is needed to standardize these methods and integrate them into clinical practice. This review underscores radiomics and radiogenomics’ potential to revolutionize glioma management, marking a significant shift towards precision neuro-oncology. Full article
(This article belongs to the Special Issue Mechanisms and Novel Therapeutic Approaches for Gliomas)
Show Figures

Figure 1

23 pages, 2304 KiB  
Review
Machine Learning for Coronary Plaque Characterization: A Multimodal Review of OCT, IVUS, and CCTA
by Alessandro Pinna, Alberto Boi, Lorenzo Mannelli, Antonella Balestrieri, Roberto Sanfilippo, Jasjit Suri and Luca Saba
Diagnostics 2025, 15(14), 1822; https://doi.org/10.3390/diagnostics15141822 - 19 Jul 2025
Viewed by 499
Abstract
Coronary plaque vulnerability, more than luminal stenosis, drives acute coronary syndromes. Optical coherence tomography (OCT), intravascular ultrasound (IVUS), and coronary computed tomography angiography (CCTA) visualize plaque morphology in vivo, but manual interpretation is time-consuming and operator-dependent. We performed a narrative literature survey of [...] Read more.
Coronary plaque vulnerability, more than luminal stenosis, drives acute coronary syndromes. Optical coherence tomography (OCT), intravascular ultrasound (IVUS), and coronary computed tomography angiography (CCTA) visualize plaque morphology in vivo, but manual interpretation is time-consuming and operator-dependent. We performed a narrative literature survey of artificial intelligence (AI) applications—focusing on machine learning (ML) architectures—for automated coronary plaque segmentation and risk characterization across OCT, IVUS, and CCTA. Recent ML models achieve expert-level lumen and plaque segmentation, reliably detecting features linked to vulnerability such as a lipid-rich necrotic core, calcification, positive remodelling, and a napkin-ring sign. Integrative radiomic and multimodal frameworks further improve prognostic stratification for major adverse cardiac events. Nonetheless, progress is constrained by small, single-centre datasets, heterogeneous validation metrics, and limited model interpretability. AI-enhanced plaque assessment offers rapid, reproducible, and comprehensive coronary imaging analysis. Future work should prioritize large multicentre repositories, explainable architectures, and prospective outcome-oriented validation to enable routine clinical adoption. Full article
(This article belongs to the Special Issue Machine Learning in Precise and Personalized Diagnosis)
Show Figures

Figure 1

Back to TopTop