Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = quaternary shallow groundwater

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4456 KiB  
Article
Assessing Climate Change Impacts on Groundwater Recharge and Storage Using MODFLOW in the Akhangaran River Alluvial Aquifer, Eastern Uzbekistan
by Azam Kadirkhodjaev, Dmitriy Andreev, Botir Akramov, Botirjon Abdullaev, Zilola Abdujalilova, Zulkhumar Umarova, Dilfuza Nazipova, Izzatullo Ruzimov, Shakhriyor Toshev, Erkin Anorboev, Nodirjon Rakhimov, Farrukh Mamirov, Inessa Gracheva and Samrit Luoma
Water 2025, 17(15), 2291; https://doi.org/10.3390/w17152291 - 1 Aug 2025
Viewed by 432
Abstract
A shallow quaternary sedimentary aquifer within the river alluvial deposits of eastern Uzbekistan is increasingly vulnerable to the impacts of climate change and anthropogenic activities. Despite its essential role in supplying water for domestic, agricultural, and industrial purposes, the aquifer system remains poorly [...] Read more.
A shallow quaternary sedimentary aquifer within the river alluvial deposits of eastern Uzbekistan is increasingly vulnerable to the impacts of climate change and anthropogenic activities. Despite its essential role in supplying water for domestic, agricultural, and industrial purposes, the aquifer system remains poorly understood. This study employed a three-dimensional MODFLOW-based groundwater flow model to assess climate change impacts on water budget components under the SSP5-8.5 scenario for 2020–2099. Model calibration yielded RMSE values between 0.25 and 0.51 m, indicating satisfactory performance. Simulations revealed that lateral inflows from upstream and side-valley alluvial deposits contribute over 84% of total inflow, while direct recharge from precipitation (averaging 120 mm/year, 24.7% of annual rainfall) and riverbed leakage together account for only 11.4%. Recharge occurs predominantly from November to April, with no recharge from June to August. Under future scenarios, winter recharge may increase by up to 22.7%, while summer recharge could decline by up to 100%. Groundwater storage is projected to decrease by 7.3% to 58.3% compared to 2010–2020, indicating the aquifer’s vulnerability to prolonged dry periods. These findings emphasize the urgent need for adaptive water management strategies and long-term monitoring to ensure sustainable groundwater use under changing climate conditions. Full article
(This article belongs to the Special Issue Climate Change Uncertainties in Integrated Water Resources Management)
Show Figures

Figure 1

22 pages, 13795 KiB  
Article
The Nucleation and Degradation of Pothole Wetlands by Human-Driven Activities and Climate During the Quaternary in a Semi-Arid Region (Southern Iberian Peninsula)
by A. Jiménez-Bonilla, I. Expósito, F. Gázquez, J. L. Yanes and M. Rodríguez-Rodríguez
Geographies 2025, 5(3), 27; https://doi.org/10.3390/geographies5030027 - 24 Jun 2025
Viewed by 313
Abstract
In this study, we selected a series of pothole wetlands to investigate their nucleation, evolution, and recent anthropogenic degradation in the Alcores Depression (AD), southern Iberian Peninsula, where over 100 closed watersheds containing shallow, ephemeral water bodies up to 2 hm2 have [...] Read more.
In this study, we selected a series of pothole wetlands to investigate their nucleation, evolution, and recent anthropogenic degradation in the Alcores Depression (AD), southern Iberian Peninsula, where over 100 closed watersheds containing shallow, ephemeral water bodies up to 2 hm2 have been identified. We surveyed the regional geological framework, utilized digital elevation models (DEMs), orthophotos, and aerial images since 1956. Moreover, we analyzed precipitation and temperature data in Seville from 1900 to 2024, collected hydrometeorological data since 1990 and modelled the water level evolution from 2002 to 2025 in a representative pothole in the area. Our observations indicate a flooded surface reduction by more than 90% from the 1950s to 2025. Climatic data reveal an increase in annual mean temperatures since 1960 and a sharp decline in annual precipitation since 2000. The AD’s inception due to tectonic isolation during the Quaternary favoured the formation of pothole wetlands in the floodplain. The reduction in the hydroperiod and wetland degradation was primarily due to agricultural expansion since 1950, which followed an increase in groundwater extraction and altered the original topography. Recently, decreased precipitation has exponentially accelerated the degradation and even the complete disappearance of many potholes. This study underscores the fragility of small wetlands in the Mediterranean basin and the critical role of human management in their preservation. Restoring these ecosystems could be a highly effective nature-based solution, especially in semi-arid climates like southern Spain. These prairie potholes are crucial for enhancing groundwater recharge, which is vital for maintaining water availability in regions with limited precipitation. By facilitating rainwater infiltration into the aquifer, recharge potholes increase groundwater levels. Additionally, they capture and store run-off during heavy rainfall, reducing the risk of flooding and soil erosion. Beyond their hydrological functions, these wetlands provide habitats that support biodiversity and promote ecological resilience, reinforcing the need for their protection and recovery. Full article
Show Figures

Figure 1

18 pages, 3086 KiB  
Article
Earth Fissures During Groundwater Depletion and Recovery: A Case Study at Shitangwan, Wuxi, Jiangsu, China
by Guang-Ya Wang, Jin-Qi Zhu, Greg G. You, Dan Zhang, Jun Yu, Fu-Gang Gou and Jian-Qiang Wu
Hydrology 2025, 12(3), 62; https://doi.org/10.3390/hydrology12030062 - 19 Mar 2025
Viewed by 585
Abstract
The Shitangwan earth fissure is a resultant geological hazard due to prolonged groundwater depletion and land subsidence in Wuxi, China, since the 1980s. Initially observed in 1991, the earth fissure experienced continuous development over the next several decades. Employing a diverse array of [...] Read more.
The Shitangwan earth fissure is a resultant geological hazard due to prolonged groundwater depletion and land subsidence in Wuxi, China, since the 1980s. Initially observed in 1991, the earth fissure experienced continuous development over the next several decades. Employing a diverse array of techniques, including field monitoring via multilayered borehole extensometers, earth fissure monitoring for lateral and vertical movements, advanced geophysical exploration, and conventional geological investigations, this study aims to mitigate the risks associated with land subsidence and earth fissures. It is found that the groundwater has recovered to the levels in the 1980s, land subsidence and earth fissuring have ceased, and the earth fissuring is closely linked to the land subsidence. A bedrock ridge and a river course are underlying porous Quaternary sediments beneath the earth fissure. The formation of the earth fissure is the result of a combination of factors, including spatial and temporal variations in strata compression, rugged bedrock terrain, and the heterogeneity of the strata profile. Land subsidence is primarily attributed to the deep pumping aquifer and its adjacent aquitards, which are responsive to groundwater recovery with a time lag of a decade, and the land rebound accounts for 2% of the accumulated land subsidence. Estimations suggest that the depth of the earth fissure may have reached the bedrock ridge. The mechanism of the earth fissuring is the coupled effect of tension from the rotation of shallow soil strata along the bedrock ridge and shearing of strata driven by the differential compression of deep strata below the ridge level. Full article
(This article belongs to the Section Soil and Hydrology)
Show Figures

Figure 1

27 pages, 10829 KiB  
Article
Potentiality Delineation of Groundwater Recharge in Arid Regions Using Multi-Criteria Analysis
by Heba El-Bagoury, Mahmoud H. Darwish, Sedky H. A. Hassan, Sang-Eun Oh, Kotb A. Attia and Hanaa A. Megahed
Water 2025, 17(5), 766; https://doi.org/10.3390/w17050766 - 6 Mar 2025
Viewed by 1077
Abstract
This study integrates morphometric analysis, remote sensing, and GIS with the analytical hierarchical process (AHP) to identify high potential groundwater recharge areas in Wadi Abadi, Egyptian Eastern Desert, supporting sustainable water resource management. Groundwater recharge primarily comes from rainfall and Nile River water, [...] Read more.
This study integrates morphometric analysis, remote sensing, and GIS with the analytical hierarchical process (AHP) to identify high potential groundwater recharge areas in Wadi Abadi, Egyptian Eastern Desert, supporting sustainable water resource management. Groundwater recharge primarily comes from rainfall and Nile River water, particularly for Quaternary aquifers. The analysis focused on the Quaternary and Nubian Sandstone aquifers, evaluating 16 influencing parameters, including elevation, slope, rainfall, lithology, soil type, and land use/land cover (LULC). The drainage network was derived from a 30 m-resolution Digital Elevation Model (DEM). ArcGIS 10.8 was used to classify the basin into 13 sub-basins, with layers reclassified and weighted using a raster calculator. The groundwater potential map revealed that 24.95% and 29.87% of the area fall into very low and moderate potential categories, respectively, while low, high, and very high potential zones account for 18.62%, 17.65%, and 8.91%. Data from 41 observation wells were used to verify the potential groundwater resources. In this study, the ROC curve was applied to assess the accuracy of the GWPZ models generated through different methods. The validation results indicated that approximately 87% of the wells corresponded accurately with the designated zones on the GWPZ map, confirming its reliability. Over-pumping in the southwest has significantly lowered water levels in the Quaternary aquifer. This study provides a systematic approach for identifying groundwater recharge zones, offering insights that can support resource allocation, well placement, and aquifer sustainability in arid regions. This study also underscores the importance of recharge assessment for shallow aquifers, even in hyper-arid environments. Full article
(This article belongs to the Special Issue Advance in Groundwater in Arid Areas)
Show Figures

Figure 1

26 pages, 9680 KiB  
Article
Development of Transient Hydrodynamic and Hydrodispesive Models in Semi-Arid Environments
by Samir Hakimi, Mohamed Abdelbaset Hessane, Mohammed Bahir, Turki Kh. Faraj and Paula M. Carreira
Hydrology 2025, 12(3), 46; https://doi.org/10.3390/hydrology12030046 - 3 Mar 2025
Viewed by 931
Abstract
The hydrogeological study of the Rharb coastal basin, located in the semi-arid northwest region of Morocco, focuses on its two aquifers: the Plio-Quaternary aquifer characterized by high-quality water with salt concentrations ranging from 0.4 to 2 g/L, and the Upper Quaternary aquifer, with [...] Read more.
The hydrogeological study of the Rharb coastal basin, located in the semi-arid northwest region of Morocco, focuses on its two aquifers: the Plio-Quaternary aquifer characterized by high-quality water with salt concentrations ranging from 0.4 to 2 g/L, and the Upper Quaternary aquifer, with lower water quality (2 to 6 g/L). The deep aquifer is overexploited for agricultural purposes. This overexploitation has led to declining piezometric levels and the worsening of the oceanic intrusion phenomenon. The study aims to develop a numerical model for a period of 15 years, from 1992/93 to 2006/07 for monitoring groundwater quantity and quality, considering recharge, exploitation, and basin characteristics. A hydrodynamic model based on storage coefficient calibration identifies overexploitation for irrigation, increasing from 93 Mm3 in 1993 to 170 Mm3 in 2007, as the primary driver of declining water levels. A hydrodispersive model highlights higher salt concentrations in the shallow aquifer (up to 6 g/L), high nitrate concentrations due to human activity, and pinpoints areas of seawater intrusion approximately 500 m from the shoreline. Although the deeper aquifer remains relatively preserved, negative hydraulic balances from −15.4 Mm3 in 1993 to −36.6 Mm3 in 2007 indicate an impending critical period. Full article
Show Figures

Figure 1

29 pages, 12659 KiB  
Article
Characterization of Groundwater Geochemistry in an Esker Aquifer in Western Finland Based on Three Years of Monitoring Data
by Samrit Luoma, Jarkko Okkonen, Kirsti Korkka-Niemi, Nina Hendriksson and Miikka Paalijärvi
Water 2024, 16(22), 3301; https://doi.org/10.3390/w16223301 - 17 Nov 2024
Cited by 1 | Viewed by 1464
Abstract
This study investigated the hydrogeochemistry of a shallow Quaternary sedimentary aquifer in an esker deposition in western Finland, where distinct spatial and temporal variability in groundwater hydrogeochemistry has been observed. Field investigation and hydrogeochemical data were obtained from autumn 2010 to autumn 2013. [...] Read more.
This study investigated the hydrogeochemistry of a shallow Quaternary sedimentary aquifer in an esker deposition in western Finland, where distinct spatial and temporal variability in groundwater hydrogeochemistry has been observed. Field investigation and hydrogeochemical data were obtained from autumn 2010 to autumn 2013. The data were analyzed using the multivariate statistical methods principal component analysis (PCA) and hierarchical cluster analysis (HCA), in conjunction with groundwater classification based on the main ionic composition. The stable isotope ratios of δ18O and δD were used to determine the origin of the groundwater and its connection to surface water bodies. The groundwater geochemistry is characterized by distinct redox zones caused by the influence of organic matter, pyrite oxidation, and preferential flow pathways due to different hydrogeological conditions. The groundwater is of the Ca-HCO3 type and locally of the Ca-HCO3-SO4 type, with low TDS, alkalinity, and pH, but elevated Fe and Mn concentrations, KMnO4 consumption, and, occasionally, Ni concentrations. The decomposition of organic matter adds CO2 to the groundwater, and in this study, the dissolution of CO2 was found to increase the pH and enhance the buffering capacity of the groundwater. The mobility of redox-sensitive elements and trace metals is controlled by pH and redox conditions, which are affected by the pumping rate, precipitation, and temperature. With the expected future increases in precipitation and temperature, the buffering capacity of the aquifer system will enhance the balance between alkalinity from bioactivity and acidity from recharge and pyrite oxidation. Full article
Show Figures

Figure 1

36 pages, 46209 KiB  
Article
Subsidence and Uplift in Active and Closed Lignite Mines: Impacts of Energy Transition and Climate Change
by Artur Guzy
Energies 2024, 17(22), 5540; https://doi.org/10.3390/en17225540 - 6 Nov 2024
Cited by 1 | Viewed by 1088
Abstract
This study examines the combined effects of decommissioning lignite mining operations and long-term climate trends on groundwater systems and land surface movements in the Konin region of Poland, which is characterised by extensive open-pit lignite extraction. The findings reveal subsidence rates ranging from [...] Read more.
This study examines the combined effects of decommissioning lignite mining operations and long-term climate trends on groundwater systems and land surface movements in the Konin region of Poland, which is characterised by extensive open-pit lignite extraction. The findings reveal subsidence rates ranging from −26 to 14 mm per year within mining zones, while land uplift of a few millimetres per year occurred in closed mining areas between 2015 and 2022. Groundwater levels in shallow Quaternary and deeper Paleogene–Neogene aquifers have declined significantly, with drops of up to 26 m observed near active mining, particularly between 2009 and 2019. A smaller groundwater decline of around a few metres was observed outside areas influenced by mining. Meteorological data show an average annual temperature of 8.9 °C from 1991 to 2023, with a clear warming trend of 0.0050 °C per year since 2009. Although precipitation patterns show a slight increase from 512 mm to 520 mm, a shift towards drier conditions has emerged since 2009, characterised by more frequent dry spells. These climatic trends, combined with mining activities, highlight the need for adaptive groundwater management strategies. Future research should focus on enhanced monitoring of groundwater recovery and sustainable practices in post-mining landscapes. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

22 pages, 4991 KiB  
Article
Evaluation of Groundwater Resources in the Qeft Area of Egypt: A Geophysical and Geochemical Perspective
by Alhussein Adham Basheer, Elsayed I. Selim, Alaa Ahmed and Adel Kotb
Sustainability 2024, 16(11), 4815; https://doi.org/10.3390/su16114815 - 5 Jun 2024
Cited by 3 | Viewed by 2293
Abstract
This study focuses on the critical issue of access to clean water in water-stressed regions like the Middle East and North Africa (MENA). To address the challenges of water stress, the study proposes an integrated approach involving geographical, statistical, and geophysical analysis. The [...] Read more.
This study focuses on the critical issue of access to clean water in water-stressed regions like the Middle East and North Africa (MENA). To address the challenges of water stress, the study proposes an integrated approach involving geographical, statistical, and geophysical analysis. The objectives are to assess the distribution of pollutants such as heavy metals, salts, and water turbidity near industrial facilities; identify their sources and pathways; evaluate water quality and its impact on human health; and improve environmental classification using geophysical and geochemical methods. The study area, located southeast of Qena city, is characterized by an arid climate with minimal rainfall and is primarily covered by Upper Cretaceous and Lower Eocene rocks. The third layer in the study area is considered a shallow aquifer of Quaternary alluvial deposits; it deepens from 20 m to 93 m, displaying resistivity from 18 Ω∙m to 120 Ω∙m, with thickness increasing downstream to approximately 90 m. Understanding groundwater flow from northeast to southeast is crucial for understanding pollutant distribution in the region. The research reveals variations in groundwater quality, including high total dissolved solids (TDS) ranging from 240 to 531 mg/L and electrical conductivity (EC) values ranging from 376–802 μS/cm, as well as the presence of heavy metals. Some water samples exceeded the recommended limits for certain parameters set by the World Health Organization (WHO). Spatial distribution analysis showed higher mineralization toward the northeast of the study area. Overall, the integrated approach proposed in this study can contribute to effective water-management strategies to ensure sustainable water resources and protect public health in water-stressed regions like Egypt. Full article
Show Figures

Figure 1

22 pages, 14942 KiB  
Article
Numerical Study of the Thermo-Hydro-Mechanical Coupling Impacts of Shallow Geothermal Borehole Groups in Fractured Rock Mass on Geological Environment
by Yujin Ran, Jia Peng, Xiaolin Tian, Dengyun Luo, Bin Yang, Peng Pei and Long Tang
Energies 2024, 17(6), 1384; https://doi.org/10.3390/en17061384 - 13 Mar 2024
Cited by 1 | Viewed by 1310
Abstract
Fractured rock mass is extensively distributed in Karst topography regions, and its geological environment is different from that of the quaternary strata. In this study, the influences on geological environment induced by the construction and operation of a large-scale borehole group of ground [...] Read more.
Fractured rock mass is extensively distributed in Karst topography regions, and its geological environment is different from that of the quaternary strata. In this study, the influences on geological environment induced by the construction and operation of a large-scale borehole group of ground source heat pumps are analyzed by a thermo-hydro-mechanical (THM) coupling numerical model. It was found that groundwater is redirected as the boreholes can function as channels to the surface, and the flow velocity in the upstream of borehole group is higher than those downstream. This change in groundwater flow enhances heat transfer in the upstream boreholes but may disturb the original groundwater system and impact the local geological environment. Heat accumulation is more likely to occur downstream. The geo-stress concentration appears in the borehole area, mainly due to exaction and increasing with the depth. On the fracture plane, tensile stress and maximum shear stress simultaneously occur on the upstream of boreholes, inducing the possibility of fracturing or the expansion of existing fractures. There is a slight uplift displacement on the surface after the construction of boreholes. The correlations of the above THM phenomena are discussed and analyzed. From the modeling results, it is suggested that the consolidation of backfills can minimize the environmental disturbances in terms of groundwater redirection, thermal accumulation, occurrence of tensile stress, and possible fracturing. This study provides support for the assessment of impacts on geological environments resulting from shallow geothermal development and layout optimization of ground heat exchangers in engineering practices. Full article
(This article belongs to the Special Issue Geothermal Heat Pumps and Heat Exchangers)
Show Figures

Figure 1

22 pages, 13735 KiB  
Article
Geochemical Characteristics and Controlling Factors of Groundwater Chemical Composition in the Zihe River Source Area, Shandong, China
by Jing You, Yueming Qi, Guangyu Shao and Chao Ma
Water 2024, 16(2), 298; https://doi.org/10.3390/w16020298 - 15 Jan 2024
Cited by 6 | Viewed by 2142
Abstract
The geochemical characterization and evolution of shallow groundwater in the Zihe River source area is a key issue that needs to be addressed. In this study, a combination of traditional geochemical techniques and geochemical modeling was used to explain the geochemical processes and [...] Read more.
The geochemical characterization and evolution of shallow groundwater in the Zihe River source area is a key issue that needs to be addressed. In this study, a combination of traditional geochemical techniques and geochemical modeling was used to explain the geochemical processes and major ion sources in the chemical evolution of shallow groundwater in the Zihe River source area, Northeast China. Fifty-seven water samples were collected in June 2020 for chemical analysis, and the results showed that the main groundwater chemistry types in the three major aquifers are HCO3·SO4-Ca·Mg-type pore water from loose quaternary rocks, HCO3·SO4-Ca·Mg-type karstic fissure water from carbonate rocks, and HCO3·SO4-Ca-type weathered fissure water from massive rocks. Water–rock interactions in alkaline environments were the main causes of changes in groundwater chemistry. Rock weathering dominated the geochemical evolution of each aquifer. The analysis of ion concentration ratios and modeling revealed that the aquifer’s chemical components are mainly derived from the dissolution of dolomite and calcite and partly from the infiltration of pollutants containing Cl and NO3, as well as from the dissolution of quartz. Mg2+ is derived from the dissolution of dolomite. HCO3 is primarily derived from the co-dissolution of calcite and dolomite, and to a lesser extent, its content is also influenced by the recharge of rainfall. SO42 has two sources: it mainly originates from the dissolution of gypsum and the anhydrite layer, followed by atmospheric precipitation. The synthesis showed that the groundwater quality in the source area of Zihe River is good, all the indices reached the standard of class III groundwater quality, and the overall degree of human pollution is low. The results of this research will provide a scientific basis for the local authorities to delineate karst groundwater protection zones in the Zihe River source area and to formulate resource management strategies for the development, utilization, and protection of karst groundwater. Full article
Show Figures

Figure 1

13 pages, 3039 KiB  
Article
Groundwater Circulation Mechanism of the Upstream Area of Beiniuchuan River Using Isotope–Hydrochemical Tracer
by Li Chen, Pucheng Zhu, Pei Liu, Wei Zhang, Xinxin Geng and Linna Ma
Water 2023, 15(22), 4000; https://doi.org/10.3390/w15224000 - 17 Nov 2023
Cited by 1 | Viewed by 1281
Abstract
In order to achieve the rational development and utilization of underground water resources in the Dongsheng mining area under coal mining conditions, we selected the upstream area of Beiniuchuan River as a typical region. Through field investigations, sampling tests, and the application of [...] Read more.
In order to achieve the rational development and utilization of underground water resources in the Dongsheng mining area under coal mining conditions, we selected the upstream area of Beiniuchuan River as a typical region. Through field investigations, sampling tests, and the application of hydrochemical and isotope techniques, we traced the groundwater circulation mechanism in the Dongsheng mining area. The results indicate that the majority of the Quaternary alluvial and Salawusu Formation groundwater is of the HCO3-Ca type, with a TDS content below 300 mg/L. However, in some areas, the hydrochemical type becomes complex due to anthropogenic contamination. The shallow-buried Yan’an Formation groundwater is either of the HCO3-Ca·Mg type or the HCO3·SO4-Ca·Mg type, with TDS content ranging from 200 to 750 mg/L. The Yan’an Formation at depths greater than 40 m exhibits complex water chemistry, with a TDS content higher than 500 mg/L, and it belongs to the Cl-Na type, with TDS around 700 mg/L. The hydrogen and oxygen isotope results indicate that the local groundwater is primarily recharged via atmospheric precipitation. The 3H and 14C results show that the Quaternary alluvial and shallow-buried Yan’an Formation groundwater has a fast turnover rate, while the deep-buried Yan’an Formation and Yan’chang Formation groundwater have a slower turnover rate. The regional groundwater circulation can be generalized into three flow systems: shallow, intermediate, and deep. Under the influence of coal mining activities, the water circulation conditions in the study area have undergone significant changes. The sealing integrity of the Yan’an Formation has been compromised, and precipitation and shallow groundwater have enhanced the vertical infiltration capacity of the formation, increasing the proportion of groundwater participating in the intermediate flow system. As a result, the river runoff mainly dependent on the discharge from the shallow flow system has drastically decreased. Full article
Show Figures

Figure 1

18 pages, 8318 KiB  
Article
Investigating Multilayer Aquifer Dynamics by Combining Geochemistry, Isotopes and Hydrogeological Context Analysis
by Francis Proteau-Bedard, Paul Baudron, Nicolas Benoit, Miroslav Nastev, Ryan Post and Janie Masse-Dufresne
Hydrology 2023, 10(11), 211; https://doi.org/10.3390/hydrology10110211 - 13 Nov 2023
Cited by 2 | Viewed by 3914
Abstract
Geochemical tracers have the potential to provide valuable insights for constructing conceptual models of groundwater flow, especially in complex geological contexts. Nevertheless, the reliability of tracer interpretation hinges on its integration into a robust geological framework. In our research, we concentrated on delineating [...] Read more.
Geochemical tracers have the potential to provide valuable insights for constructing conceptual models of groundwater flow, especially in complex geological contexts. Nevertheless, the reliability of tracer interpretation hinges on its integration into a robust geological framework. In our research, we concentrated on delineating the groundwater flow dynamics in the Innisfil Creek watershed, located in Ontario, Canada. We amalgamated extensive hydrogeological data derived from a comprehensive 3D geological model with the analysis of 61 groundwater samples, encompassing major ions, stable water isotopes, tritium, and radiocarbon. By seamlessly incorporating regional physiographic characteristics, flow pathways, and confinement attributes, we bolstered the efficiency of these tracers, resulting in several notable findings. Firstly, we identified prominent recharge and discharge zones within the watershed. Secondly, we observed the coexistence of relatively shallow and fast-flowing paths with deeper, slower-flowing channels, responsible for transporting groundwater from ancient glacial events. Thirdly, we determined that cation exchange stands as the predominant mechanism governing the geochemical evolution of contemporary water as it migrates toward confined aquifers situated at the base of the Quaternary sequence. Fourthly, we provided evidence of the mixing of modern, low-mineralized water originating from unconfined aquifer units with deep, highly mineralized water within soil–bedrock interface aquifers. These findings not only contribute significantly to the development a conceptual flow model for the sustainable management of groundwater in the Innisfil watershed, but also offer practical insights that hold relevance for analogous geological complexities encountered in other regions. Full article
Show Figures

Figure 1

23 pages, 6910 KiB  
Article
Spatial Variability Characteristics and Influencing Factors of Soil Fluoride in the Western Nansihu Lake Basin
by Huijian Shi, Ruixue Lv, Yingxiao Liu, Dawei Xiao, Zhen Wang, Xia Yuan, Lanyu Liu and Cuicui Yu
Water 2023, 15(21), 3855; https://doi.org/10.3390/w15213855 - 5 Nov 2023
Cited by 3 | Viewed by 1857
Abstract
The western plain of the Nansihu Lake Basin (NLB) is an important agricultural economic zone in Shandong Province, where there is a high content of fluoride in soils. Studying the content and influencing factors of fluoride in soils is of great significance for [...] Read more.
The western plain of the Nansihu Lake Basin (NLB) is an important agricultural economic zone in Shandong Province, where there is a high content of fluoride in soils. Studying the content and influencing factors of fluoride in soils is of great significance for the maintenance of regional eco-logical security and human health. This study takes the farmland soils in the west of NLB as the research focus and uses a method based on GIS and geostatistics to quantitatively analyze the spatial variation characteristics of soil total fluoride and water-soluble fluoride contents to draw a map showing their spatial distribution. The effects on the spatial distribution of soil total fluoride and water-soluble fluoride were analyzed from the aspects of geomorphological type, soil parent material (stratigraphic lithology), crop type, and groundwater fluoride concentration, among others, and the correlation between groundwater and soil fluoride contents was also analyzed. Our study results in the following findings: (1) The average content of total fluoride in topsoil in the study area is 652.8 mg/kg, the national background value is exceeded in 99.5% of the sampling sites, and the background value of Shandong Province is exceeded in 98.7% of the sampling sites. The average water-soluble fluoride is 15.2 mg/kg and exceeds 5.0 mg/kg in 94.3% of the sampling sites. Topsoils have high values of total fluoride and water-soluble fluoride. (2) The total fluoride and water-soluble fluoride in topsoils exhibit moderate spatial variability, indicating that their spatial distribution is the result of structural factors such as soil parent materials and man-made random factors such as fluorinated fertilizers. (3) In the 2 m vertical profile of shallow soils, total fluoride and water-soluble fluoride increase with the increase in soil viscosity, and the water-soluble fluoride has the characteristics of surface aggregation due to the influence of soil adsorption. Because fluoride ions as ligands are easily adsorbed and form fluoride complexes with other ions such as aluminum ions, the water-soluble fluoride shows the characteristics of surface aggregation and fractionation. (4) The analysis of influencing factors reveals that the lithology of Quaternary strata, geomorpho-logical types, and planting crop types have significant effects on the distribution of the total fluoride and water-soluble fluoride in the topsoils, and the distribution of the groundwater soluble fluoride in the topsoils is not related to that in groundwater. Our study provides data and technical support for improving both the soil environmental quality and water quality of the eastern route of the South-to-North Water Transfer Project, thus helping to promote the sustainable development of the social economy and ecological environment in the NLB. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

30 pages, 11140 KiB  
Article
Evaluation of Groundwater Potential Using Aquifer Characteristics in Urambo District, Tabora Region, Tanzania
by Athuman R. Yohana, Edikafubeni E. Makoba, Kassim R. Mussa and Ibrahimu C. Mjemah
Earth 2023, 4(4), 776-805; https://doi.org/10.3390/earth4040042 - 18 Oct 2023
Cited by 2 | Viewed by 3083
Abstract
In developing countries like Tanzania, groundwater studies are essential for water resource planning, development, and management. Limited hydrogeological information on groundwater occurrence, availability, and distribution in Urambo District is termed a key factor that hinders groundwater development. This research was aimed at the [...] Read more.
In developing countries like Tanzania, groundwater studies are essential for water resource planning, development, and management. Limited hydrogeological information on groundwater occurrence, availability, and distribution in Urambo District is termed a key factor that hinders groundwater development. This research was aimed at the evaluation of groundwater potential zones in a granitic gneiss aquifer in Urambo District by integrating six indicators (transmissivity, specific capacity, static water level, yield, total dissolved solids, and geology) that were developed and applied in the study area. The indicators were further combined, and a groundwater potential index map (GWPIM) was prepared using relative weights derived from the analytical hierarchy process (AHP). The results show that 67% and 27% of the study area are categorized as moderate and high groundwater potential zones, respectively. Groundwater is controlled by both Quaternary sediments (sands and gravels) and weathered to fractured granitic gneiss. Quaternary sediments host the major shallow aquifers (<35 m) with relatively high transmissivity, specific capacity, and yield (1.5 m2/day, 16.36 m2/day, and 108 m3/day, respectively). Granitic gneiss is not strongly fractured/weathered and forms an aquifer with a relatively low yield of about 10.08 m3/day. The findings were validated using three boreholes, and the results are consistent with the developed GWPIM. Such findings are of great importance in groundwater development as the techniques applied can be extended to other areas in Tanzania as well as other countries that experience similar geological environments. Full article
Show Figures

Figure 1

18 pages, 12344 KiB  
Article
Hydrochemical Characteristics and Formation Mechanism of Quaternary Groundwater in Baoshan Basin, Western Yunnan, China
by Yi Xiao, Jiahui Zhang, Aihua Long, Shiguang Xu, Tingting Guo, Xinchen Gu, Xiaoya Deng and Pei Zhang
Water 2023, 15(15), 2736; https://doi.org/10.3390/w15152736 - 28 Jul 2023
Cited by 10 | Viewed by 1705
Abstract
The shallow groundwater of the quaternary system in the Baoshan basin, Yunnan Province is seriously polluted, threatening human health and restricting local socio-economic development; therefore, it is necessary to investigate the hydrochemical characteristics and formation mechanisms of the shallow groundwater of the quaternary [...] Read more.
The shallow groundwater of the quaternary system in the Baoshan basin, Yunnan Province is seriously polluted, threatening human health and restricting local socio-economic development; therefore, it is necessary to investigate the hydrochemical characteristics and formation mechanisms of the shallow groundwater of the quaternary system in the Baoshan basin. This study used EVS 2022 to establish a 3D visual geological model of the quaternary system in the basin and divided the shallow groundwater aquifers of the quaternary system into three groundwater systems, sampling 22, 9, and 4 groups in each groundwater system, respectively. Mathematical statistics, Piper’s trilinear diagram, Gibbs plots, the Gaillardet model, the ion ratio method, groundwater saturation, and the PCA-APCS-MLR model were used to analyze the groundwater hydrochemical characteristics and genesis of the study area. The results show the following: (1) The types of groundwater chemicals are mainly HCO3-Ca-Mg type and HCO3-Ca, the causes of the water chemical characteristics are mainly influenced by water–rock interaction and alternate cation adsorption, and the rock types with which the groundwater exchanges substances are carbonate rocks and silicate rocks. (2) The Fe2+, Mn2+, and NH3-N contents in groundwater systems I and II exceed the standard, which is the human activity area, and groundwater pollution is mainly affected by human activities. (3) Four main categories of factors were obtained according to the PCA-APCS-MLR model, namely dissolution filtration, migration and enrichment factors, geological and human activity factors, and environmental factors and pollution factors; the cumulative contribution of variance was 77.84%, and the groundwater chemical characteristics were jointly influenced by hydrogeological conditions and human activities. The results of this study provide a basis for groundwater protection and management in the Baoshan basin, where groundwater system I is the key area for pollution and should be strengthened for control. Full article
(This article belongs to the Topic Groundwater Pollution Control and Groundwater Management)
Show Figures

Figure 1

Back to TopTop