Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = quasi-zero dynamic stiffness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4711 KiB  
Article
Dynamical Analysis and Optimization of Combined Vibration Isolator with Time Delay
by Yaowei Wang and Xiangyu Li
Mathematics 2025, 13(13), 2188; https://doi.org/10.3390/math13132188 - 4 Jul 2025
Viewed by 220
Abstract
Vibration control has long been a key concern in engineering, with low-frequency vibration isolation remaining particularly challenging. Traditional linear isolators are limited in their ability to provide high load-bearing capacity and effective low-frequency isolation simultaneously. In contrast, quasi-zero stiffness (QZS) isolators offer low [...] Read more.
Vibration control has long been a key concern in engineering, with low-frequency vibration isolation remaining particularly challenging. Traditional linear isolators are limited in their ability to provide high load-bearing capacity and effective low-frequency isolation simultaneously. In contrast, quasi-zero stiffness (QZS) isolators offer low dynamic stiffness near equilibrium while maintaining high static stiffness, thereby enabling superior isolation performance in the low and ultra-low frequency range. This paper proposes a novel vibration isolation system that combines a grounded dynamic absorber with a QZS isolator, incorporating time-delay feedback control to enhance performance. The dynamic equations of the system are derived using Newton’s second law. The harmonic balance method combined with the arc-length continuation technique is employed to obtain steady-state responses under harmonic force excitation. The influence of feedback gain and time delay on vibration isolation effectiveness and dynamic behavior is analyzed, demonstrating the ability of time-delay feedback to modulate system responses and suppress primary resonance peaks. To further enhance performance, a genetic algorithm is used to optimize the control parameters under harmonic force excitation. The force transmissibility is defined as fitness functions, and the effects of control parameters on these metrics are examined. The results show that the optimized time-delay feedback parameters significantly reduce the transmitted force, improving the overall isolation efficiency. The proposed system provides a promising approach for achieving high-performance vibration isolation in low-frequency environments. Full article
Show Figures

Figure 1

16 pages, 5105 KiB  
Article
A Novel Quadrilateral-Shaped Vibration Isolation Platform and Its Application in the Offshore Floating Platform
by Zhenbin Guo, Jing Bian, Liangyu Li and Ning Su
Appl. Sci. 2025, 15(13), 7456; https://doi.org/10.3390/app15137456 - 3 Jul 2025
Viewed by 252
Abstract
Offshore wind platforms face critical low-frequency vibration challenges requiring advanced isolation solutions. This work develops a quadrilateral-shaped vibration isolation platform (QVIP) with a quasi-zero stiffness property for floating structures, combining negative stiffness elements and optimized damping to achieve high-static-low-dynamic-stiffness. Theoretical modeling establishes the [...] Read more.
Offshore wind platforms face critical low-frequency vibration challenges requiring advanced isolation solutions. This work develops a quadrilateral-shaped vibration isolation platform (QVIP) with a quasi-zero stiffness property for floating structures, combining negative stiffness elements and optimized damping to achieve high-static-low-dynamic-stiffness. Theoretical modeling establishes the QVIP’s working principle and parametric behavior, while numerical simulations validate its ultra-low frequency (<1 Hz) suppression capabilities with time domain analysis. The design overcomes conventional trade-offs between low-frequency isolation and load-bearing capacity, offering improved stability for offshore applications compared to linear isolators. Results demonstrate effective vibration control through tailored nonlinear stiffness characteristics (e.g., 48.17% isolation efficiency, 39.48% peak amplitude reduction, and 73.14% variance reduction), suggesting practical viability for next-generation floating platforms. Full article
(This article belongs to the Special Issue Recent Research and Applications of Vibration Isolation and Control)
Show Figures

Figure 1

27 pages, 7046 KiB  
Article
Design, Optimization, and Realization of a Magnetic Multi-Layer Quasi-Zero-Stiffness Isolation Platform Supporting Different Loads
by Shuaijie Yang, Xiuting Sun, Jiawei Qian, Jian Xu and Kaixiang Li
Materials 2025, 18(7), 1676; https://doi.org/10.3390/ma18071676 - 6 Apr 2025
Viewed by 602
Abstract
This study presents a Multi-layer Quasi-Zero-Stiffness (ML-QZS) vibration isolation platform for variable loads in large-amplitude and low-frequency dynamic environments. In one isolation mount of the proposed ML-QZS isolation platform, Multi-layer permanent magnets are constructed to generate discontinuous Multi-layer negative-stiffness regions. The first design [...] Read more.
This study presents a Multi-layer Quasi-Zero-Stiffness (ML-QZS) vibration isolation platform for variable loads in large-amplitude and low-frequency dynamic environments. In one isolation mount of the proposed ML-QZS isolation platform, Multi-layer permanent magnets are constructed to generate discontinuous Multi-layer negative-stiffness regions. The first design criterion is to achieve the low-frequency and wide-amplitude vibration isolation range for different loads. The second design criterion is carried out for the dynamic performances of transient and steady states. Since both structural design and damping determine vibration transient time and the displacement transmissibility, which often exhibit contradictions depending on system parameters, a bi-objective Pareto optimization criterion is proposed to balance the vibration transients between different layers while ensuring significant isolation effectiveness in one layer. Finally, the relevant experimental prototype is constructed, and the results verify the design principle of Multi-layer double magnetic ring construction and optimization criterions for structural parameters and damping coefficients. This study provides an advanced nonlinear isolation platform with a wide QZS range for different loads, and the optimization method to coordinate the vibration performances, which provides important theoretical and experimental guidance for the design and realization of isolation platforms in practical engineering applications for large-amplitude and low-frequency dynamic environments. Full article
Show Figures

Figure 1

23 pages, 8862 KiB  
Review
Design Methodology and Application Dynamics of Compact Quasi-Zero Stiffness Isolators
by Yingqi Zhu, Qingchao Yang, Shuyong Liu and Kai Chai
Appl. Sci. 2025, 15(7), 3478; https://doi.org/10.3390/app15073478 - 22 Mar 2025
Viewed by 952
Abstract
With the rapid development of precision instruments, aerospace, and automotive industries, the demand for compact vibration isolators capable of suppressing low-frequency vibrations has surged. Although prior reviews have established the theoretical framework of quasi-zero stiffness (QZS) isolators, critical gaps persist in addressing their [...] Read more.
With the rapid development of precision instruments, aerospace, and automotive industries, the demand for compact vibration isolators capable of suppressing low-frequency vibrations has surged. Although prior reviews have established the theoretical framework of quasi-zero stiffness (QZS) isolators, critical gaps persist in addressing their compact design under strong nonlinear dynamics and diverse engineering constraints. This review systematically analyzes the dynamic characteristics of QZS systems under nonlinear effects and evaluates five innovative design methodologies for compact QZS isolators: special spring type, magnetic type, bionic type, metamaterials-based type, and origami-inspired type. Key findings reveal that special spring-type isolators are simple to design and space-efficient but difficult to machine. Magnetic-type isolators achieve ultra-low start-up frequencies but face thermal instability. Metamaterial designs enable multifunctional integration at the cost of manufacturing complexity, while bionic-inspired and origami-inspired isolators are difficult to abstract for practical applications. We find that current research tends to prioritize miniaturization over the synergistic optimization of load capacity, broadband isolation, and adaptability. Future research should focus on multi-degree-of-freedom systems, coupled metamaterials-bionic structures, and active magnetic control. This work provides a key roadmap for advancing compact QZS technology in space-constrained applications. Full article
(This article belongs to the Collection Recent Applications of Active and Passive Noise Control)
Show Figures

Figure 1

20 pages, 10631 KiB  
Article
Improving Low-Frequency Vibration Energy Harvesting of a Piezoelectric Cantilever with Quasi-Zero Stiffness Structure: Theory and Experiment
by Chunli Hua, Donglin Zou and Guohua Cao
Actuators 2025, 14(2), 93; https://doi.org/10.3390/act14020093 - 14 Feb 2025
Viewed by 1089
Abstract
In this study, a novel cantilever piezoelectric energy harvester is constructed by using a quasi-zero stiffness (QZS) structure. The QZS structure consists of a classic piezoelectric cantilever beam combined with some accessories that include two pre-compression springs, rolling bearings, slideways and a cylindrical [...] Read more.
In this study, a novel cantilever piezoelectric energy harvester is constructed by using a quasi-zero stiffness (QZS) structure. The QZS structure consists of a classic piezoelectric cantilever beam combined with some accessories that include two pre-compression springs, rolling bearings, slideways and a cylindrical cam. The purpose of the QZS structure is to reduce the natural frequencies of the harvester, so that it can more efficiently collect low-frequency vibration energy. In this study, firstly, the extended Hamilton variational principle is used to establish the dynamic equations of the continuous system. Secondly, the Galerkin method is used to discretize the partial differential equation, and then the analytical solutions of the output voltage, current, power and vibration response of the harvester are obtained. Finally, the influence of the QZS structure on energy harvesting characteristics is studied. Theoretical research shows that the QZS structure can effectively reduce the fundamental natural frequency of the cantilever beam and improve its energy harvesting efficiency. When the spring stiffness is about half of the bending stiffness of the cantilever beam, the uncoupled fundamental natural frequency of the harvester is quasi-zero. For the experimental device considered here, experiments show that the QZS structure can reduce the fundamental natural frequency from 76.4 Hz to 54.1 Hz, decreasing by 22.3 Hz. The maximum output power is increased from 1.43 mW/g2 to 1.95 mW/g2, an increase of 36.4%. The experimental results validate the theoretical model. In short, this paper provides a new idea for the design of energy harvesters suitable for low-frequency vibration. Full article
(This article belongs to the Section Actuator Materials)
Show Figures

Figure 1

17 pages, 4964 KiB  
Article
NiTi Alloy Quasi-Zero Stiffness Vibration Isolation Structure with Adjustable Mechanical Properties
by Qian Wu, Jianxiang Qiao, Xinping Li, Shengsheng Wang, Bingqian Li, Siyang Wu, Zhenguo Wang and Jiangtao Ji
Machines 2025, 13(2), 92; https://doi.org/10.3390/machines13020092 - 24 Jan 2025
Cited by 2 | Viewed by 699
Abstract
Despite the significant engineering applications of vibration isolation structures, there remain challenges in adjusting low-frequency isolation performance. To tackle this issue, this study proposes a temperature-controlled quasi-zero stiffness vibration isolation structure utilizing NiTi shape memory alloys. The stiffness and vibration isolation performance of [...] Read more.
Despite the significant engineering applications of vibration isolation structures, there remain challenges in adjusting low-frequency isolation performance. To tackle this issue, this study proposes a temperature-controlled quasi-zero stiffness vibration isolation structure utilizing NiTi shape memory alloys. The stiffness and vibration isolation performance of the structure can be adjusted by modifying the heat treatment process and temperature variations of the alloy. The vibration isolation system is composed of vertical and horizontal alloy beams, with structural mechanics analysis performed to develop both static and dynamic theoretical models. The study investigates the effects of the heat treatment process on the phase transition characteristics and mechanical properties of nickel-titanium alloys, and analyzes the correlation between the heat treatment parameters of alloy beams and the stiffness performance of vibration isolation structures. By applying temperature variations to the alloy beams, the stiffness and vibration isolation performance of the entire structure can be dynamically adjusted. This research provides theoretical guidance for achieving adjustable vibration isolation performance across low-frequency and wide ranges, offering promising prospects for the application of vibration isolation structures in dynamic environments. Full article
(This article belongs to the Special Issue Advances in 4D Printing Technology)
Show Figures

Figure 1

16 pages, 4382 KiB  
Article
Vibration Mitigation in the Transport of Fruit Boxes Using 3D-Printed Devices
by Pedro Sanchez-Cachinero, Cristina Aguilar-Porro and Rafael R. Sola-Guirado
Agriculture 2025, 15(2), 131; https://doi.org/10.3390/agriculture15020131 - 9 Jan 2025
Viewed by 1369
Abstract
The transport of freshly post-harvested fruit to its collection point is mainly achieved using trailers over uneven terrain, which generates impacts and vibrations that negatively affect the quality of the fruit. Although some solutions to mitigate these effects have been proposed in previous [...] Read more.
The transport of freshly post-harvested fruit to its collection point is mainly achieved using trailers over uneven terrain, which generates impacts and vibrations that negatively affect the quality of the fruit. Although some solutions to mitigate these effects have been proposed in previous studies, none of them are applied directly to the source of the problem, i.e., the transport boxes. In this context, metamaterial sheets inspired by the design of quasi-zero stiffness isolators (QZSs) open up the possibility of exploring ways of vibration isolation thanks to their associated nonlinear characteristics. In this work, ABS sheets with different internal geometries were manufactured and compared as possible bottoms of transport boxes. Vibration reduction not only protects the physical integrity of the fruit, avoiding visible damage such as bumps or bruises, but also preserves its chemical properties, such as texture and freshness, which directly impacts its shelf life and presentation for sale. The design variables analyzed for these geometries included the number of ribs, their thickness and their angle of inclination. In these specimens, their behavior to impact-type forces and their experimental dynamic behavior were studied using an electromagnetic shaker against a sinusoidal signal and against the uniaxial vibration recorded at the base of a trailer in a real rural route. The results showed that the specimens with a rib angle of 30° and a thickness of 0.4 mm showed the best impact performance and a higher amplification of vibration transmissibility in the steady state. In the presence of the signal recorded on the route, transmissibility reduction percentages between 13% and 19% were obtained in the principal acceleration impact. Full article
Show Figures

Figure 1

18 pages, 7299 KiB  
Article
Planar Two-Dimensional Vibration Isolator Based on Compliant Mechanisms
by Ruizhe Zhu, Jinpeng Hu, Long Huang, Leiyu Zhang and Guangan Ren
Micromachines 2025, 16(1), 10; https://doi.org/10.3390/mi16010010 - 25 Dec 2024
Viewed by 897
Abstract
In practical engineering applications, the vibration is often generated in various directions and can be harmful to the engineering equipment. Thus, it is necessary to develop vibration isolators that can reduce vibration in multiple directions. In this paper, we propose a planar two-dimensional [...] Read more.
In practical engineering applications, the vibration is often generated in various directions and can be harmful to the engineering equipment. Thus, it is necessary to develop vibration isolators that can reduce vibration in multiple directions. In this paper, we propose a planar two-dimensional vibration isolator based on compliant mechanisms. The proposed mechanism consists of two negative stiffness-compliant modules and two positive stiffness-compliant modules, which leads to the quasi-zero stiffness (QZS) property in the mechanism. The dynamic model is established by using the third-order Taylor expansion and the harmonic balance method. Based on the dynamic model, the influence of different parameters on the displacement transmissibility is discussed, including damping ratio, system stiffness, and excitation amplitude. Finally, we conducted the vibration isolation experiments and obtained the displacement transmissibility of the isolator. The results verify that the proposed isolator has good isolation performance for low-frequency vibration. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

30 pages, 11448 KiB  
Article
Novel Nonlinear Suspension Based on Concept of Origami Metastructures: Theoretical and Experimental Investigations
by Antonio Zippo, Giovanni Iarriccio, Moslem Molaie and Francesco Pellicano
Vibration 2024, 7(4), 1126-1155; https://doi.org/10.3390/vibration7040058 - 22 Nov 2024
Viewed by 1295
Abstract
This study presents a comprehensive investigation of an innovative mechanical system inspired by recent advancements in metamaterials; more specifically, the work is focused on origami-type structures due to their intriguing mechanical properties. Originating from specific fields such as aerospace for their lightweight and [...] Read more.
This study presents a comprehensive investigation of an innovative mechanical system inspired by recent advancements in metamaterials; more specifically, the work is focused on origami-type structures due to their intriguing mechanical properties. Originating from specific fields such as aerospace for their lightweight and foldable characteristics, origami mechanical devices exhibit unique nonlinear stiffness; in particular, when suitably designed, they show Quasi-Zero Stiffness (QZS) characteristics within a specific working range. The QZS property, aligned with the High Static Low Dynamic (HSLD) stiffness concept, suggests promising applications such as a low-frequency mechanical passive vibration isolator. The study explores the vibration isolation characteristics of origami-type suspensions, with a particular emphasis on their potential application as low-frequency passive vibration isolators. The Kresling Origami Module (KOM) has been selected for its compactness and compatibility with 3D printers. A detailed analysis using 3D CAD, Finite Element Analysis, and experimental testing has been carried out. The investigation includes the analysis of the influence of geometric parameters on the nonlinear force–displacement curve. Multibody simulations validate the low-frequency isolation properties within the QZS region, as well as disparities in dynamic properties beyond the QZS range. The study underscores the transformative potential of origami-type metamaterials in enhancing low-frequency vibration isolation technology. It also highlights challenges related to material properties and loading mass variations, providing valuable insights for future developments in this promising field. Full article
Show Figures

Figure 1

15 pages, 4024 KiB  
Article
Research on Landing Dynamics of Foot-High Projectile Body for High-Precision Microgravity Simulation System
by Zhenhe Jia, Yuehua Li, Weijie Hou, Libin Zang, Qiang Han, Baoshan Zhao, Bin Gao, Haiteng Liu, Yuhan Chen, Yumin An and Huibo Zhang
Actuators 2024, 13(9), 361; https://doi.org/10.3390/act13090361 - 16 Sep 2024
Viewed by 978
Abstract
A high-precision ground microgravity simulation environment serves as the prerequisite and key to studying landing dynamics in microgravity environments. However, the microgravity level accuracy in traditional ground simulation tests is difficult to guarantee and fails to precisely depict the collision behavior of massive [...] Read more.
A high-precision ground microgravity simulation environment serves as the prerequisite and key to studying landing dynamics in microgravity environments. However, the microgravity level accuracy in traditional ground simulation tests is difficult to guarantee and fails to precisely depict the collision behavior of massive spacecraft. To solve such problems, this paper takes the microgravity simulation system based on quasi-zero stiffness (QZS) mechanism as the research object, and simulates a high-precision and high-level microgravity environment. Then, the collision contact force model of the planar foot and high elastic body rubber is established, the landing dynamics research under different microgravity environments is carried out, the influence of different microgravity environments on the landing behavior of large mass spacecraft is analyzed in depth, and ground microgravity simulation experiments are carried out. The results show that the microgravity simulation level reaches 10−4 g, the error of gravity compensation for each working condition is not more than 4.22%, and the error of sinking amount is not more than 4.61%, which verifies the superior compensation performance of the QZS mechanism and the accuracy of the dynamic model. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

14 pages, 6596 KiB  
Article
Vibration Isolation and Launch Performance Enhancement of the Spacecraft In-Orbit Launch Design Using the Nonlinear Dynamic Feature
by Xu Zhou, Weihao Tong, Lu Dai and Boyuan Wei
Appl. Sci. 2024, 14(10), 4250; https://doi.org/10.3390/app14104250 - 17 May 2024
Viewed by 1495
Abstract
This paper proposes a new spacecraft in-orbit launch design using a nonlinear configuration to utilize nonlinear dynamics for the enhancement of vibration isolation and launch performance. The in-orbit launch device has four springs, where the stroke directions of two springs are perpendicular to [...] Read more.
This paper proposes a new spacecraft in-orbit launch design using a nonlinear configuration to utilize nonlinear dynamics for the enhancement of vibration isolation and launch performance. The in-orbit launch device has four springs, where the stroke directions of two springs are perpendicular to the launch direction so as to produce nonlinearity with negative stiffness for enhancing the launch velocity. The other two springs are designed to counterbalance the above negative stiffness when the launch outlet is shut down, leading to quasi-zero dynamic stiffness for vibration isolation enhancement. The dynamic equations of the in-orbit launch device for both the on- and off-launch are presented. Then the performance enhancement of both the vibration isolation and launch performance is thoroughly investigated via comparative study and parametric study. The resonance peak is reduced by 4.16 dB, the effective vibration isolation bandwidth is increased by 57%, and the launch speed is increased 1.64 times. This validates the performance improvement of the new launch device design and presents a useful guideline for application. Full article
Show Figures

Figure 1

19 pages, 5391 KiB  
Article
The Development of a High-Static Low-Dynamic Cushion for a Seat Containing Large Amounts of Friction
by Janik Habegger, Megan E. Govers, Marwan Hassan and Michele L. Oliver
Vibration 2024, 7(2), 388-406; https://doi.org/10.3390/vibration7020020 - 25 Apr 2024
Cited by 1 | Viewed by 1572
Abstract
Exposure to whole-body vibration (WBV) has been shown to result in lower-back pain, sciatica, and other forms of discomfort for operators of heavy equipment. While WBV is defined to be between 0.5 and 80 Hz, humans are most sensitive to vertical vibrations between [...] Read more.
Exposure to whole-body vibration (WBV) has been shown to result in lower-back pain, sciatica, and other forms of discomfort for operators of heavy equipment. While WBV is defined to be between 0.5 and 80 Hz, humans are most sensitive to vertical vibrations between 5 and 10 Hz. To reduce WBV exposure, a novel seat cushion is proposed that optimally tunes a High-Static Low-Dynamic (HSLD) stiffness isolator. Experimental and numerical results indicate that the cushion can drastically increase the size of the attenuation region compared to a stock foam cushion. When placed on top of a universal tractor seat, the cushion is capable of mitigating vibrations at frequencies higher than 1.1 Hz. For comparison, the universal tractor seat with a stock foam cushion isolates vibrations between 3.4 and 4.1 Hz, as well as frequencies larger than 4.8 Hz. Friction within the universal seat is accurately modeled using the Force Balance Friction Model (FBFM), and an analysis is conducted to show why friction hinders overall seat performance. Finally, the cushion is shown to be robust against changes in mass, assuming accurate tuning of the preload is possible. Full article
Show Figures

Figure 1

16 pages, 1379 KiB  
Article
Dynamic Bending Model Describing the Generation of Negative Stiffness by Buckled Beams: Qualitative Analysis and Experimental Verification
by Pascal Fossat, Madhurima Kothakota, Mohamed Ichchou and Olivier Bareille
Appl. Sci. 2023, 13(16), 9458; https://doi.org/10.3390/app13169458 - 21 Aug 2023
Cited by 3 | Viewed by 2118
Abstract
This work addresses the dynamic modeling of a negative stiffness absorber consisting of an assembly of curved beams. Design rules are derived from the orders of magnitude of stiffness and elastic energy stored by the negative stiffness elements. Although static and dynamic performances [...] Read more.
This work addresses the dynamic modeling of a negative stiffness absorber consisting of an assembly of curved beams. Design rules are derived from the orders of magnitude of stiffness and elastic energy stored by the negative stiffness elements. Although static and dynamic performances are widely documented using equivalent spring–mass system equations of motion, this paper presents a modeling approach based on beam dynamics to predict the behavior by incorporating the generation of negative stiffness with prestressed Euler beams. The static behavior is first recalled to feed the dynamic beam model with realistic orders of magnitude. The latter is derived from the beam balance instead of the spring–mass system and aims at solving the beam problem, which encompasses more realistic phenomena compared to introducing the equivalent stiffness in the spring–mass equation of motion. The consistency of the beam modeling is confirmed by comparison with available models in the literature and finite element simulations. A mock-up is built in which beam-type components are 3D-printed. Axial loading is introduced on the curved beams to evaluate its influence on the response of the isolator, and the observed softening trend complies with the theoretical predictions. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

18 pages, 13273 KiB  
Article
Quasi-Zero Stiffness Isolator Suitable for Low-Frequency Vibration
by Guangdong Sui, Xiaofan Zhang, Shuai Hou, Xiaobiao Shan, Weijie Hou and Jianming Li
Machines 2023, 11(5), 512; https://doi.org/10.3390/machines11050512 - 26 Apr 2023
Cited by 8 | Viewed by 5495
Abstract
This paper proposes a quasi-zero stiffness (QZS) isolator based on an inclined trapezoidal beam to explore its advantages in low-frequency passive vibration isolation. The nonlinear stiffness of the inclined trapezoidal beam due to the buckling effect is investigated through finite element simulation, and [...] Read more.
This paper proposes a quasi-zero stiffness (QZS) isolator based on an inclined trapezoidal beam to explore its advantages in low-frequency passive vibration isolation. The nonlinear stiffness of the inclined trapezoidal beam due to the buckling effect is investigated through finite element simulation, and a linear positive stiffness spring is connected in parallel to form a QZS isolator with high-static and low-dynamic stiffness performance. The natural frequency of the isolator in the QZS region is simulated and analyzed, and the dynamic response of the QZS isolator under different damping ratios, excitation and load conditions is explored. The prototype of the QZS isolator was manufactured, and a static compression experiment was conducted to obtain its nonlinear stiffness. The dynamic experiment results verify the correctness of the simulation conclusions. The simulation and experimental data demonstrate that the QZS isolator has the characteristics of lower initial isolation frequency compared with the equivalent linear isolator. The proposed QZS isolator has an initial isolation frequency of 2.91 Hz and achieves a 90% isolation efficiency at 7.02 Hz. The proposed QZS isolator has great application prospects and can provide a reference for optimizing low-frequency or ultra-low-frequency isolators. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

16 pages, 7868 KiB  
Article
Theoretical and Experimental Investigations on High-Precision Micro-Low-Gravity Simulation Technology for Lunar Mobile Vehicle
by Weijie Hou, Yongbo Hao, Chang Wang, Lei Chen, Guangping Li, Baoshan Zhao, Hao Wang, Qingqing Wei, Shuo Xu, Kai Feng and Libin Zang
Sensors 2023, 23(7), 3458; https://doi.org/10.3390/s23073458 - 25 Mar 2023
Cited by 11 | Viewed by 2463
Abstract
With the development of space technology, the functions of lunar vehicles are constantly enriched, and the structure is constantly complicated, which puts forward more stringent requirements for its ground micro-low-gravity simulation test technology. This paper puts forward a high-precision and high-dynamic landing buffer [...] Read more.
With the development of space technology, the functions of lunar vehicles are constantly enriched, and the structure is constantly complicated, which puts forward more stringent requirements for its ground micro-low-gravity simulation test technology. This paper puts forward a high-precision and high-dynamic landing buffer test method based on the principle of magnetic quasi-zero stiffness. Firstly, the micro-low-gravity simulation system for the lunar vehicle was designed. The dynamic model of the system and a position control method based on fuzzy PID parameter tuning were established. Then, the dynamic characteristics of the system were analyzed through joint simulation. At last, a prototype of the lunar vehicle’s vertical constant force support system was built, and a micro-low-gravity landing buffer test was carried out. The results show that the simulation results were in good agreement with the test results. The sensitivity of the system was better than 0.1%, and the constant force deviation was 0.1% under landing impact conditions. The new method and idea are put forward to improve the micro-low-gravity simulation technology of lunar vehicles. Full article
Show Figures

Figure 1

Back to TopTop