Design Methodology and Application Dynamics of Compact Quasi-Zero Stiffness Isolators
Abstract
:1. Introduction
2. Fundamentals of QZS
2.1. Basic Principle of QZS
2.2. The Design Flow of QZS Isolation
2.3. Dynamic Characteristics of QZS Isolation
3. Compact Design of QZS Isolation
3.1. Special Spring Type
3.1.1. Disc Springs
3.1.2. Wave Springs
3.1.3. Planar Springs
3.1.4. Transverse Notch Springs
3.2. Magnetic Type
3.2.1. Permanent Iron Type Magnetic Springs
3.2.2. Electromagnetic Coil-Based Magnetic Springs
3.3. Bionic Type
3.3.1. Bionic Leg Structure
3.3.2. Bionic Neck Structure
3.3.3. Bionic Beetle Structure
3.4. Metamaterials-Based Type
3.5. Origami-Inspired Type
3.6. Other Type
3.6.1. Geometric Nonlinear Structure
3.6.2. Leveraged Magnification Principle
3.6.3. Single Structure
3.6.4. Compliant Structure
3.6.5. Air Spring Structure
4. Summary and Outlook
4.1. Summary
4.2. Outlook
- (i).
- Currently, most of the vibration isolation devices focus on the suppression in the vertical direction, but in practical engineering, such as the suppression of seismic loads in high-risk buildings, the vibration and noise reduction design of ships coupled with waves and engine vibration, and the vibration design of airplanes under airflow disturbances and landing impacts, the multidirectional and complex excitations cannot be avoided. Therefore, the multi-degree-of-freedom QZS system has a broader application potential. However, there is a lack of systematic modeling methods for key issues such as nonlinear stiffness matching and decoupling of energy transfer paths under multidirectional excitation. Future research is urgently needed to establish a multidirectional collaborative design theory that integrates the negative stiffness regulation mechanism and, at the same time, develops optimization algorithms that can take into account the coordination of axial load-carrying capacity and multidirectional stiffness to cope with the complex effects of multidimensional excitations in practical engineering.
- (ii).
- The combination of metamaterials and biomimetic design provides more freedom in the design of QZS isolation, especially in improving structural durability and saving space. In the future, the performance and adaptability of vibration isolators can be further enhanced through the development of new tunable composite materials and bionic structures, especially for applications in extreme operating environments.
- (iii).
- Magnetic compact design mainly focuses on the optimization of space structure and the improvement of magnetic density. In general, permanent magnets can provide greater magnetic field strength than electromagnetic coils, but permanent magnets are fragile and demagnetized at high temperatures, which limits the application of permanent magnet coils in strong shock and high-temperature environments. Electromagnetic coils are difficult to develop a large enough magnetic stiffness, which requires optimization in the magnetic circuit design.
- (iv).
- Due to the significant differences in different application scenarios, the design requirements of QZS isolation show diverse characteristics. Compact structural design, strong load-bearing capacity, flexible adjustability, sufficient travel, and effective isolation of vibrations of different amplitudes are all key factors to be considered in the design process. Therefore, the development of QZS isolation with multiple characteristics has become a core direction for future research. By integrating the above characteristics, it is expected to break through the limitations of the existing vibration isolation technology, better meet the increasingly complex and demanding vibration isolation needs in various fields, and promote the wide application and in-depth development of vibration isolation technology in engineering practice.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
QZS | quasi-zero stiffness |
References
- Wang, X.; Liu, X.; Shan, Y.; He, T. Design, Simulation and Experiment of Particle Dampers Attached to a Precision Instrument in Spacecraft. J. Vibroeng. 2015, 17, 1605–1614. [Google Scholar]
- Hermsdorf, G.L.; Szilagyi, S.A.; Rösch, S.; Schäffer, E. High Performance Passive Vibration Isolation System for Optical Tables Using Six-Degree-of-Freedom Viscous Damping Combined with Steel Springs. Rev. Sci. Instrum. 2019, 90, 015113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, X.; Zhang, X.; Xu, G.; Wu, A. Measurements and Evaluation of Road Traffic-Induced Micro-Vibration in a Workshop Equipped with Precision Instruments. Buildings 2024, 14, 1142. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Y.; Sun, Z.; Wang, C.; Shi, Y. A Compound Regulative Pneumatic Vibration Isolator with Quasi-Zero Stiffness Mechanism for Load Variable Instruments. IEEE Trans. Instrum. Meas. 2024, 73, 7505610. [Google Scholar] [CrossRef]
- Tian, Z.; Yan, X.P.; Zhang, C.; Xiong, Y.P.; Yang, P. Vibration Characteristics Analysis on Ship Propulsion System Taking Hull Deformations into Account. Teh. Vjesn.-Tech. Gaz. 2016, 23, 783–790. [Google Scholar]
- Li, S.; Feng, G.; Zhao, Q. Design and Research of Semiactive Quasi-Zero Stiffness Vibration Isolation System for Vehicles. Shock Vib. 2021, 2021, 5529509. [Google Scholar] [CrossRef]
- Shen, Y.; Hua, J.; Fan, W.; Liu, Y.; Yang, X.; Chen, L. Optimal Design and Dynamic Performance Analysis of a Fractional-Order Electrical Network-Based Vehicle Mechatronic ISD Suspension. Mech. Syst. Signal Process. 2023, 184, 109718. [Google Scholar] [CrossRef]
- Gao, P.; Yu, T.; Zhang, Y.; Wang, J.; Zhai, J. Vibration Analysis and Control Technologies of Hydraulic Pipeline System in Aircraft: A Review. Chin. J. Aeronaut. 2021, 34, 83–114. [Google Scholar] [CrossRef]
- He, Z.; Feng, X.; Zhu, Y.; Yu, Z.; Li, Z.; Zhang, Y.; Wang, Y.; Wang, P.; Zhao, L. Progress of Stewart Vibration Platform in Aerospace Micro–Vibration Control. Aerospace 2022, 9, 324. [Google Scholar] [CrossRef]
- Habib, A.; Yildirim, U. Influence of isolator properties and earthquake characteristics on the seismic behavior of RC structure equipped with quintuple friction pendulum bearings. Int. J. Struct. Stab. Dyn. 2023, 23, 2350060. [Google Scholar] [CrossRef]
- Habib, A.; Yildirim, U. Proposing unsupervised clustering-based earthquake records selection framework for computationally efficient nonlinear response history analysis of structures equipped with multi-stage friction pendulum bearings. Soil Dyn. Earthq. Eng. 2024, 182, 108732. [Google Scholar]
- Habib, A.; Junaid, M.T.; Dirar, S.; Barakat, S.; Al-Sadoon, Z.A. Machine learning-based estimation of reinforced concrete columns stiffness modifiers for improved accuracy in linear response history analysis. J. Earthq. Eng. 2025, 29, 130–155. [Google Scholar]
- Yang, T.; Zhou, S.; Fang, S.; Qin, W.; Inman, D.J. Nonlinear Vibration Energy Harvesting and Vibration Suppression Technologies: Designs, Analysis, and Applications. Appl. Phys. Rev. 2021, 8, 031317. [Google Scholar]
- Zhu, Z.; Tang, H.; Huang, Y.; Lin, Z.; Tian, Y.; Yu, P.; Su, C. A Compliant Self-Stabilization Nanopositioning Device with Modified Active–Passive Hybrid Vibration Isolation Strategy. IEEE ASME Trans. Mechatron. 2023, 28, 3305–3316. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, L.; Dong, Q.; Sui, J.; Sun, M.; Wang, J.; Yu, X. Experimental Study on the Active Control and Dynamic Characteristics of Electromagnetic Active–Passive Hybrid Vibration Isolation System. Appl. Sci. 2023, 13, 10565. [Google Scholar] [CrossRef]
- De Silva, C.W. (Ed.) Vibration and Shock Handbook, 1st ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Ma, Z.; Zhou, R.; Yang, Q. Recent Advances in Quasi-Zero Stiffness Vibration Isolation Systems: An Overview and Future Possibilities. Machines 2022, 10, 813. [Google Scholar] [CrossRef]
- Wang, Y.C.; Lakes, R.S. Extreme Stiffness Systems Due to Negative Stiffness Elements. Am. J. Phys. 2004, 72, 40–50. [Google Scholar]
- Carrella, A.; Brennan, M.J.; Waters, T.P. Static Analysis of a Passive Vibration Isolator with Quasi-Zero-Stiffness Characteristic. J. Sound Vib. 2007, 301, 678–689. [Google Scholar]
- Carrella, A.; Brennan, M.J.; Waters, T.P. Optimization of a Quasi-Zero-Stiffness Isolator. J. Mech. Sci. Technol. 2007, 21, 946–949. [Google Scholar]
- Carrella, A.; Brennan, M.J.; Kovacic, I.; Waters, T.P. On the Force Transmissibility of a Vibration Isolator with Quasi-Zero-Stiffness. J. Sound Vib. 2009, 322, 707–717. [Google Scholar]
- Carrella, A.; Brennan, M.J.; Waters, T.P.; Lopes, V. Force and Displacement Transmissibility of a Nonlinear Isolator with High-Static-Low-Dynamic-Stiffness. Int. J. Mech. Sci. 2012, 55, 22–29. [Google Scholar] [CrossRef]
- Tian, R.; Cao, Q.; Yang, S. The Codimension-Two Bifurcation for the Recent Proposed SD Oscillator. Nonlinear Dyn. 2010, 59, 19–27. [Google Scholar] [CrossRef]
- Rui-Lan, T.; Qing-Jie, C.; Zhi-Xin, L. Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator. Chin. Phys. Lett. 2010, 27, 074701. [Google Scholar] [CrossRef]
- Kovacic, I.; Brennan, M.J.; Waters, T.P. A Study of a Nonlinear Vibration Isolator with a Quasi-Zero Stiffness Characteristic. J. Sound Vib. 2008, 315, 700–711. [Google Scholar]
- Kovacic, I.; Brennan, M.J.; Lineton, B. Effect of a Static Force on the Dynamic Behaviour of a Harmonically Excited Quasi-Zero Stiffness System. J. Sound Vib. 2009, 325, 870–883. [Google Scholar]
- Santhosh, B.; Padmanabhan, C.; Narayanan, S. Numeric-Analytic Solutions of the Smooth and Discontinuous Oscillator. Int. J. Mech. Sci. 2014, 84, 102–119. [Google Scholar] [CrossRef]
- Gatti, G.; Kovacic, I.; Brennan, M.J. On the Response of a Harmonically Excited Two Degree-of-Freedom System Consisting of a Linear and a Nonlinear Quasi-Zero Stiffness Oscillator. J. Sound Vib. 2010, 329, 1823–1835. [Google Scholar] [CrossRef]
- Sharma, A.; Patidar, V.; Purohit, G.; Sud, K.K. Effects on the Bifurcation and Chaos in Forced Duffing Oscillator Due to Nonlinear Damping. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2254–2269. [Google Scholar] [CrossRef]
- Ho, C.; Lang, Z.-Q.; Billings, S.A. A Frequency Domain Analysis of the Effects of Nonlinear Damping on the Duffing Equation. Mech. Syst. Signal Process. 2014, 45, 49–67. [Google Scholar] [CrossRef]
- Shahraeeni, M.; Sorokin, V.; Mace, B.; Ilanko, S. Effect of Damping Nonlinearity on the Dynamics and Performance of a Quasi-Zero-Stiffness Vibration Isolator. J. Sound Vib. 2022, 526, 116822. [Google Scholar]
- Habib, A.; Al Houri, A.; Habib, M.; Elzokra, A.; Yildirim, U. Structural performance and finite element modeling of roller compacted concrete dams: A review. Lat. Am. J. Solids Struct. 2021, 18. [Google Scholar] [CrossRef]
- al Houri, A.; Habib, A.; Al-Sadoon, Z. Artificial intelligence-based design and analysis of passive control structures: An overview: An overview. J. Soft Comput. Civ. Eng. 2024, 145–182. [Google Scholar]
- Jin, L.; Liu, Z.; Li, L. Prediction and identification of nonlinear dynamical systems using machine learning approaches. J. Ind. Inf. Integr. 2023, 35, 100503. [Google Scholar] [CrossRef]
- Wang, X.S.; Turner, J.D.; Mann, B.P. Constrained attractor selection using deep reinforcement learning. J. Vib. Control 2021, 27, 502–514. [Google Scholar] [CrossRef]
- Valeev, A.R.; Zotov, A.N.; Kharisov, S.A. Application of Disk Springs for Manufacturing Vibration Isolators with Quasi-Zero Stiffness. Chem. Pet. Eng. 2015, 51, 194–200. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, D.; He, J.; Chen, W.; Zhu, R. Investigation on Quasi-Static and Dynamic Mechanical Properties of Disc Springs Considering Asymmetric Frictional Boundary. J. Mech. Sci. Technol. 2023, 37, 5943–5955. [Google Scholar] [CrossRef]
- Niu, F.; Meng, L.; Wu, W.; Sun, J.; Zhang, W.; Meng, G.; Rao, Z. Design and Analysis of a Quasi-Zero Stiffness Isolator Using a Slotted Conical Disk Spring as Negative Stiffness Structure. J. Vibroeng. 2014, 16, 1769–1785. [Google Scholar]
- Meng, L.; Sun, J.; Wu, W. Theoretical Design and Characteristics Analysis of a Quasi-Zero Stiffness Isolator Using a Disk Spring as Negative Stiffness Element. Shock Vib. 2015, 2015, 813763. [Google Scholar] [CrossRef]
- Yu, K.; Chen, Y.; Yu, C.; Zhang, J.; Lu, X. A Compact Nonlinear Stiffness-Modulated Structure for Low-Frequency Vibration Isolation under Heavy Loads. Nonlinear Dyn. 2024, 112, 5863–5893. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, W.; Gu, H.; Deng, E.; Wang, X.; Song, C. Force Transmissibility of a 6-DOF Passive Quasi-Zero Stiffness Vibration Isolation Platform. J. Mech. Sci. Technol. 2021, 35, 2313–2324. [Google Scholar] [CrossRef]
- Yu, T.; Huang, Z.; Zhang, C.; Huang, W.; Bao, W.; Liu, Y. Numerical investigation of three-dimensional isolator and mitigation for single-layer lattice shell structure. Structures 2024, 62, 106235. [Google Scholar] [CrossRef]
- Erfanian-Naziftoosi, H.R.; Shams, S.S.; Elhajjar, R. Composite Wave Springs: Theory and Design. Mater. Des. 2016, 95, 48–53. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, J.; Wang, K.; Xu, D.; Wen, G. Design and Experimental Study of a Compact Quasi-Zero-Stiffness Isolator Using Wave Springs. Sci. China Technol. Sci. 2021, 64, 2255–2271. [Google Scholar] [CrossRef]
- Lan, C.-C.; Yang, S.-A.; Wu, Y.-S. Design and Experiment of a Compact Quasi-Zero-Stiffness Isolator Capable of a Wide Range of Loads. J. Sound Vib. 2014, 333, 4843–4858. [Google Scholar]
- Liu, C.; Yu, K. Design and Experimental Study of a Quasi-Zero-Stiffness Vibration Isolator Incorporating Transverse Groove Springs. Archiv. Civ. Mech. Eng. 2020, 20, 67. [Google Scholar]
- Shi, X.; Zhu, S. Magnetic Negative Stiffness Dampers. Smart Mater. Struct. 2015, 24, 072002. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, S. Simulation and Optimization of Magnetic Negative Stiffness Dampers. Sens. Actuators A Phys. 2017, 259, 14–33. [Google Scholar]
- Wang, Q.; Zhou, J.; Wang, K.; Lin, Q.; Xu, D.; Wen, G. A Compact Quasi-Zero-Stiffness Device for Vibration Suppression and Energy Harvesting. Int. J. Mech. Sci. 2023, 250, 108284. [Google Scholar]
- Sun, Y.; Zhao, J.; Wang, M.; Sun, Y.; Pu, H.; Luo, J.; Peng, Y.; Xie, S.; Yang, Y. High-Static–Low-Dynamic Stiffness Isolator with Tunable Electromagnetic Mechanism. IEEE ASME Trans. Mechatron. 2020, 25, 316–326. [Google Scholar] [CrossRef]
- Sun, Y.; Meng, K.; Yuan, S.; Zhao, J.; Xie, R.; Yang, Y.; Luo, J.; Peng, Y.; Xie, S.; Pu, H. Modeling Electromagnetic Force and Axial-Stiffness for an Electromagnetic Negative-Stiffness Spring Toward Vibration Isolation. IEEE Trans. Magn. 2019, 55, 8000410. [Google Scholar]
- Wu, J.; Zeng, L.; Han, B.; Zhou, Y.; Luo, X.; Li, X.; Chen, X.; Jiang, W. Analysis and Design of a Novel Arrayed Magnetic Spring with High Negative Stiffness for Low-Frequency Vibration Isolation. Int. J. Mech. Sci. 2022, 216, 106980. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; Lei, Y.; Cao, J.; Liao, W.-H. Halbach High Negative Stiffness Isolator: Modeling and Experiments. Mech. Syst. Signal Process. 2023, 188, 110014. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; Lei, Y.; Cao, J.; Liao, W.-H. Circular Halbach Negative Stiffness Isolating from Torsional Vibration: Design, Modeling and Experiments. Mech. Syst. Signal Process. 2023, 202, 110711. [Google Scholar] [CrossRef]
- Wu, M.; Wu, J.; Che, J.; Gao, R.; Chen, X.; Li, X.; Zeng, L.; Jiang, W. Analysis and Experiment of a Novel Compact Magnetic Spring with High Linear Negative Stiffness. Mech. Syst. Signal Process. 2023, 198, 110387. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, Y.; Li, J.; Yuan, S.; Wang, M.; Ding, J.; Pu, H.; Luo, J.; Peng, Y.; Xie, S. A Novel Electromagnet-Based Absolute Displacement Sensor with Approximately Linear Quasi-Zero-Stiffness. Int. J. Mech. Sci. 2020, 181, 105695. [Google Scholar] [CrossRef]
- Zhang, F.; Shao, S.; Tian, Z.; Xu, M.; Xie, S. Active-Passive Hybrid Vibration Isolation with Magnetic Negative Stiffness Isolator Based on Maxwell Normal Stress. Mech. Syst. Signal Process. 2019, 123, 244–263. [Google Scholar] [CrossRef]
- Yuan, S.; Sun, Y.; Wang, M.; Ding, J.; Zhao, J.; Huang, Y.; Peng, Y.; Xie, S.; Luo, J.; Pu, H.; et al. Tunable Negative Stiffness Spring Using Maxwell Normal Stress. Int. J. Mech. Sci. 2021, 193, 106127. [Google Scholar] [CrossRef]
- Pu, H.; Yuan, S.; Peng, Y.; Meng, K.; Zhao, J.; Xie, R.; Huang, Y.; Sun, Y.; Yang, Y.; Xie, S.; et al. Multi-Layer Electromagnetic Spring with Tunable Negative Stiffness for Semi-Active Vibration Isolation. Mech. Syst. Signal Process. 2019, 121, 942–960. [Google Scholar] [CrossRef]
- Yan, G.; Zou, H.-X.; Wang, S.; Zhao, L.-C.; Wu, Z.-Y.; Zhang, W.-M. Bio-Inspired Vibration Isolation: Methodology and Design. Appl. Mech. Rev. 2021, 73, 020801. [Google Scholar] [CrossRef]
- Dai, H.; Jing, X.; Wang, Y.; Yue, X.; Yuan, J. Post-Capture Vibration Suppression of Spacecraft via a Bio-Inspired Isolation System. Mech. Syst. Signal Process. 2018, 105, 214–240. [Google Scholar] [CrossRef]
- Dai, H.; Jing, X.; Sun, C.; Wang, Y.; Yue, X. Accurate Modeling and Analysis of a Bio-Inspired Isolation System: With Application to on-Orbit Capture. Mech. Syst. Signal Process. 2018, 109, 111–133. [Google Scholar] [CrossRef]
- Dai, H.; Cao, X.; Jing, X.; Wang, X.; Yue, X. Bio-Inspired Anti-Impact Manipulator for Capturing Non-Cooperative Spacecraft: Theory and Experiment. Mech. Syst. Signal Process. 2020, 142, 106785. [Google Scholar]
- Bian, J.; Jing, X. Analysis and Design of a Novel and Compact X-Structured Vibration Isolation Mount (X-Mount) with Wider Quasi-Zero-Stiffness Range. Nonlinear Dyn. 2020, 101, 2195–2222. [Google Scholar]
- Chai, Y.; Jing, X.; Guo, Y. A Compact X-Shaped Mechanism Based 3-DOF Anti-Vibration Unit with Enhanced Tunable QZS Property. Mech. Syst. Signal Process. 2022, 168, 108651. [Google Scholar]
- Jing, X.; Chai, Y.; Chao, X.; Bian, J. In-Situ Adjustable Nonlinear Passive Stiffness Using X-Shaped Mechanisms. Mech. Syst. Signal Process. 2022, 170, 108267. [Google Scholar]
- Zeng, R.; Wen, G.; Zhou, J.; Zhao, G. Limb-Inspired Bionic Quasi-Zero Stiffness Vibration Isolator. Acta Mech. Sin. 2021, 37, 1152–1167. [Google Scholar] [CrossRef]
- Yan, G.; Wang, S.; Zou, H.; Zhao, L.; Gao, Q.; Zhang, W. Bio-Inspired Polygonal Skeleton Structure for Vibration Isolation: Design, Modelling, and Experiment. Sci. China Technol. Sci. 2020, 63, 2617–2630. [Google Scholar] [CrossRef]
- Deng, T.; Wen, G.; Ding, H.; Lu, Z.-Q.; Chen, L.-Q. A Bio-Inspired Isolator Based on Characteristics of Quasi-Zero Stiffness and Bird Multi-Layer Neck. Mech. Syst. Signal Process. 2020, 145, 106967. [Google Scholar] [CrossRef]
- Sun, X.; Wang, F.; Xu, J. A Novel Dynamic Stabilization and Vibration Isolation Structure Inspired by the Role of Avian Neck. Int. J. Mech. Sci. 2021, 193, 106166. [Google Scholar]
- Sun, X.; Qi, Z.; Xu, J. A Novel Multi-Layer Isolation Structure for Transverse Stabilization Inspired by Neck Structure. Acta Mech. Sin. 2022, 38, 521543. [Google Scholar]
- Ling, P.; Miao, L.; Zhang, W.; Wu, C.; Yan, B. Cockroach-Inspired Structure for Low-Frequency Vibration Isolation. Mech. Syst. Signal Process. 2022, 171, 108955. [Google Scholar]
- Ling, P.; Miao, L.; Ye, B.; You, J.; Zhang, W.; Yan, B. Ultra-Low Frequency Vibration Isolation of a Novel Click-Beetle-Inspired Structure with Large Quasi-Zero Stiffness Region. J. Sound Vib.. 2023, 558, 117756. [Google Scholar] [CrossRef]
- Hamzehei, R.; Bodaghi, M.; Wu, N. Mastering the Art of Designing Mechanical Metamaterials with Quasi-Zero Stiffness for Passive Vibration Isolation: A Review. Smart Mater. Struct. 2024, 33, 083001. [Google Scholar]
- Xiao, L.; Sun, X.; Cheng, L.; Yu, X. Broadband and Robust Vibration Reduction in Lattice-Core Sandwich Beam with 3D-Printed QZS Resonators. Compos. Struct. 2025, 352, 118626. [Google Scholar]
- Wan, H.; Chen, H.; Wang, Y.; Fang, X.; Liu, Y.; Kosiba, K. Laser Additive Manufacturing of Miura-Origami Tube Inspired Quasi-Zero Stiffness Metamaterial with Prominent Longitudinal Wave Propagation. Virtual Phys. Prototyp. 2024, 19, e2299691. [Google Scholar]
- Guo, S.; Gao, R.; Tian, X.; Liu, S. A Quasi-Zero-Stiffness Elastic Metamaterial for Energy Absorption and Shock Attenuation. Eng. Struct. 2023, 280, 115687. [Google Scholar]
- Zhao, J.; Zhou, G.; Zhang, D.; Kovacic, I.; Zhu, R.; Hu, H. Integrated Design of a Lightweight Metastructure for Broadband Vibration Isolation. Int. J. Mech. Sci. 2023, 244, 108069. [Google Scholar] [CrossRef]
- Jia, M.; Dai, N.; Wang, T.; Cao, Q.; Yan, L.; Dai, H. A Compact Quasi-Zero Stiffness Metamaterial for Energy Absorption and Impact Protection. Thin-Walled Struct. 2024, 205, 112360. [Google Scholar]
- Zhang, Q.; Guo, D.; Hu, G. Tailored Mechanical Metamaterials with Programmable Quasi-Zero-Stiffness Features for Full-Band Vibration Isolation. Adv. Funct. Mater. 2021, 31, 2101428. [Google Scholar]
- Xu, Y.; Dong, H.-W.; Wang, Y.-S. Topology Optimization of Programable Quasi-Zero-Stiffness Metastructures for Low-Frequency Vibration Isolation. Int. J. Mech. Sci. 2024, 280, 109557. [Google Scholar]
- Hu, C.; Wan, Z.; Li, Z.; Tan, X.; Wang, L.; Chen, M. Inverse-Designed Metastructures with Customizable Low Dynamic Stiffness Characteristics for Low-Frequency Vibration Isolation. Eur. J. Mech. A Solids 2025, 110, 105515. [Google Scholar] [CrossRef]
- Liu, X.; Chen, S.; Wang, B.; Tan, X.; Yu, L. A Compact Quasi-Zero-Stiffness Mechanical Metamaterial Based on Truncated Conical Shells. Int. J. Mech. Sci. 2024, 277, 109390. [Google Scholar] [CrossRef]
- Ye, K.; Ji, J.C. An Origami Inspired Quasi-Zero Stiffness Vibration Isolator Using a Novel Truss-Spring Based Stack Miura-Ori Structure. Mech. Syst. Signal Process. 2022, 165, 108383. [Google Scholar] [CrossRef]
- Ye, K.; Ji, J.C. Dynamic Analysis of the Effects of Self-Weight Induced Structural and Damping Nonlinearity on the Performance of an Origami-Inspired Vibration Isolator. J. Sound Vib.. 2023, 547, 117538. [Google Scholar] [CrossRef]
- Liu, S.; Peng, G.; Li, Z.; Li, W.; Sun, L. Low-Frequency Vibration Isolation via an Elastic Origami-Inspired Structure. Int. J. Mech. Sci. 2023, 260, 108622. [Google Scholar] [CrossRef]
- Han, H.; Sorokin, V.; Tang, L.; Cao, D. Lightweight Origami Isolators with Deployable Mechanism and Quasi-Zero-Stiffness Property. Aerosp. Sci. Technol. 2022, 121, 107319. [Google Scholar] [CrossRef]
- Zhou, H.; Gao, J.; Chen, Y.; Shen, Z.; Lv, H.; Sareh, P. A Quasi-Zero-Stiffness Vibration Isolator Inspired by Kresling Origami. Structures 2024, 69, 107315. [Google Scholar] [CrossRef]
- Yu, K.; Chen, Y.; Yu, C.; Li, P.; Ren, Z.; Zhang, J.; Lu, X. Origami-Inspire Quasi-Zero Stiffness Structure for Flexible Low-Frequency Vibration Isolation. Int. J. Mech. Sci. 2024, 276, 109377. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, D.; Zhou, J.X. Characteristic analysis of a ball-type vibration isolator with quasi-zero-stiffness. J. Vib. Shock 2015, 34, 142–147. (In Chinese) [Google Scholar]
- Jiao, G.; Zeng, J.; Wang, S. A Compact Magnetic-Curved-Spring QZS Isolator for Supporting Uncertain Loads. Nonlinear Dyn. 2024, 113, 9217–9238. [Google Scholar] [CrossRef]
- Deng, J.; Yang, J.; Zhao, J.; Long, X. An Approach for Realizing Lightweight Quasi-Zero Stiffness Isolators via Lever Amplification. J. Sound Vib. 2025, 596, 118740. [Google Scholar] [CrossRef]
- Anvar Valeev, R.T.; Boris, M. Designing and Experimental Study of Compact Vibration Isolator with Quasi-Zero Stiffness. Struct. Eng. Mech. 2021, 79, 415–428. [Google Scholar]
- Xu, L.; Xiang, Z. Compliant Quasi-Zero Stiffness Device for Vibration Energy Harvesting and Isolation. Sens. Actuator A-Phys. 2022, 347, 113964. [Google Scholar] [CrossRef]
- Zhang, C.; He, J.; Zhou, G.; Wang, K.; Xu, D.; Zhou, J. Compliant Quasi-Zero-Stiffness Isolator for Low-Frequency Torsional Vibration Isolation. Mech. Mach. Theory 2023, 181, 105213. [Google Scholar]
- Li, X.; Ding, B.; Ran, J.; Li, C.; Dong, X.; Chen, S.-C. Design and Characterization of a Compact Tripod Quasi-Zero-Stiffness Device for Isolating Low-Frequency Vibrations. Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. 2024, 91, 632–643. [Google Scholar] [CrossRef]
- Lu, J.-J.; Qi, W.-H.; Liu, F.-R.; Cao, Y.-B.; Zhao, T.-Y.; Cai, L.-Q.; Li, Y.; Yan, G.; Zhang, W.-M. Compliant Curved Beam Support with Flexible Stiffness Modulation for Near-Zero Frequency Vibration Isolation. J. Sound Vib. 2025, 595, 118702. [Google Scholar] [CrossRef]
- Shuai, C.; Li, B.; Ma, J.; Yang, Z. A Novel Low Stiffness Air Spring Vibration-Isolation Mounting System. Shock Vib. 2022, 2022, 5598689. [Google Scholar]
- Abuabiah, M.; Dabbas, Y.; Herzallah, L.; Alsurakji, I.H.; Assad, M.; Plapper, P. Analytical Study on the Low-Frequency Vibrations Isolation System for Vehicle’s Seats Using Quasi-Zero-Stiffness Isolator. Appl. Sci. 2022, 12, 2418. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Yang, Q.; Liu, S.; Chai, K. Design Methodology and Application Dynamics of Compact Quasi-Zero Stiffness Isolators. Appl. Sci. 2025, 15, 3478. https://doi.org/10.3390/app15073478
Zhu Y, Yang Q, Liu S, Chai K. Design Methodology and Application Dynamics of Compact Quasi-Zero Stiffness Isolators. Applied Sciences. 2025; 15(7):3478. https://doi.org/10.3390/app15073478
Chicago/Turabian StyleZhu, Yingqi, Qingchao Yang, Shuyong Liu, and Kai Chai. 2025. "Design Methodology and Application Dynamics of Compact Quasi-Zero Stiffness Isolators" Applied Sciences 15, no. 7: 3478. https://doi.org/10.3390/app15073478
APA StyleZhu, Y., Yang, Q., Liu, S., & Chai, K. (2025). Design Methodology and Application Dynamics of Compact Quasi-Zero Stiffness Isolators. Applied Sciences, 15(7), 3478. https://doi.org/10.3390/app15073478