Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,000)

Search Parameters:
Keywords = pyrolysis product

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1369 KiB  
Article
Recycling Waste Cottonseed Hulls to Biomaterials for Ammonia Adsorption
by Thomas Klasson, Bretlyn Pancio and Allen Torbert
Recycling 2025, 10(4), 158; https://doi.org/10.3390/recycling10040158 - 6 Aug 2025
Abstract
Ammonia emissions in poultry houses are common and pose health concerns for animals and workers. However, effective control of these emissions with sustainable products is lacking. Therefore, we investigated if an agricultural byproduct, cottonseed hulls, could be recycled through pyrolysis and used to [...] Read more.
Ammonia emissions in poultry houses are common and pose health concerns for animals and workers. However, effective control of these emissions with sustainable products is lacking. Therefore, we investigated if an agricultural byproduct, cottonseed hulls, could be recycled through pyrolysis and used to remove ammonia from air. In this study, the efficacy of ammonia removal was observed using cottonseed hull biomaterials pyrolyzed at seven different temperatures: 250, 300, 350, 400, 500, 600, and 700 °C. In this study, ammonia was passed through a column filled with pyrolyzed material, and ammonia in the filtered air was monitored. The results showed that materials pyrolyzed at intermediate temperatures of 350 and 400 °C were the most efficient at ammonia removal and were able to adsorb approximately 3.7 mg NH3/g of material. Despite extensive characterization, ammonia adsorption could not be linked to intrinsic material properties. Evaluation of the materials showed that the carbon in the pyrolyzed materials would be stable over time should the spent material be used as a soil amendment. Full article
Show Figures

Figure 1

22 pages, 4383 KiB  
Article
High-Yield Precursor-Derived Si-O Ceramics: Processing and Performance
by Xia Zhang, Bo Xiao, Yongzhao Hou and Guangwu Wen
Materials 2025, 18(15), 3666; https://doi.org/10.3390/ma18153666 - 4 Aug 2025
Abstract
The precursor-derived ceramic route is recognized as an advanced and efficient technique for fabricating ceramic matrix composites, particularly suitable for the development and microstructural tailoring of continuous fiber-reinforced ceramic matrix composites. In this work, octamethylcyclotetrasiloxane and tetravinylcyclotetrasiloxane were employed as monomers to synthesize [...] Read more.
The precursor-derived ceramic route is recognized as an advanced and efficient technique for fabricating ceramic matrix composites, particularly suitable for the development and microstructural tailoring of continuous fiber-reinforced ceramic matrix composites. In this work, octamethylcyclotetrasiloxane and tetravinylcyclotetrasiloxane were employed as monomers to synthesize a branched siloxane via ring-opening polymerization. A subsequent hydrosilylation reaction led to the formation of polyvinylsiloxane with a three-dimensional crosslinked structure. The precursor exhibited excellent fluidity, adjustable viscosity, and superior thermosetting characteristics, enabling efficient impregnation and densification of reinforcements through the polymer infiltration and pyrolysis process. Upon pyrolysis, the polyvinylsiloxane gradually converted from an organic polymer to an amorphous inorganic ceramic phase, yielding silicon oxycarbide ceramics with a high ceramic yield of 81.3%. Elemental analysis indicated that the resulting ceramic mainly comprised silicon and oxygen, with a low carbon content. Furthermore, the material demonstrated a stable dielectric constant (~2.5) and low dielectric loss (<0.01), which are beneficial for enhanced thermal stability and dielectric performance. These findings offer a promising precursor system and process reference for the low-cost production of high-performance, multifunctional ceramic matrix composites with strong potential for engineering applications. Full article
(This article belongs to the Special Issue Processing and Microstructure Design of Advanced Ceramics)
Show Figures

Figure 1

21 pages, 3085 KiB  
Article
Poultry Manure-Derived Biochar Synthesis, Characterization, and Valorization in Agriculture: Effect of Pyrolysis Temperature and Metal-Salt Modification
by Samar Hadroug, Leila El-Bassi, Salah Jellali, Ahmed Amine Azzaz, Mejdi Jeguirim, Helmi Hamdi, James J. Leahy, Amine Aymen Assadi and Witold Kwapinski
Soil Syst. 2025, 9(3), 85; https://doi.org/10.3390/soilsystems9030085 (registering DOI) - 4 Aug 2025
Viewed by 134
Abstract
In the present work, six biochars were produced from the pyrolysis of poultry manure at 400 °C and 600 °C (PM-B-400 and PM-B-600), and their post-modification with, respectively, iron chloride (PM-B-400-Fe and PM-B-600-Fe) and potassium permanganate (PM-B-400-Mn and PM-B-600-Mn). First, these biochars were [...] Read more.
In the present work, six biochars were produced from the pyrolysis of poultry manure at 400 °C and 600 °C (PM-B-400 and PM-B-600), and their post-modification with, respectively, iron chloride (PM-B-400-Fe and PM-B-600-Fe) and potassium permanganate (PM-B-400-Mn and PM-B-600-Mn). First, these biochars were deeply characterized through the assessment of their particle size distribution, pH, electrical conductivity, pH at point-zero charge, mineral composition, morphological structure, and surface functionality and crystallinity, and then valorized as biofertilizer to grow spring barley at pot-scale for 40 days. Characterization results showed that Fe- and Mn-based nanoparticles were successfully loaded onto the surface of the post-modified biochars, which significantly enhanced their structural and surface chemical properties. Moreover, compared to the control treatment, both raw and post-modified biochars significantly improved the growth parameters of spring barley plants (shoot and root length, biomass weight, and nutrient content). The highest biomass production was obtained for the treatment with PM-B-400-Fe, owing to its enhanced physico-chemical properties and its higher ability in releasing nutrients and immobilizing heavy metals. These results highlight the potential use of Fe-modified poultry manure-derived biochar produced at low temperatures as a sustainable biofertilizer for soil enhancement and crop yield improvement, while addressing manure management issues. Full article
Show Figures

Figure 1

22 pages, 2179 KiB  
Article
Conversion of Oil Palm Kernel Shell Wastes into Active Biocarbons by N2 Pyrolysis and CO2 Activation
by Aik Chong Lua
Clean Technol. 2025, 7(3), 66; https://doi.org/10.3390/cleantechnol7030066 - 4 Aug 2025
Viewed by 149
Abstract
Oil palm kernel shell is an abundant agricultural waste generated by the palm oil industry. To achieve sustainable use of this waste, oil palm kernel shells were converted into valuable resources as active biocarbons. A two-stage preparation method involving N2 pyrolysis, followed [...] Read more.
Oil palm kernel shell is an abundant agricultural waste generated by the palm oil industry. To achieve sustainable use of this waste, oil palm kernel shells were converted into valuable resources as active biocarbons. A two-stage preparation method involving N2 pyrolysis, followed by CO2 activation, was used to produce the active biocarbon. The optimum pyrolysis conditions that produced the largest BET surface area of 519.1 m2/g were a temperature of 600 °C, a hold time of 2 h, a nitrogen flow rate of 150 cm3/min, and a heating rate of 10 °C/min. The optimum activation conditions to prepare the active biocarbon with the largest micropore surface area or the best micropore/BET surface area combination were a temperature of 950 °C, a CO2 flow rate of 300 cm3/min, a heating rate of 10 °C/min, and a hold time of 3 h, yielding BET and micropore surface areas of 1232.3 and 941.0 m2/g, respectively, and consisting of 76.36% of micropores for the experimental optimisation technique adopted here. This study underscores the importance of optimising both the pyrolysis and activation conditions to produce an active biocarbon with a maximum micropore surface area for gaseous adsorption applications, especially to capture CO2 greenhouse gas, to mitigate global warming and climate change. Such a comprehensive and detailed study on the conversion of oil palm kernel shell into active biocarbon is lacking in the open literature. The research results provide a practical blueprint on the process parameters and technical know-how for the industrial production of highly microporous active biocarbons prepared from oil palm kernel shells. Full article
Show Figures

Graphical abstract

22 pages, 2605 KiB  
Article
Production of Bioadsorbents via Low-Temperature Pyrolysis of Exhausted Olive Pomace for the Removal of Methylene Blue from Aqueous Media
by Safae Chafi, Manuel Cuevas-Aranda, Mª Lourdes Martínez-Cartas and Sebastián Sánchez
Molecules 2025, 30(15), 3254; https://doi.org/10.3390/molecules30153254 - 3 Aug 2025
Viewed by 125
Abstract
In this work, biochars were produced by pyrolysis of exhausted olive pomace and evaluated as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. The biochar obtained at 400 °C for 1 h, which exhibited the best adsorption performance, was [...] Read more.
In this work, biochars were produced by pyrolysis of exhausted olive pomace and evaluated as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. The biochar obtained at 400 °C for 1 h, which exhibited the best adsorption performance, was characterized by FTIR, N2 adsorption–desorption isotherms, SEM-EDX, and proximate analysis, revealing a mesoporous structure with a relatively low specific surface area but enriched in surface functional groups, likely due to the partial degradation of lignocellulosic components. Adsorption experiments were conducted to optimize operational parameters such as solid particle size (2–3 mm), agitation speed (75 rpm), and bioadsorbent dosage (1 g per 0.05 L of MB solution), which allowed for dye removal efficiencies close to 100%. Kinetic studies showed that MB adsorption followed a pseudo-second-order model, while equilibrium data at 30 °C were best described by the Langmuir isotherm (R2 = 0.999; SE = 4.25%), suggesting monolayer coverage and strong adsorbate–adsorbent affinity. Desorption trials using water, ethanol, and their mixtures resulted in low MB recovery, whereas the addition of 10% acetic acid significantly improved desorption performance. Under optimal conditions, up to 52% of the retained dye was recovered. Full article
(This article belongs to the Special Issue Advances in Biomass Chemicals: Transformation and Valorization)
Show Figures

Graphical abstract

16 pages, 6744 KiB  
Article
Thermochemical Conversion of Digestate Derived from OFMSW Anaerobic Digestion to Produce Methane-Rich Syngas with CO2 Sorption
by Emanuele Fanelli, Cesare Freda, Assunta Romanelli, Vito Valerio, Adolfo Le Pera, Miriam Sellaro, Giacinto Cornacchia and Giacobbe Braccio
Processes 2025, 13(8), 2451; https://doi.org/10.3390/pr13082451 - 2 Aug 2025
Viewed by 238
Abstract
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 [...] Read more.
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 gr/h. The effect of the pyrolysis temperature was investigated at 600, 700, and 800 °C. The pyrolysis products, char, oil, and gas, were quantified and chemically analyzed. It was observed that with the increase in the temperature from 600 to 800 °C, the char decreased from 60.3% to 52.2% and the gas increased from 26.5% to 35.3%. With the aim of increasing the methane production and methane concentration in syngas, the effect of CaO addition to the pyrolysis process was investigated at the same temperature, too. The mass ratio CaO/dried digestate was set at 0.2. The addition of CaO sorbent has a clear effect on the yield and composition of pyrolysis products. Under the experimental conditions, CaO was observed to act both as a CO2 sorbent and as a catalyst, promoting cracking and reforming reactions of volatile compounds. In more detail, at the investigated temperatures, a net reduction in CO2 concentration was observed in syngas, accompanied by an increase in CH4 concentration. The gas yield decreased with the CaO addition because of CO2 chemisorption. The oil yield decreased as well, probably because of the cracking and reforming effect of the CaO on the volatiles. A very promising performance of the CaO sorbent was observed at 600 °C; at this temperature, the CO2 concentration decreased from 32.2 to 13.9 mol %, and the methane concentration increased from 16.1 to 29.4 mol %. At the same temperature, the methane production increased from 34 to 63 g/kgdigestate. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

16 pages, 1504 KiB  
Article
Tuning the Activity of NbOPO4 with NiO for the Selective Conversion of Cyclohexanone as a Model Intermediate of Lignin Pyrolysis Bio-Oils
by Abarasi Hart and Jude A. Onwudili
Energies 2025, 18(15), 4106; https://doi.org/10.3390/en18154106 - 2 Aug 2025
Viewed by 143
Abstract
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds [...] Read more.
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds in the final upgraded liquid products. The present work involved a systematic study of solvent-free catalytic reactions of cyclohexanone in the presence of hydrogen gas at 160 °C for 3 h in a batch reactor. Cyclohexanone can be produced from biomass through the selective hydrogenation of lignin-derived phenolics. Three types of catalysts comprising undoped NbOPO4, 10 wt% NiO/NbOPO4, and 30 wt% NiO/NbOPO4 were studied. Undoped NbOPO4 promoted both aldol condensation and the dehydration of cyclohexanol, producing fused ring aromatic hydrocarbons and hard char. With 30 wt% NiO/NbOPO4, extensive competitive hydrogenation of cyclohexanone to cyclohexanol was observed, along with the formation of C6 cyclic hydrocarbons. When compared to NbOPO4 and 30 wt% NiO/NbOPO4, the use of 10 wt% NiO/NbOPO4 produced superior selectivity towards bi-cycloalkanones (i.e., C12) at cyclohexanone conversion of 66.8 ± 1.82%. Overall, the 10 wt% NiO/NbOPO4 catalyst exhibited the best performance towards the production of precursor compounds that can be further hydrodeoxygenated into energy-dense aviation fuel hydrocarbons. Hence, the presence and loading of NiO was able to tune the activity and selectivity of NbOPO4, thereby influencing the final products obtained from the same cyclohexanone feedstock. This study underscores the potential of lignin-derived pyrolysis oils as important renewable feedstocks for producing replacement hydrocarbon solvents or feedstocks and high-density sustainable liquid hydrocarbon fuels via sequential and selective catalytic upgrading. Full article
Show Figures

Figure 1

19 pages, 6083 KiB  
Article
Microwave-Assisted Biodiesel Production Using Activated Oat Hull-Derived Biochar as Catalyst
by Jaime Ñanculeo, Benjamín Nahuelcura, Mara Cea, Norberto Abreu, Karla Garrido-Miranda, Sebastián Meier, Juan Miguel Romero-García and María Eugenia González
Catalysts 2025, 15(8), 729; https://doi.org/10.3390/catal15080729 - 31 Jul 2025
Viewed by 235
Abstract
This study investigated the effect of KOH activation on biochar, with a focus on how porosity and potassium content influence microwave-assisted catalytic biodiesel production, using experimental design approaches. Activated biochar was synthesized from oat hull waste through KOH activation, followed by pyrolysis under [...] Read more.
This study investigated the effect of KOH activation on biochar, with a focus on how porosity and potassium content influence microwave-assisted catalytic biodiesel production, using experimental design approaches. Activated biochar was synthesized from oat hull waste through KOH activation, followed by pyrolysis under controlled conditions. The biochar was characterized through chemical, morphological, and physical analyses, and its catalytic performance in converting used waste cooking oil (WCO) into biodiesel was evaluated using methanol as the acyl acceptor and microwave irradiation to optimize the reaction via experimental design. Results revealed that increasing the KOH/biomass ratio significantly enhanced the specific surface area (SSA) of the catalyst, achieving a maximum SSA of 637.28 m2/g under optimal pyrolysis conditions: 600 °C for 3 h with a KOH/biomass ratio of 2. A maximum fatty acid methyl ester (FAME) yield of 100% was achieved within 1 min of microwave-assisted reaction using an optimized catalyst dosage of 2.5%, a WCO/MeOH molar ratio of 1/12, and a reaction temperature of 150 °C, with the catalyst being successfully recycled across three cycles. An economic and energy evaluation estimated a catalyst production cost of USD 176.97/kg and a biodiesel production cost of USD 8.9/kg of FAMEs. This research provides a straightforward and cost-effective approach for biofuel production. Full article
(This article belongs to the Special Issue Biochar Development in Catalytic Applications)
Show Figures

Graphical abstract

18 pages, 3967 KiB  
Article
A Thorough Investigation of the Mechanism of theAntagonistic Effect Between Phosphorus and Basic Oxide-Forming Minerals as Flame Retardants of PolymericComposite Coatings
by Evangelia Mitropoulou, Georgios N. Mathioudakis, Amaia Soto Beobide, Athanasios Porfyris, Vassilios Dracopoulos, Kerim Kılınç, Theodosios Chatzinikolaou, Deniz Savci, Cem Gunesoglu, Joannis Kallitsis and George A. Voyiatzis
Coatings 2025, 15(8), 886; https://doi.org/10.3390/coatings15080886 - 30 Jul 2025
Viewed by 252
Abstract
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising [...] Read more.
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising alternatives. Despite this, their combined use is neither straightforward nor guaranteed to be effective. This study scrutinizes the interactions between these two classes of flame retardants (FR) through a systematic analysis aimed at elucidating the antagonistic pathways that arise from their coexistence. Specifically, this study focuses on two inorganic fillers, mineral huntite and chemically precipitated magnesium hydroxide, both of which produce basic oxides upon thermal decomposition. These fillers were incorporated into a poly(butylene terephthalate) (PBT) matrix to be utilized as advanced-mattress FR coating fabric and were subjected to a series of flammability tests. The pyrolysis products of the prepared polymeric composite compounds were isolated and thoroughly characterized using a combination of analytical techniques. Thermogravimetric analysis (TGA) and differential thermogravimetric analysis (dTGA) were employed to monitor decomposition behavior, while the char residues collected at different pyrolysis stages were examined spectroscopically, using FTIR-ATR and Raman spectroscopy, to identify their structure and the chemical reactions that led to their formation. X-ray diffraction (XRD) experiments were also conducted to complement the spectroscopic findings in the chemical composition of the resulting char residues and to pinpoint the different species that constitute them. The morphological changes of the char’s structure were monitored by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). Finally, the Limited Oxygen Index (LOI) and UL94 (vertical sample mode) methods were used to assess the relative flammability of the samples, revealing a significant drop in flame retardancy when both types of flame retardants are present. This reduction is attributed to the neutralization of acidic phosphorus species by the basic oxides generated during the decomposition of the basic inorganic fillers, as confirmed by the characterization techniques employed. These findings underscore the challenge of combining organophosphorus with popular flame-retardant classes such as mineral or basic metal flame retardants, offering insight into a key difficulty in formulating next-generation halogen-free flame-retardant composite coatings. Full article
(This article belongs to the Special Issue Innovative Flame-Retardant Coatings for High-Performance Materials)
Show Figures

Figure 1

24 pages, 5075 KiB  
Article
Automated Machine Learning-Based Prediction of the Effects of Physicochemical Properties and External Experimental Conditions on Cadmium Adsorption by Biochar
by Shuoyang Wang, Xiangyu Song, Jicheng Duan, Shuo Li, Dangdang Gao, Jia Liu, Fanjing Meng, Wen Yang, Shixin Yu, Fangshu Wang, Jie Xu, Siyi Luo, Fangchao Zhao and Dong Chen
Water 2025, 17(15), 2266; https://doi.org/10.3390/w17152266 - 30 Jul 2025
Viewed by 240
Abstract
Biochar serves as an effective adsorbent for the heavy metal cadmium, with its performance significantly influenced by its physicochemical properties and various environmental features. Traditional machine learning models, though adept at managing complex multi-feature relationships, rely heavily on expertise in feature engineering and [...] Read more.
Biochar serves as an effective adsorbent for the heavy metal cadmium, with its performance significantly influenced by its physicochemical properties and various environmental features. Traditional machine learning models, though adept at managing complex multi-feature relationships, rely heavily on expertise in feature engineering and hyperparameter optimization. To address these issues, this study employs an automated machine learning (AutoML) approach, automating feature selection and model optimization, coupled with an intuitive online graphical user interface, enhancing accessibility and generalizability. Comparative analysis of four AutoML frameworks (TPOT, FLAML, AutoGluon, H2O AutoML) demonstrated that H2O AutoML achieved the highest prediction accuracy (R2 = 0.918). Key features influencing adsorption performance were identified as initial cadmium concentration (23%), stirring rate (14.7%), and the biochar H/C ratio (9.7%). Additionally, the maximum adsorption capacity of the biochar was determined to be 105 mg/g. Optimal production conditions for biochar were determined to be a pyrolysis temperature of 570–800 °C, a residence time of ≥2 h, and a heating rate of 3–10 °C/min to achieve an H/C ratio of <0.2. An online graphical user interface was developed to facilitate user interaction with the model. This study not only provides practical guidelines for optimizing biochar but also introduces a novel approach to modeling using AutoML. Full article
Show Figures

Figure 1

25 pages, 4297 KiB  
Article
Application of Carbon–Silicon Hybrid Fillers Derived from Carbonised Rice Production Waste in Industrial Tread Rubber Compounds
by Valeryia V. Bobrova, Sergey V. Nechipurenko, Bayana B. Yermukhambetova, Andrei V. Kasperovich, Sergey A. Yefremov, Aigerim K. Kaiaidarova, Danelya N. Makhayeva, Galiya S. Irmukhametova, Gulzhakhan Zh. Yeligbayeva and Grigoriy A. Mun
Polymers 2025, 17(15), 2070; https://doi.org/10.3390/polym17152070 - 29 Jul 2025
Viewed by 317
Abstract
The disposal of agro-industrial waste is a pressing environmental issue. At the same time, due to the high silica content in specific agricultural residues, their processed products can be utilised in various industrial sectors as substitutes for commercial materials. This study investigates the [...] Read more.
The disposal of agro-industrial waste is a pressing environmental issue. At the same time, due to the high silica content in specific agricultural residues, their processed products can be utilised in various industrial sectors as substitutes for commercial materials. This study investigates the key technological, physico-mechanical, and viscoelastic properties of industrial elastomeric compounds based on synthetic styrene–butadiene rubber, intended for the tread of summer passenger car tyres, when replacing the commercially used highly reinforcing silica filler (SF), Extrasil 150VD brand (white carbon black), with a carbon–silica filler (CSF). The CSF is produced by carbonising a finely ground mixture of rice production waste (rice husks and stems) in a pyrolysis furnace at 550–600 °C without oxygen. It was found that replacing 20 wt.pts. of silica filler with CSF in industrial tread formulations improves processing parameters (Mooney viscosity increases by up to 5.3%, optimal vulcanisation time by up to 9.2%), resistance to plastic deformation (by up to 7.7%), and tackiness of the rubber compounds (by 31.3–34.4%). Viscoelastic properties also improved: the loss modulus and mechanical loss tangent decreased by up to 24.0% and 14.3%, respectively; the rebound elasticity increased by up to 6.3% and fatigue resistance by up to 2.7 thousand cycles; and the internal temperature of samples decreased by 7 °C. However, a decrease in tensile strength (by 10.7–27.0%) and an increase in wear rate (up to 43.3% before and up to 22.5% after thermal ageing) were observed. Nevertheless, the overall results of this study indicate that the CSF derived from the carbonisation of rice production waste—containing both silica and carbon components—can effectively be used as a partial replacement for the commercially utilised reinforcing silica filler in the production of tread rubber for summer passenger car tyres. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Figure 1

20 pages, 3039 KiB  
Article
Heat Transfer Performance and Influencing Factors of Waste Tires During Pyrolysis in a Horizontal Rotary Furnace
by Hongting Ma, Yang Bai, Shuo Ma and Zhipeng Zhou
Energies 2025, 18(15), 4028; https://doi.org/10.3390/en18154028 - 29 Jul 2025
Viewed by 220
Abstract
Pyrolysis technology currently serves as a significant method for recycling and reducing waste tires. In this paper, in order to improve the heat transfer efficiency during the pyrolysis of waste tires in a horizontal rotary furnace and the yield of pyrolysis oil, the [...] Read more.
Pyrolysis technology currently serves as a significant method for recycling and reducing waste tires. In this paper, in order to improve the heat transfer efficiency during the pyrolysis of waste tires in a horizontal rotary furnace and the yield of pyrolysis oil, the effect laws of tire particle size, rotary furnace rotation speed, enhanced heat transfer materials, and adding spiral fins on heat transfer performance and pyrolysis product distribution were studied, respectively. The innovation lies in two aspects: first, aiming at the problems of slow heat transfer and low pyrolysis efficiency in horizontal rotary furnaces, we identified technical measures through experiments to enhance heat transfer, thereby accelerating pyrolysis and reducing energy consumption; second, with the goal of increasing high-value pyrolysis oil yield, we determined optimal operating parameters to improve economic and sustainability outcomes. The results showed that powdered particles of waste tires were heated more evenly during the pyrolysis process, which increased the overall heat transfer coefficient and the proportion of liquid products. When the rotational speed of the rotary pyrolysis furnace exceeded 2 rpm, there was sufficient contact between the material and the furnace wall, which was beneficial to the improvement of heat transfer performance. Adding heat transfer enhancement materials such as carborundum and white alundum could improve the heat transfer performance between the pyrolysis furnace and the material. Notably, a rotational speed of 3 rpm and carborundum were used as a heat transfer enhancement material with powdered waste tire particles during the pyrolysis process; the overall heat transfer coefficient was the highest, which was 16.89 W/(m2·K), and the proportion of pyrolysis oil products was 46.1%. When spiral fins were installed, the comprehensive heat transfer coefficient was increased from 12.78 W/(m2·K) to 16.32 W/(m2·K). The experimental results show that by increasing the speed of the pyrolysis furnace, adding heat transfer enhancing materials with high thermal conductivity to waste tires, and appropriate particle size, the heat transfer performance and pyrolysis rate can be improved, and energy consumption can be reduced. Full article
(This article belongs to the Special Issue Heat Transfer Performance and Influencing Factors of Waste Management)
Show Figures

Figure 1

5 pages, 1385 KiB  
Proceeding Paper
Economic Evaluation of Novel C-Zero Processes for the Efficient Production of Energy, Chemicals, and Fuels
by Dimitris Ipsakis, Georgios Varvoutis, Athanasios Lampropoulos, Costas Athanasiou, Maria Lykaki, Evridiki Mandela, Theodoros Damartzis, Spiros Papaefthimiou, Michalis Konsolakis and George E. Marnellos
Proceedings 2025, 121(1), 13; https://doi.org/10.3390/proceedings2025121013 - 29 Jul 2025
Viewed by 154
Abstract
The aim of this study is to provide a comprehensive analysis of the outcome of two separate techno-economic studies that were conducted for the scaled-up and industrially relevant processes of a) synthetic natural gas (SNG) production from captured (cement-based) CO2 and green-H [...] Read more.
The aim of this study is to provide a comprehensive analysis of the outcome of two separate techno-economic studies that were conducted for the scaled-up and industrially relevant processes of a) synthetic natural gas (SNG) production from captured (cement-based) CO2 and green-H2 (via renewable-assisted electrolysis) and b) combined electricity and crude biofuel production through the integration of biomass pyrolysis, gasification, and solid oxide fuel cells. As was found, the SNG production process seems more feasible from an economic perspective as it can be comparable to current market values. Full article
Show Figures

Figure 1

20 pages, 10028 KiB  
Article
The Fabrication of Cu2O-u/g-C3N4 Heterojunction and Its Application in CO2 Photoreduction
by Jiawei Lu, Yupeng Zhang, Fengxu Xiao, Zhikai Liu, Youran Li, Guiyang Shi and Hao Zhang
Catalysts 2025, 15(8), 715; https://doi.org/10.3390/catal15080715 - 27 Jul 2025
Viewed by 436
Abstract
Over efficient photocatalysts, CO2 photoreduction typically converts CO2 into low-carbon chemicals, which serve as raw materials for downstream synthesis processes. Here, an efficient composite photocatalyst heterojunction (Cu2O-u/g-C3N4) has been fabricated to reduce CO2. [...] Read more.
Over efficient photocatalysts, CO2 photoreduction typically converts CO2 into low-carbon chemicals, which serve as raw materials for downstream synthesis processes. Here, an efficient composite photocatalyst heterojunction (Cu2O-u/g-C3N4) has been fabricated to reduce CO2. Graphitic carbon nitride (g-C3N4) was synthesized via thermal polymerization of urea at 550 °C, while pre-dispersed Cu2O derived from urea pyrolysis (Cu2O-u) was prepared by thermal reduction of urea and CuCl2·2H2O at 180 °C. The heterojunction Cu2O-u/g-C3N4 was subsequently constructed through hydrothermal treatment at 180 °C. This heterojunction exhibited a bandgap of 2.10 eV, with dual optical absorption edges at 485 nm and above 800 nm, enabling efficient harvesting of solar light. Under 175 W mercury lamp irradiation, the heterojunction catalyzed liquid-phase CO2 photoreduction to formic acid, acetic acid, and methanol. Its formic acid production activity surpassed that of pristine g-C3N4 by 3.14-fold and TiO2 by 8.72-fold. Reaction media, hole scavengers, and reaction duration modulated product selectivity. In acetonitrile/isopropanol systems, formic acid and acetic acid production reached 579.4 and 582.8 μmol·h−1·gcat−1. Conversely, in water/triethanolamine systems, methanol production reached 3061.6 μmol·h−1·gcat−1, with 94.79% of the initial conversion retained after three cycles. Finally, this work ends with the conclusions of the CO2 photocatalytic reduction to formic acid, acetic acid, and methanol, and recommends prospects for future research. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

49 pages, 4131 KiB  
Review
Municipal Solid Waste Gasification: Technologies, Process Parameters, and Sustainable Valorization of By-Products in a Circular Economy
by Nicoleta Ungureanu, Nicolae-Valentin Vlăduț, Sorin-Ștefan Biriș, Mariana Ionescu and Neluș-Evelin Gheorghiță
Sustainability 2025, 17(15), 6704; https://doi.org/10.3390/su17156704 - 23 Jul 2025
Viewed by 399
Abstract
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper [...] Read more.
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper provides a comprehensive analysis of major gasification technologies, including fixed bed, fluidized bed, entrained flow, plasma, supercritical water, microwave-assisted, high-temperature steam, and rotary kiln systems. Key aspects such as feedstock compatibility, operating parameters, technology readiness level, and integration within circular economy frameworks are critically evaluated. A comparative assessment of incineration and pyrolysis highlights the environmental and energetic advantages of gasification. The valorization pathways for main product (syngas) and by-products (syngas, ash, tar, and biochar) are also explored, emphasizing their reuse in environmental, agricultural, and industrial applications. Despite progress, large-scale adoption in Europe is constrained by economic, legislative, and technical barriers. Future research should prioritize scaling emerging systems, optimizing by-product recovery, and improving integration with carbon capture and circular energy infrastructures. Supported by recent European policy frameworks, gasification is positioned to play a key role in sustainable waste-to-energy strategies, biomass valorization, and the transition to a low-emission economy. Full article
(This article belongs to the Special Issue Sustainable Waste Process Engineering and Biomass Valorization)
Show Figures

Figure 1

Back to TopTop