High-Yield Precursor-Derived Si-O Ceramics: Processing and Performance
Abstract
1. Introduction
2. Experimental
2.1. Raw Materials
2.2. Preparation of PVSO
2.3. Characterization
3. Results and Discussion
3.1. Mechanism of PVSO Synthesis
3.2. Rheological Properties of PVSO
3.3. FT-IR Analysis of PVSO
3.4. Nuclear Magnetic Resonance (NMR) Analysis of PVSO
3.5. Thermosetting Mechanism of PVSO
3.6. Non-Isothermal DSC Analysis of PVSO
3.7. Curing Kinetics of PESO
3.8. Polymer-to-Ceramic Conversion Process of PESO
4. Conclusions
- (1)
- Precursor development: A novel liquid polysiloxane precursor (PVSO) was synthesized via ring-opening polymerization and hydrosilylation. The resulting precursor exhibited excellent rheological properties, including a tunable viscosity of 45–60 mPa·s, which ensured high fluidity and facilitated infiltration-based processing.
- (2)
- Ceramic yield and transformation: Upon pyrolysis in air, PVSO began decomposing at approximately 400 °C and completed conversion at 1000 °C, yielding a ceramic product with a high yield of 81.3%. Elemental analysis confirmed the composition to be nearly pure SiO2, with negligible residual carbon, indicating clean and efficient ceramic transformation.
- (3)
- Dielectric performance: The SiO2-based ceramic exhibited a dielectric constant of 2.5–2.6 and a loss tangent below 0.01 in the X-band (8.2–12.4 GHz), aligning well with requirements for low-loss electromagnetic applications.
- (4)
- Processing efficiency and application potential: Compared with traditional sol–gel methods, PVSO significantly reduced the number of required infiltration/pyrolysis cycles from over 10 to 6, thereby shortening the fabrication cycle and lowering production costs. These combined advantages position PVSO as a strong candidate for use in radomes, microwave windows, and next-generation high-frequency communication components.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbol/Abbreviation | Description |
PVSO | Vinyl-Hydrogen Polysiloxane Precursor |
D4H | Tetramethylcyclotetrasiloxane |
D4Vi | Tetravinylcyclotetrasiloxane |
TMAH | Tetra-methylammonium hydroxide |
FT-IR | Fourier-Transform Infrared Spectroscopy |
TGA | Thermogravimetric Analysis |
DTG | Derivative Thermogravimetry |
SEM | Scanning Electron Microscopy |
XRD | X-ray Diffraction |
ρ | Density (g·cm−3) |
η | Viscosity (mPa·s) |
ε | Dielectric Constant |
tan δ | Dielectric Loss Tangent |
wt.% | Weight Percent |
Ti | Initial Curing Temperature |
Tp | Peak Curing Temperature |
Tf | Final Curing Temperature |
References
- Colombo, P.; Mera, G.; Riedel, R.; Sorarù, G.D. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 2010, 93, 1805–1837. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, Z.; Zeng, H.; Yang, T.; Wang, X. Effects of graphene on various properties and applications of silicone rubber and silicone resin. Compos. Part A Appl. Sci. Manuf. 2021, 142, 106–120. [Google Scholar] [CrossRef]
- Liu, C.; Pan, R.; Hong, C.; Zhang, X.; Han, W.; Han, J.; Du, S. Effects of zr on the precursor architecture and hightemperature nanostructure evolution of SiOC polymer-derived ceramics. J. Eur. Ceram. Soc. 2016, 36, 395–402. [Google Scholar] [CrossRef]
- Liu, Z.; Picken, S.J.; Besseling, N.A.M. Besseling, Polyborosiloxanes (PBSs), synthetic kinetics, and characterization. Macromolecules 2014, 47, 4531–4537. [Google Scholar] [CrossRef]
- Drozdov, F.V.; Manokhina, E.A.; Vu, T.D.; Muzafarov, A.M. Polyborosiloxanes (PBS): Evolution of approaches to the synthesis and the prospects of their application. Polymers 2022, 14, 4824. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Hong, C.; Han, J.; Han, W.; Du, S. Sol-gel-derived SiBOC ceramics with highly graphitized free carbon. Ceram. Int. 2015, 41, 15292–15296. [Google Scholar] [CrossRef]
- Fu, S.; Zhu, M.; Zhu, Y. Organosilicon polymer-derived ceramics: An overview. J. Adv. Ceram. 2019, 8, 457–478. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, Z.; Liu, W.; Wang, X.; Peng, Z.; Luo, Y.; Xu, C. The synthesis of SiCON ceramics through precursor method. J. Appl. Polym. Sci. 2012, 126, 853–859. [Google Scholar] [CrossRef]
- Lyu, Y.; Tang, H.; Zhao, G. Effect of hf and b incorporation on the SiOC precursor architecture and high-temperature oxidation behavior of SiHfBOC ceramics. J. Eur. Ceram. Soc. 2020, 40, 324–332. [Google Scholar] [CrossRef]
- Peña-Alonso, R.; Mariotto, G.; Gervais, C.; Babonneau, F.; Soraru, G.D. New insights on the high-temperature nanostructure evolution of SiOC and B-doped SiBOC polymer-derived glasses. Chem. Mater. 2007, 19, 5694–5702. [Google Scholar] [CrossRef]
- Yuan, Q.; Chai, Z.-F.; Huang, Z.-R.; Huang, Q. A new precursor of liquid and curable polysiloxane for highly cost-efficient SiOC-based composites. Ceram. Int. 2019, 45, 7044–7048. [Google Scholar] [CrossRef]
- Song, H.; Liu, J.; Liu, B.; Wu, J.; Cheng, H.-M.; Kang, F. Two-dimensional materials for thermal management applications. Joule 2018, 2, 442–463. [Google Scholar] [CrossRef]
- Qiu, J.; Lai, X.; Li, H.; Gao, J.; Zeng, X.; Liao, X. Facile fabrication of a novel polyborosiloxane-decorated layered double hydroxide for remarkably reducing fire hazard of silicone rubber. Compos. Part B Eng. 2019, 175, 107–128. [Google Scholar] [CrossRef]
- Lee, S.W.; Kwak, G.; Han, Y.S.; Vo, T.S.; Kwon, Y. Preparation and characterization of thermally conductive polymer composites containing silanized nanodiamonds. Mol. Cryst. Liq. Cryst. 2017, 651, 180–188. [Google Scholar] [CrossRef]
- Park, D.; Kim, Y.; Lee, S.; Kim, J. Selectively distributed graphene in 1,6-hexanediol diacrylate-epoxy composites via digital light processing 3D printing for enhanced thermal conductivity. Synth. Met. 2021, 276, 116–133. [Google Scholar] [CrossRef]
- Huang, S.; Huang, H.; Liu, X.; Xiang, H. Free-radical-cationic hybrid UV curable silicone resin for age-resistant coatings. Ind. Eng. Chem. Res. 2024, 63, 14657–14667. [Google Scholar] [CrossRef]
- Huang, H.; Du, W.; Deng, H.; Xiang, H. Aging-resistant, high-strength, reprocessable, and recyclable silicones through dynamic Thiol-Maleimide chemistry. Ind. Eng. Chem. Res. 2024, 63, 15373–15382. [Google Scholar] [CrossRef]
- Chen, M.; Yin, T.; Fu, P.; She, H.; Zhang, X.; Zhao, W.; Cui, Z.; Pang, X.; Zhao, Q.; Liu, M. Construction and mechanism of 3D printed polyamide 12/boron nitride template composites with localized and unidirectional thermally conductive property. Compos. Part B Eng. 2021, 225, 109–127. [Google Scholar] [CrossRef]
- Meng, X.; Yu, H.; Wang, L.; Wu, X.; Amin, B.U. Recent progress on fabrication and performance of polymer composites with highly thermal conductivity. Macromol. Mater. Eng. 2021, 306, 210–224. [Google Scholar] [CrossRef]
- Lin, Z.; Jin, H.; Deng, H.; Zu, Z.; Huang, H.; Zhang, L.; Xiang, H. Robust, self-healable, recyclable and thermally conductive silicone composite as intelligent thermal interface material. Compos. Struct. 2024, 332, 117–132. [Google Scholar] [CrossRef]
- Li, Y.; Ren, M.; Lv, P.; Liu, Y.; Shao, H.; Wang, C.; Tang, C.; Zhou, Y.; Shuai, M. A robust and flexible bulk superhydrophobic material from silicone rubber/silica gel prepared by thiol-ene photopolymerization. J. Mater. Chem. A 2019, 7, 7242–7255. [Google Scholar] [CrossRef]
- Liu, Z.; Hong, P.; Xiang, H.P.; Huang, Z.Y.; Luo, Q.H.; Yang, X.J.; Liu, X.X. Preparation and self-healability of silicone elastomer with dual-crosslinked network. Acta Polym. Sin. 2020, 51, 656–669. [Google Scholar] [CrossRef]
- Oh, S.J.; Lee, S.C.; Park, S.Y. Photopolymerization and photobleaching of n-butyl acrylate/ fumed silica composites monitored by real time FTIR-ATR spectroscopy. Vib. Spectrosc. 2006, 42, 273–277. [Google Scholar] [CrossRef]
- Sun, F.; Shi, J.; Du, H.; Nie, J. Synthesis and characterization of hyperbranched photosensitive polysiloxane urethane acrylate. Prog. Org. Coat. 2009, 66, 412–419. [Google Scholar] [CrossRef]
- Liu, Y.; Zhan, L.; Wen, L.; Cheng, L.; He, Y.; Xu, B.; Wu, Q.; Liu, S. Effects of particle size and color on photocuring performance of Si3N4 ceramic slurry by stereolithography. J. Eur. Ceram. Soc. 2021, 41, 2386–2394. [Google Scholar] [CrossRef]
- Sun, J.; Ye, Q.; Huang, H.; Zhang, L.; Huang, C.; Cui, S.; Liu, Y.; Liu, C.; Wang, Z. High-speed melt stretching enables facile fabrication of mechanically superstrong and highly thermo-conductive anisotropic polyethylene/BN nanocomposite films. ACS Appl. Polym. Mater. 2024, 6, 4840–4851. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, T.; Dong, L.; Zhang, Y. Polyhedral oligosilsesquioxane-modified alumina/aluminum nitride/silicone rubber composites to enhance dielectric properties and thermal conductivity. J. Electron. Mater. 2022, 51, 2308–2315. [Google Scholar] [CrossRef]
- Sparks, B.J.; Hoff, E.F.T.; Hayes, L.P.; Patton, D.L. Mussel-inspired thiolene polymer networks: Influencing network properties and adhesion with catechol functionality. Chem. Mater. 2012, 24, 3633–3642. [Google Scholar] [CrossRef]
- Lafont, U.; van Zeijl, H.; van der Zwaag, S. Influence of cross-linkers on the cohesive and adhesive self-healing ability of polysulfide-based thermosets. ACS Appl. Mater. Interfaces 2012, 4, 6280–6288. [Google Scholar] [CrossRef]
- Eisenhaure, J.D.; Xie, T.; Varghese, S.; Kim, S. Microstructured shape memory polymer surfaces with reversible dry adhesion. ACS Appl. Mater. Interfaces 2013, 5, 7714–7717. [Google Scholar] [CrossRef]
- Vidal, F.; Lin, H.; Morales, C.; Jäkle, F. Polysiloxane/polystyrene thermo-responsive and self-healing polymer network via lewis acid-lewis base pair formation. Molecules 2018, 23, 405. [Google Scholar] [CrossRef]
- Natali, M.; Kenny, J.M.; Torre, L. Torre, Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review. Prog. Mater. Sci. 2016, 84, 192–275. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Jiang, Z.; Li, Y.; Jing, X. Boronic ester based vitrimers with enhanced stability via internal boron–nitrogen coordination. J. Am. Chem. Soc. 2020, 142, 21852–21860. [Google Scholar] [CrossRef] [PubMed]
- Vidal, F.; Gomezcoello, J.; Lalancette, R.A.; Jaekle, F. Lewis pairs as highly tunable dynamic cross-links in transient polymer networks. J. Am. Chem. Soc. 2019, 141, 15963–15971. [Google Scholar] [CrossRef]
- Dodge, L.; Chen, Y.; Brook, M.A. Silicone boronates reversibly crosslink using Lewis acid-Lewis base amine complexes. Chem. A Eur. J. 2014, 20, 9349–9356. [Google Scholar] [CrossRef]
- Zepeda-Velazquez, L.; Macphail, B.; Brook, M.A. Spread and set silicone–boronic acid elastomers. Polym. Chem. 2016, 7, 4458–4466. [Google Scholar] [CrossRef]
- Brook, M.A.; Dodge, L.; Chen, Y.; Gonzaga, F.; Amarne, H. Amarne, Sugar complexation to silicone boronic acids. Chem. Commun. 2013, 49, 1392–1394. [Google Scholar] [CrossRef]
- Kim, S.; Zhu, H.; Demirci, A.; Yamamoto, S.; Miyashita, T.; Mitsuishi, M. Cyclosiloxane polymer bearing dynamic boronic acid: Synthesis and bottom-up nanocoating. Polym. Chem. 2019, 10, 5228–5235. [Google Scholar] [CrossRef]
- He, C.; Dong, J.; Xu, C.; Pan, X. N-coordinated organoboron in polymer synthesis and material science. ACS Polym. 2023, 3, 5–27. [Google Scholar] [CrossRef]
- Cambre, J.N.; Roy, D.; Gondi, S.R.; Sumerlin, B.S. Facile strategy to well-defined water-soluble boronic acid (co)polymers. J. Am. Chem. Soc. 2007, 129, 10348–10349. [Google Scholar] [CrossRef]
- Zhao, C.B.; Xu, S.C.; Qin, Y.F.; Su, L.; Yang, X.J. Thermal conductivity cyanate ester resin composites filled with boron nitride. Adv. Mater. Res. 2014, 893, 259–262. [Google Scholar] [CrossRef]
- Robinson, M.W.C.; Swain, A.C. Influence of boron nitride on the network structure and properties of poly(dimethylsiloxane) composite materials. Int. J. Polym. Anal. Charact. 2015, 20, 589–601. [Google Scholar] [CrossRef]
- Kuo, C.-F.J.; Dewangga, G.R.S.; Chen, J.-B. Fabrication of a thermally conductive silicone composite by incorporating surface-modified boron nitride. Text. Res. J. 2018, 89, 2637–2647. [Google Scholar] [CrossRef]
- Lin, Y.; Williams, T.V.; Cao, W.; Elsayed-Ali, H.E.; Connell, J.W. Connell, Defect functionalization of hexagonal boron nitride nanosheets. J. Phys. Chem. C 2010, 114, 17434–17439. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, J.; Tian, W.; Fan, X.; Yao, Y. Polymer composites based on hexagonal boron nitride and their application in thermally conductive composites. RSC Adv. 2018, 8, 21948–21967. [Google Scholar] [CrossRef] [PubMed]
- Joy, J.; George, E.; Haritha, P.; Thomas, S.; Anas, S. An overview of boron nitride based polymer nanocomposites. J. Polym. Sci. 2020, 58, 3115–3141. [Google Scholar] [CrossRef]
- Wang, F.; Zeng, X.; Yao, Y.; Sun, R.; Xu, J.; Wong, C.-P. Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity. Sci. Rep. 2016, 6, 193–204. [Google Scholar] [CrossRef]
- Chen, L.; Xu, H.-F.; He, S.-J.; Du, Y.-H.; Yu, N.-J.; Du, X.-Z.; Lin, J.; Nazarenko, S.; Mishra, Y.K. Thermal conductivity performance of polypropylene composites filled with polydopamine-functionalized hexagonal boron nitride. PLoS ONE 2017, 12, e0170523. [Google Scholar] [CrossRef]
- Goto, T.; Iida, M.; Tan, H.; Liu, C.; Mayumi, K.; Maeda, R.; Kitahara, K.; Hatakeyama, K.; Ito, T.; Shimizu, Y.; et al. Thermally conductive tough flexible elastomers as composite of slide-ring materials and surface modified boron nitride particles via plasma in solution. Appl. Phys. Lett. 2018, 112, 101901. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Hu, W.; Han, W.; Zhu, Q.; Xu, Y. Hexagonal boron nitride nanosheets incorporated antireflective silica coating with enhanced laser-induced damage threshold. High Power Laser Sci. Eng. 2018, 6, 126–133. [Google Scholar] [CrossRef]
- Song, K.; Ye, W.; Gao, X.; Fang, H.; Zhang, Y.; Zhang, Q.; Li, X.; Yang, S.; Wei, H.; Ding, Y. Synergy between dynamic covalent boronic ester and boron-nitrogen coordination: Strategy for self-healing polyurethane elastomers at room temperature with unprecedented mechanical properties. Mater. Horiz. 2021, 8, 216–223. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, Z.; Han, J. Current Chemistry of Cyclic Oligomeric Silsesquioxanes. Curr. Org. Chem. 2017, 21, 2814–2828. [Google Scholar] [CrossRef]
- Mo, J.; Ma, W. Silsesquioxane Oligomer as Replacement of Polyhedral Oligomeric Silsesquioxane and Its Homo-Blended Polysilsesquioxane Flexible Thin Film with Low Dielectric Constant. Polym. Sci. Ser. B 2019, 61, 323–333. [Google Scholar] [CrossRef]
- Mehta, G.K.; Nguyen, T.T.; Flores, M.; Trovitch, R.J. Manganese catalysed dehydrocoupling of silanes and siloxanes with ammonia to prepare oligosilazanes and polysiloxazanes. Dalton Trans. 2024, 53, 14272–14277. [Google Scholar] [CrossRef] [PubMed]
- Deriabin, K.V.; Islamova, R.M. Ferrocenyl-containing oligosiloxanes and polysiloxanes: Synthesis, properties, and application. Polym. Sci. Ser. C 2022, 64, 95–109. [Google Scholar] [CrossRef]
- Yu, J.; Liu, Y. Cyclic polysiloxanes with linked cyclotetrasiloxane subunits. Angew. Chem. Int. Ed. 2017, 56, 8706–8710. [Google Scholar] [CrossRef] [PubMed]
- Mizerska, U.; Rubinsztajn, S.; Chojnowski, J.; Cypryk, M.; Uznanski, P.; Walkiewicz-Pietrzykowska, A.; Fortuniak, W. Self-restructuring of polyhydromethylsiloxanes by the hydride transfer process: A new approach to the cross-linking of polysiloxanes and to the fabrication of thin polysiloxane coatings. Materials 2022, 15, 6981. [Google Scholar] [CrossRef]
Corresponding Functional Group | Chemical Shift |
---|---|
-Si-CH3 | 0.75 |
-Si-CH2-CH2-Si- | 8.25 |
-Si-CH2-CH2-Si- | 9.37 |
-Si-CH(CH3)-Si- | 1.89 |
-Si-CH(CH3)-Si- | 7.82 |
-Si-CH=CH2 | 134.21 |
-Si-CH=CH2 | 137.55 |
Heating Rate Β (°C/min) | Start Temperature Ti (°C) | Peak Temperature Tp (°C) | Final Temperature Tf (°C) |
---|---|---|---|
5 | 243.75 | 290.37 | 319.57 |
10 | 260.82 | 305.61 | 325.68 |
15 | 271.57 | 312.13 | 338.72 |
20 | 280.01 | 322.56 | 342.37 |
Curing Temperature | Linear Equation | Correlation Coefficient | Static Curing Temperature/°C |
---|---|---|---|
Ti | y = 234.12 + 2.394x | 0.98687 | 234.12 |
Tp | y = 281.89 + 2.061x | 0.96214 | 281.89 |
Tf | y = 311.22 + 1.628x | 0.97836 | 311.22 |
m/z | Temperature (°C) | Gas |
---|---|---|
2 | 500–600, 800 | H2 |
15, 16 | 550, 700 | CH4 |
18 | 450 | H2O |
28, 30 | 400–560 | C2H4 |
28, 26 | 400–560 | C2H6 |
45, 44, 43, 31, 30 | 400–600 | (CH3)SiH2 |
59, 58, 45, 44, 43 | 320, 520 | (CH3)2SiH |
73, 59, 42 | 300–550 | (CH3)3Si |
Temperature | Si (wt%) | C (wt%) | H (wt%) | O (wt%) |
---|---|---|---|---|
RT | 35.433 | 33.751 | 5.916 | 24.9 |
400 °C | 35.251 | 0.524 | 1.716 | 62.509 |
600 °C | 35.414 | 0.283 | 1.216 | 63.087 |
800 °C | 35.414 | 0.147 | 0.951 | 63.488 |
1000 °C | 35.372 | 0.057 | 0.432 | 64.139 |
Sample | PVSO | Silica Sol |
---|---|---|
Ceramic yield (%) | 81.3% | ≤40% |
Molecular designability | High (tunable via Si-H, vinyl, phenyl, etc.) | Low (fixed SiO2 composition) |
Crosslinking mechanism | Thermal curing (hydrosilylation- or radical-initiated) | Gelation via condensation/polymerization |
Final composition | Amorphous or partially crystalline Si-O | Amorphous SiO2 |
Processing complexity | Fewer steps; good shape retention; easy infiltration | Multiple drying/calcination steps; prone to cracking |
Microstructure control | Controllable via preceramic polymer architecture | Poor control; aggregation and shrinkage common |
Energy consumption | Lower (due to lower pyrolysis temp and shorter cycles) | Higher (due to longer drying and higher sintering temp) |
Precursor cost (USD/g) | Moderate (~USD 0.5–1.0/g), with higher yield per unit mass | Low (~USD 0.2–0.4/g), but much lower yield |
Cost per g of final ceramic | Lower (~USD 1–1.5/g) | Higher (~USD 2–3/g) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Xiao, B.; Hou, Y.; Wen, G. High-Yield Precursor-Derived Si-O Ceramics: Processing and Performance. Materials 2025, 18, 3666. https://doi.org/10.3390/ma18153666
Zhang X, Xiao B, Hou Y, Wen G. High-Yield Precursor-Derived Si-O Ceramics: Processing and Performance. Materials. 2025; 18(15):3666. https://doi.org/10.3390/ma18153666
Chicago/Turabian StyleZhang, Xia, Bo Xiao, Yongzhao Hou, and Guangwu Wen. 2025. "High-Yield Precursor-Derived Si-O Ceramics: Processing and Performance" Materials 18, no. 15: 3666. https://doi.org/10.3390/ma18153666
APA StyleZhang, X., Xiao, B., Hou, Y., & Wen, G. (2025). High-Yield Precursor-Derived Si-O Ceramics: Processing and Performance. Materials, 18(15), 3666. https://doi.org/10.3390/ma18153666