Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = pyroelectric response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2320 KiB  
Article
Evaluation of Correlation-Based Methods for Time Period Estimation in Vehicle Speed Measurement Using Pyroelectric Infrared Sensors
by Bui Hai Dang, Vu Toan Thang and Vu Van Quang
Appl. Sci. 2025, 15(11), 6255; https://doi.org/10.3390/app15116255 - 2 Jun 2025
Viewed by 473
Abstract
Accurate time period estimation (TPE) between sensor signals is essential for vehicle speed measurement in intelligent transportation systems (ITSs). In this context, we focus on time period estimation using signals acquired from a dual pyroelectric infrared (PIR) sensor setup. To estimate the time [...] Read more.
Accurate time period estimation (TPE) between sensor signals is essential for vehicle speed measurement in intelligent transportation systems (ITSs). In this context, we focus on time period estimation using signals acquired from a dual pyroelectric infrared (PIR) sensor setup. To estimate the time period between these signals, this paper analyzes and compares two correlation-based methods—conventional cross-correlation (CCF) and Hilbert transform-enhanced cross-correlation (CCFHT). An analytical framework is developed to quantify the bias and variance of each method under practical conditions, including sensor mismatch and noise. The PIR sensor signals are modeled based on their dynamic response characteristics, enabling theoretical analysis supported by simulations and field experiments. Results show that although both methods yield negligible bias under ideal conditions, CCFHT significantly reduces estimation variance in noisy or mismatched scenarios. These findings confirm the advantages of CCFHT for achieving robust and precise vehicle speed estimation using low-cost PIR sensor systems, and provide insights into practical deployment within ITSs. Full article
(This article belongs to the Special Issue Diagnostic Methodology and Sensors Technologies: 2nd Edition)
Show Figures

Figure 1

16 pages, 3204 KiB  
Article
Nonlinear Pyroelectric and Photoelectric Responses of GaN Nanowires to Ultraviolet Excitation
by Shikuan Chen, Guoshuai Qin, Zhenyu Wang, Mingkai Guo, Cuiying Fan, Minghao Zhao and Chunsheng Lu
Materials 2025, 18(6), 1276; https://doi.org/10.3390/ma18061276 - 13 Mar 2025
Viewed by 524
Abstract
Gallium nitride (GaN), an advanced piezoelectric semiconductor, shows strong potential for ultraviolet (UV) applications due to its prominent thermoelectric, photoelectric, and mechanoelectrical coupling effects, all of which are critical to device performance. This paper focuses on one-dimensional GaN nanowires and introduces a nonlinear [...] Read more.
Gallium nitride (GaN), an advanced piezoelectric semiconductor, shows strong potential for ultraviolet (UV) applications due to its prominent thermoelectric, photoelectric, and mechanoelectrical coupling effects, all of which are critical to device performance. This paper focuses on one-dimensional GaN nanowires and introduces a nonlinear theoretical model to describe pyroelectric and photoelectron effects under UV excitation. The model accounts for both photothermal and photoconductive effects. Using the perturbation method, we derive an approximate analytical solution for the internal physical field of the nanowire under UV light irradiation, which aligns well with the results from nonlinear numerical simulations. Compared to a light intensity of 2 W/m2, a light intensity of 6 W/m2 leads to a 45% increase in electron concentration, a 235% rise in hole concentration, a 146% increase in potential, and a 274% increase in polarization charge concentration. The pyro-phototronic effect enables UV light to modulate the electrical transport characteristics of a Schottky junction. This study addresses the limitations of linearized models for handling large disturbances, providing a comprehensive theoretical and computational framework for advancing GaN micro- and nanoscale devices and enabling effective, non-contact control. Full article
(This article belongs to the Special Issue Nanotechnology and Nanomaterials for Energy Applications)
Show Figures

Figure 1

10 pages, 7042 KiB  
Communication
A Large Voltage Responsivity Pyroelectric Sensor Based on Hot-Pressed Lead Zirconate Titanate Ceramic
by Yanhao Guo, Shaobo Guo, Chunhua Yao, Zhiwei Pan and Genshui Wang
Sensors 2025, 25(3), 917; https://doi.org/10.3390/s25030917 - 3 Feb 2025
Viewed by 824
Abstract
In this article, hot-pressed PZT ceramics were used as a sensitive element material and made into a pyroelectric chip. Three current mode sensors were fabricated using a pyroelectric chip of different thicknesses (80 μm, 40 μm, and 30 μm). The voltage responsivity of [...] Read more.
In this article, hot-pressed PZT ceramics were used as a sensitive element material and made into a pyroelectric chip. Three current mode sensors were fabricated using a pyroelectric chip of different thicknesses (80 μm, 40 μm, and 30 μm). The voltage responsivity of sensors reached the order of magnitude of 105. The size effect resulting from varying the thickness was studied. The results indicate that as the thickness decreases, the performance significantly increases. When the modulation frequency is 10 Hz, the specific detectivity of the sensor with a 30 μm PZT ceramic pyroelectric chip reaches 5.3 × 108 cm·Hz1/2/W. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

20 pages, 4849 KiB  
Article
p-CuO/n-ZnO Heterojunction Pyro-Phototronic Photodetector Controlled by CuO Preparation Parameters
by Zhen Zhang, Fangpei Li, Wenbo Peng, Quanzhe Zhu and Yongning He
Sensors 2024, 24(24), 8197; https://doi.org/10.3390/s24248197 - 22 Dec 2024
Viewed by 1058
Abstract
The combination of ZnO with narrow bandgap materials such as CuO is now a common method to synthesize high-performance optoelectronic devices. This study focuses on optimizing the performance of p-CuO/n-ZnO heterojunction pyroelectric photodetectors, fabricated through magnetron sputtering, by leveraging the pyro-phototronic effect. The [...] Read more.
The combination of ZnO with narrow bandgap materials such as CuO is now a common method to synthesize high-performance optoelectronic devices. This study focuses on optimizing the performance of p-CuO/n-ZnO heterojunction pyroelectric photodetectors, fabricated through magnetron sputtering, by leveraging the pyro-phototronic effect. The devices’ photoresponse to UV (365 nm) and visible (405 nm) lasers is thoroughly examined. The results show that when the device performance is regulated by adjusting the three parameters—sputtering power, sputtering time, and sputtering oxygen–argon ratio—the optimal sputtering parameters should be as follows: sputtering power of 120 W, sputtering time of 15 min, and sputtering oxygen–argon ratio of 1:3. With the optimal sputtering parameters, the maximum responsivity of the pyroelectric effect and the traditional photovoltaic effect Rpyro+photo of the detector is 4.7 times that under the basic parameters, and the maximum responsivity of the traditional photovoltaic effect Rphoto is also 5.9 times that under the basic parameters. This study not only showcases the extensive potential of the pyro-phototronic effect in enhancing heterojunction photodetectors for high-performance photodetection but also provides some ideas for fabricating high-performance photodetectors. Full article
(This article belongs to the Special Issue The Advanced Flexible Electronic Devices: 2nd Edition)
Show Figures

Figure 1

12 pages, 2932 KiB  
Article
Temperature Dependence of the Sensitivity of PVDF Pyroelectric Sensors to THz Radiation: Towards Cryogenic Applications
by Artem N. Sinelnikov, Anatoly R. Melnikov, Yaroslav V. Getmanov, Darya A. Kolomeec, Evgeny V. Kalneus, Matvey V. Fedin and Sergey L. Veber
Sensors 2024, 24(17), 5808; https://doi.org/10.3390/s24175808 - 6 Sep 2024
Cited by 2 | Viewed by 1728
Abstract
The application of terahertz (THz) science in industrial technology and scientific research requires efficient THz detectors. Such detectors should be able to operate under various external conditions and conform to existing geometric constraints in the required application. Pyroelectric THz detectors are among the [...] Read more.
The application of terahertz (THz) science in industrial technology and scientific research requires efficient THz detectors. Such detectors should be able to operate under various external conditions and conform to existing geometric constraints in the required application. Pyroelectric THz detectors are among the best candidates. This is due to their versatility, outstanding performance, ease of fabrication, and robustness. In this paper, we propose a compact pyroelectric detector based on a bioriented poled polyvinylidene difluoride film coated with sputtered metal electrodes for in situ absorption measurement at cryogenic temperature. The detector design was optimized for the registration system of the electron paramagnetic resonance (EPR) endstation of the Novosibirsk Free Electron Laser facility. Measurements of the detector response to pulsed THz radiation at different temperatures and electrode materials showed that the response varies with both the temperature and the type of electrode material used. The maximum signal level corresponds to the temperature range of 10–40 K, in which the pyroelectric coefficient of the PVDF film also has a maximum value. Among the three coatings studied, namely indium tin oxide (ITO), Au, and Cu/Ni, the latter has the highest increase in sensitivity at low temperature. The possibility of using the detectors for in situ absorption measurement was exemplified using two typical molecular spin systems, which exhibited a transparency of 20–30% at 76.9 cm−1 and 5 K. Such measurements, carried out directly in the cryostat with the main recording system and sample fully configured, allow precise control of the THz radiation parameters at the EPR endstation. Full article
(This article belongs to the Special Issue Research Development in Terahertz and Infrared Sensing Technology)
Show Figures

Figure 1

15 pages, 7353 KiB  
Article
Light-Cured Junction Formation and Broad-Band Imaging Application in Thermally Mismatched van der Waals Heterointerface
by Liyuan Cheng, Qinglin Quan and Liang Hu
Materials 2024, 17(16), 3988; https://doi.org/10.3390/ma17163988 - 11 Aug 2024
Cited by 1 | Viewed by 1670
Abstract
Van der Waals (vdW) heterostructures are mainly fabricated by a classic dry transfer procedure, but the interface quality is often subject to the vdW gap, residual strains, and defect species. The realization of interface fusion and repair holds significant implications for the modulation [...] Read more.
Van der Waals (vdW) heterostructures are mainly fabricated by a classic dry transfer procedure, but the interface quality is often subject to the vdW gap, residual strains, and defect species. The realization of interface fusion and repair holds significant implications for the modulation of multiple photoelectric conversion processes. In this work, we propose a thermally mismatched strategy to trigger broad-band and high-speed photodetection performance based on a type-I heterostructure composed of black phosphorus (BP) and FePS3 (FPS) nanoflakes. The BP acts as photothermal source to promote interface fusion when large optical power is adopted. The regulation of optical power enables the device from pyroelectric (PE) and/or alternating current photovoltaic (AC–PV) mode to a mixed photovoltaic (PV)/photothermoelectric (PTE)/PE mode. The fused heterostructure device presents an extended detection range (405~980 nm) for the FPS. The maximum responsivity and detectivity are 329.86 mA/W and 6.95 × 1010 Jones, respectively, and the corresponding external quantum efficiency (EQE) approaches ~100%. Thanks to these thermally-related photoelectric conversion mechanism, the response and decay time constants of device are as fast as 290 μs and 265 μs, respectively, superior to current all FPS-based photodetectors. The robust environmental durability also renders itself as a high-speed and broad-band imaging sensor. Full article
Show Figures

Figure 1

12 pages, 1966 KiB  
Article
Application of a Modified First-Order Plate Theory to Structural Analysis of Sensitive Elements in a Pyroelectric Detector
by Mengmeng Lian, Cuiying Fan, Xiaohan Zhan, Minghao Zhao, Guoshuai Qin and Chunsheng Lu
Micromachines 2024, 15(8), 1012; https://doi.org/10.3390/mi15081012 - 6 Aug 2024
Viewed by 1108
Abstract
Pyroelectric materials, with piezoelectricity and pyroelectricity, have been widely used in infrared thermal detectors. In this paper, a modified first-order plate theory is extended to analyze a pyroelectric sensitive element structure. The displacement, temperature, and electric potential expand along the thickness direction. The [...] Read more.
Pyroelectric materials, with piezoelectricity and pyroelectricity, have been widely used in infrared thermal detectors. In this paper, a modified first-order plate theory is extended to analyze a pyroelectric sensitive element structure. The displacement, temperature, and electric potential expand along the thickness direction. The governing equation of the pyroelectric plate is built up. The potential distributions with upper and lower electrodes are obtained under different supported boundary conditions. The corresponding numerical results of electric potential are consistent with those obtained by the three-dimensional finite element method. Meanwhile, the theoretical results of electric potential are close to that of experiments. The influence of supported boundary conditions, piezoelectric effect, and plate thickness are analyzed. Numerical results show that the piezoelectric effect reduces the electric potential. The thickness of the pyroelectric plate enhances the electric potential but reduces the response speed of the detector. It is anticipated that the pyroelectric plate theory can provide a theoretical approach for the structural design of pyroelectric sensitive elements. Full article
(This article belongs to the Special Issue Piezoelectric Devices and System in Micromachines)
Show Figures

Figure 1

15 pages, 5750 KiB  
Review
Pyroelectric Properties and Applications of Lithium Tantalate Crystals
by Jiashun Si, Xuefeng Xiao, Yan Zhang, Yan Huang, Shuaijie Liang, Qingyan Xu, Huan Zhang, Lingling Ma, Cui Yang and Xuefeng Zhang
Crystals 2024, 14(7), 579; https://doi.org/10.3390/cryst14070579 - 22 Jun 2024
Cited by 3 | Viewed by 2639
Abstract
Lithium tantalate crystals, as a type of pyroelectric material, stand out from many other pyroelectric materials due to the advantages of high Curie temperature, large pyroelectric coefficient, high figure of merits, and environmental friendliness. Due to the pyroelectric effect caused by their spontaneous [...] Read more.
Lithium tantalate crystals, as a type of pyroelectric material, stand out from many other pyroelectric materials due to the advantages of high Curie temperature, large pyroelectric coefficient, high figure of merits, and environmental friendliness. Due to the pyroelectric effect caused by their spontaneous polarization, lithium tantalate crystals have broad application prospects in wide spectral bandwidth and uncooled pyroelectric detectors. This article reviews the pyroelectric properties of lithium tantalate crystals and evaluates methods for pyroelectric properties, methods for modulating pyroelectric properties, and pyroelectric detectors and their applications. The prospects of lithium tantalate thin films, doped lithium tantalate crystals, and near stoichiometric lithium tantalate crystals as response components for pyroelectric detectors are also discussed. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 11462 KiB  
Article
Self-Powered Pressure–Temperature Bimodal Sensing Based on the Piezo-Pyroelectric Effect for Robotic Perception
by Xiang Yu, Yun Ji, Xinyi Shen and Xiaoyun Le
Sensors 2024, 24(9), 2773; https://doi.org/10.3390/s24092773 - 26 Apr 2024
Cited by 2 | Viewed by 1937
Abstract
Multifunctional sensors have played a crucial role in constructing high-integration electronic networks. Most of the current multifunctional sensors rely on multiple materials to simultaneously detect different physical stimuli. Here, we demonstrate the large piezo-pyroelectric effect in ferroelectric Pb(Mg1/3Nb2/3)O3 [...] Read more.
Multifunctional sensors have played a crucial role in constructing high-integration electronic networks. Most of the current multifunctional sensors rely on multiple materials to simultaneously detect different physical stimuli. Here, we demonstrate the large piezo-pyroelectric effect in ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) single crystals for simultaneous pressure and temperature sensing. The outstanding piezoelectric and pyroelectric properties of PMN-PT result in rapid response speed and high sensitivity, with values of 46 ms and 28.4 nA kPa−1 for pressure sensing, and 1.98 s and 94.66 nC °C−1 for temperature detection, respectively. By leveraging the distinct differences in the response speed of piezoelectric and pyroelectric responses, the piezo-pyroelectric effect of PMN-PT can effectively detect pressure and temperature from mixed-force thermal stimuli, which enables a robotic hand for stimuli classification. With appealing multifunctionality, fast speed, high sensitivity, and compact structure, the proposed self-powered bimodal sensor therefore holds significant potential for high-performance artificial perception. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Graphical abstract

13 pages, 13315 KiB  
Article
Self-Powered UV Photodetector Construction of the P(EDOS-TTh) Copolymer-Modified ZnO Nanoarray
by Aygul Kadir, Tursun Abdiryim, Xiong Liu, Ruxangul Jamal and Yaolong Zhang
Nanomaterials 2024, 14(8), 720; https://doi.org/10.3390/nano14080720 - 20 Apr 2024
Viewed by 1634
Abstract
To solve the problem that zinc oxide nanorods (ZnO NRs)-based self-powered ultraviolet (UV) photodetectors cannot obtain both higher responsiveness and shorter response time, P(EDOS-TTh) was prepared using 3,4-ethylenedioxyselenphene (EDOS) and terthiophene (TTh) as copolymers, which modify the ZnO NRs surface, and the ZnO/P(EDOS-TTh) [...] Read more.
To solve the problem that zinc oxide nanorods (ZnO NRs)-based self-powered ultraviolet (UV) photodetectors cannot obtain both higher responsiveness and shorter response time, P(EDOS-TTh) was prepared using 3,4-ethylenedioxyselenphene (EDOS) and terthiophene (TTh) as copolymers, which modify the ZnO NRs surface, and the ZnO/P(EDOS-TTh) P-N junction self-powered UV device is assembled. The effect of the number of electrochemical polymerization cycles on the UV photodetection performance of ZnO/P(EDOS-TTh) P-N heterojunction was studied by adjusting the number of electrochemical polymerization cycles at the monomer molar ratio of 1:1. Benefiting from the enhanced built-in electric field of the ZnO/P(EDOS-TTh) interface, balancing photogenerated carriers, and charge separation and transport. The results show that the contact between N-type ZnO NRs and P-type P(EDOS-TTh) is best when the number of polymerization cycles is 3, due to the fact that EDOS-TTh and ZnO NRs form excellent P-N heterojunctions with strong internal electric fields, and the devices show good pyroelectric effect and UV photodetection performance. Under 0 V bias and 0.32 mW/cm2 UV irradiation, the responsivity (R) of ZnO/P(EDOS-TTh) reaches 3.31 mA/W, the detectivity (D*) is 7.25 × 1010 Jones, and the response time is significantly shortened. The rise time is 0.086 s, which exhibited excellent photoelectric properties and stability. UV photodetection performance with high sensitivity and fast response time is achieved. Full article
Show Figures

Figure 1

54 pages, 21116 KiB  
Review
Magnetron-Sputtered Lead Titanate Thin Films for Pyroelectric Applications: Part 2—Electrical Characteristics and Characterization Methods
by Morteza Fathipour, Yanan Xu and Mukti Rana
Materials 2024, 17(3), 589; https://doi.org/10.3390/ma17030589 - 25 Jan 2024
Cited by 1 | Viewed by 1741
Abstract
Pyroelectric materials are naturally electrically polarized and exhibits a built-in spontaneous polarization in their unit cell structure even in the absence of any externally applied electric field. These materials are regarded as one of the ideal detector elements for infrared applications because they [...] Read more.
Pyroelectric materials are naturally electrically polarized and exhibits a built-in spontaneous polarization in their unit cell structure even in the absence of any externally applied electric field. These materials are regarded as one of the ideal detector elements for infrared applications because they have a fast response time and uniform sensitivity at room temperature across all wavelengths. Crystals of the perovskite lead titanate (PbTiO3) family show pyroelectric characteristics and undergo structural phase transitions. They have a high Curie temperature (the temperature at which the material changes from the ferroelectric (polar) to the paraelectric (nonpolar) phase), high pyroelectric coefficient, high spontaneous polarization, low dielectric constant, and constitute important component materials not only useful for infrared detection, but also with vast applications in electronic, optic, and MEMS devices. However, the preparation of large perfect and pure single crystals PbTiO3 is challenging. Additionally, difficulties arise in the application of such bulk crystals in terms of connection to processing circuits, large size, and high voltages required for their operation. In this part of the review paper, we explain the electrical behavior and characterization techniques commonly utilized to unravel the pyroelectric properties of lead titanate and its derivatives. Further, it explains how the material preparation techniques affect the electrical characteristics of resulting thin films. It also provides an in-depth discussion of the measurement of pyroelectric coefficients using different techniques. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

42 pages, 8548 KiB  
Review
Magnetron Sputtered Lead Titanates Thin Films for Pyroelectric Applications: Part 1: Epitaxial Growth, Material Characterization
by Morteza Fathipour, Yanan Xu and Mukti Rana
Materials 2024, 17(1), 221; https://doi.org/10.3390/ma17010221 - 30 Dec 2023
Viewed by 2185
Abstract
Pyroelectric materials, are those materials with the property that in the absence of any externally applied electric field, develop a built-in spontaneous polarization in their unit cell structure. They are regarded as ideal detector elements for infrared applications because they can provide fast [...] Read more.
Pyroelectric materials, are those materials with the property that in the absence of any externally applied electric field, develop a built-in spontaneous polarization in their unit cell structure. They are regarded as ideal detector elements for infrared applications because they can provide fast response time and uniform sensitivity at room temperature over all wavelengths. Crystals of the perovskite Lead Titanate (PbTiO3) family show pyroelectric characteristics and undergo structural phase transitions. They have a high Curie temperature (the temperature at which the material changes from the ferroelectric (polar) to the paraelectric (nonpolar) phase), high pyroelectric coefficient, high spontaneous polarization, low dielectric constant, and constitute important component materials not only useful for infrared detection, but also with vast applications in electronic, optic, and Micro-electromechanical systems (MEMS) devices. However, the preparation of large perfect, and pure single crystals of PbTiO3 is challenging. Additionally, difficulties arise in the application of such bulk crystals in terms of connection to processing circuits, large size, and high voltages required for their operation. A number of thin film fabrication techniques have been proposed to overcome these inadequacies, among which, magnetron sputtering has demonstrated many potentials. By addressing these aspects, the review article aims to contribute to the understanding of the challenges in the field of pyroelectric materials, highlight potential solutions, and showcase the advancements and potentials of pyroelectric perovskite series including PbZrTiO3 (PZT), PbxCa1x (PZN-PT), etc. for which PbTiO3 is the end member. The review is presented in two parts. Part 1 focuses on material aspects, including preparation methods using magnetron sputtering and material characterization. We take a tutorial approach to discuss the progress made in epitaxial growth of lead titanate-based ceramics prepared by magnetron sputtering and examine how processing conditions may affect the crystalline quality of the growing film by linking to the properties of the substrate/buffer layer, growth substrate temperature, and the oxygen partial pressure in the gas mixture. Careful control and optimization of these parameters are crucial for achieving high-quality thin films with desired structural and morphological characteristics. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

20 pages, 3229 KiB  
Article
Pyro-Phototronic Effect Enhanced MXene/ZnO Heterojunction Nanogenerator for Light Energy Harvesting
by Mingyan Xue, Fangpei Li, Wenbo Peng, Quanzhe Zhu and Yongning He
Nanoenergy Adv. 2023, 3(4), 401-420; https://doi.org/10.3390/nanoenergyadv3040020 - 4 Dec 2023
Cited by 5 | Viewed by 2234
Abstract
The coupling of pyroelectricity, semiconductor, and optical excitation yields the pyro-phototronic effect, which has been extensively utilized in photodetectors. It can also enhance the performance of light energy harvesting nanogenerators. In this work, a pyro-phototronic effect-enhanced MXene/ZnO heterojunction nanogenerator has been successfully demonstrated, [...] Read more.
The coupling of pyroelectricity, semiconductor, and optical excitation yields the pyro-phototronic effect, which has been extensively utilized in photodetectors. It can also enhance the performance of light energy harvesting nanogenerators. In this work, a pyro-phototronic effect-enhanced MXene/ZnO heterojunction nanogenerator has been successfully demonstrated, which can harvest broadband light energy (from deep UV to near-infrared) and still operate at 200 °C. The morphology of the ZnO layer and the MXene layer’s thickness have been further optimized for better light energy harvesting performance. For the optimized heterojunction nanogenerator, the responsivity can be improved from ~0.2 mA/W to ~3.5 mA/W by pyro-phototronic effect, under 0.0974 mW/cm2 365 nm UV illumination. Moreover, the coupling of pyro-phototronic and piezo-phototronic effects in MXene/ZnO heterojunction nanogenerators has been investigated. The results indicate that only a small tensile strain could improve the nanogenerator’s performance. The working mechanisms have been carefully analyzed, and the modulation of piezoelectric charges on the Schottky barrier height is found to be the key factor. These results demonstrate the enormous potential of the pyro-phototronic effect in light energy harvesting nanogenerators and illustrate the coupling of pyro-phototronic and piezo-phototronic effects for further performance improvement. Full article
Show Figures

Figure 1

19 pages, 6979 KiB  
Article
Electrospun Microstructured Biopolymer Fibers Containing the Self-Assembled Boc–Phe–Ile Dipeptide: Dielectric and Energy Harvesting Properties
by Adelino Handa, Rosa M. F. Baptista, Daniela Santos, Bruna Silva, Ana Rita O. Rodrigues, João Oliveira, Bernardo Almeida, Etelvina de Matos Gomes and Michael Belsley
Sustainability 2023, 15(22), 16040; https://doi.org/10.3390/su152216040 - 17 Nov 2023
Cited by 3 | Viewed by 1465
Abstract
Hybrid biomaterials were engineered using the electrospinning technique, incorporating the dipeptide Boc–L-phenylalanyl–L-isoleucine into microfibers composed of biocompatible polymers. The examination by scanning electron microscopy affirmed the morphology of the microfibers, exhibiting diameters ranging between 0.9 and 1.8 µm. The dipeptide self-assembles into spheres [...] Read more.
Hybrid biomaterials were engineered using the electrospinning technique, incorporating the dipeptide Boc–L-phenylalanyl–L-isoleucine into microfibers composed of biocompatible polymers. The examination by scanning electron microscopy affirmed the morphology of the microfibers, exhibiting diameters ranging between 0.9 and 1.8 µm. The dipeptide self-assembles into spheres with a hydrodynamic size between 0.18 and 1.26 µm. The dielectric properties of these microfibers were characterized through impedance spectroscopy where variations in both temperature and frequency were systematically studied. The investigation revealed a noteworthy rise in the dielectric constant and AC electric conductivity with increasing temperature, attributable to augmented charge mobility within the material. The successful integration of the dipeptide was substantiated through the observation of Maxwell–Wagner interfacial polarization, affirming the uniform dispersion within the microfibers. In-depth insights into electric permittivity and activation energies were garnered using the Havriliak–Negami model and the AC conductivity behavior. Very importantly, these engineered fibers exhibited pronounced pyroelectric and piezoelectric responses, with Boc–Phe–Ile@PLLA microfibers standing out with the highest piezoelectric coefficient, calculated to be 56 pC/N. These discoveries help us understand how dipeptide nanostructures embedded into electrospun nano/microfibers can greatly affect their pyroelectric and piezoelectric properties. They also point out that polymer fibers could be used as highly efficient piezoelectric energy harvesters, with promising applications in portable and wearable devices. Full article
(This article belongs to the Special Issue Advanced Energy Materials for Sustainability)
Show Figures

Graphical abstract

15 pages, 2680 KiB  
Article
Comparative Study of Single Crystal and Polymeric Pyroelectric Detectors in the 0.9–2.0 THz Range Using Monochromatic Laser Radiation of the NovoFEL
by Anatoly R. Melnikov, Evgeny V. Kalneus, Yaroslav V. Getmanov, Darya A. Shevchenko, Vasily V. Gerasimov, Oleg A. Anisimov, Matvey V. Fedin and Sergey L. Veber
Polymers 2023, 15(20), 4124; https://doi.org/10.3390/polym15204124 - 18 Oct 2023
Cited by 3 | Viewed by 1782
Abstract
The development of efficient and reliable sensors operating at room temperature is essential to advance the application of terahertz (THz) science and technology. Pyroelectric THz detectors are among the best candidates, taking into account their variety, outstanding performance, ease of fabrication, and robustness. [...] Read more.
The development of efficient and reliable sensors operating at room temperature is essential to advance the application of terahertz (THz) science and technology. Pyroelectric THz detectors are among the best candidates, taking into account their variety, outstanding performance, ease of fabrication, and robustness. In this work, we compare the performance of six different detectors, based on either LaTiO3 crystal or different polymeric films, using monochromatic radiation of the Novosibirsk Free Electron Laser facility (NovoFEL) in the frequency range of 0.9–2.0 THz. The main characteristics, including noise equivalent power and frequency response, were determined for all of them. Possible reasons for the differences in the obtained characteristics are discussed on the basis of the main physicochemical characteristics and optical properties of the sensitive area. At least three detectors showed sufficient sensitivity to monitor the shape and duration of the THz macropulses utilizing only a small fraction of the THz radiation from the primary beam. This capability is crucial for accurate characterization of THz radiation during the main experiment at various specialized endstations at synchrotrons and free electron lasers. As an example of such characterization, the typical stability of the average NovoFEL radiation power at the beamline of the electron paramagnetic resonance endstation was investigated. Full article
(This article belongs to the Special Issue New Studies on Polymer-Based Sensors)
Show Figures

Figure 1

Back to TopTop