Comparative Study of Single Crystal and Polymeric Pyroelectric Detectors in the 0.9–2.0 THz Range Using Monochromatic Laser Radiation of the NovoFEL
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radiation Source—Novosibirsk Free Electron Laser Facility
2.2. Characterization of the Detectors
Detector Name | QS-IF5 | MG-32 | ITO | Cu/Ni | Au | Ag-ink | |
---|---|---|---|---|---|---|---|
Sensitive element | Material | LaTiO3 | TADP a | PVDF b | PVDF b | PVDF b | PVDF b |
Thickness (μm) | — c | 1 | 28 | 28 | 12 | 28 | |
Diameter (mm) | 5 | 1 d | 4 | 4 | 4 | 4 | |
Electrodes | Material | Me e | Al f | ITO f | Cu/Ni f | Au f | Ag g |
Thickness (nm) | — c | 30 | 2500 h | 70/10 | 100 | 10,000 | |
Preamplifier feedback | Resistance (MΩ) | 100 | 10−3 | 100 | 100 | 100 | 100 |
Capacitance (μF) | — | 0.22 | — | — | — | — |
2.3. PVDF-Based Detectors
2.4. Preamplifier
3. Results and Discussion
3.1. Noise Equivalent Power
3.2. Frequency Response
3.3. Linearity of the Detector Response
3.4. Application at the EPR Endstation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Zang, P.; Yang, D.; Zhang, R.; Gai, S.; Yang, P. The Fundamentals and Applications of Piezoelectric Materials for Tumor Therapy: Recent Advances and Outlook. Mater. Horiz. 2023, 10, 1140–1184. [Google Scholar] [CrossRef]
- Whatmore, R.W.; Ward, S.J. Pyroelectric Infrared Detectors and Materials—A Critical Perspective. J. Appl. Phys. 2023, 133, 080902. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, H.; Bowen, C.R.; Yang, Y. Recent Advances in Pyroelectric Materials and Applications. Small 2021, 17, 2103960. [Google Scholar] [CrossRef]
- Surmenev, R.A.; Chernozem, R.V.; Pariy, I.O.; Surmeneva, M.A. A Review on Piezo- and Pyroelectric Responses of Flexible Nano- and Micropatterned Polymer Surfaces for Biomedical Sensing and Energy Harvesting Applications. Nano Energy 2021, 79, 105442. [Google Scholar] [CrossRef]
- He, H.; Lu, X.; Hanc, E.; Chen, C.; Zhang, H.; Lu, L. Advances in Lead-Free Pyroelectric Materials: A Comprehensive Review. J. Mater. Chem. C 2020, 8, 1494–1516. [Google Scholar] [CrossRef]
- Martins, P.; Lopes, A.C.; Lanceros-Mendez, S. Electroactive Phases of Poly(Vinylidene Fluoride): Determination, Processing and Applications. Prog. Polym. Sci. 2014, 39, 683–706. [Google Scholar] [CrossRef]
- Schossig, M.; Norkus, V.; Gerlach, G. Dielectric and Pyroelectric Properties of Ultrathin, Monocrystalline Lithium Tantalate. Infrared Phys. Technol. 2014, 63, 35–41. [Google Scholar] [CrossRef]
- Trybus, M.; Szlachta, A. Pyroelectric Response of Single-Crystal Samples of Trigycine Sulphate in Three Dimensions. Infrared Phys. Technol. 2022, 123, 104211. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, H.; Xie, G.; Jiang, Y.; Chen, C.; Su, Y.; Wang, Y.; Tai, H. Flexible Piezoelectric Pressure Sensor Based on Polydopamine-Modified BaTiO3/PVDF Composite Film for Human Motion Monitoring. Sens. Actuators Phys. 2020, 301, 111789. [Google Scholar] [CrossRef]
- Thakur, P.; Kool, A.; Hoque, N.A.; Bagchi, B.; Khatun, F.; Biswas, P.; Brahma, D.; Roy, S.; Banerjee, S.; Das, S. Superior Performances of in Situ Synthesized ZnO/PVDF Thin Film Based Self-Poled Piezoelectric Nanogenerator and Self-Charged Photo-Power Bank with High Durability. Nano Energy 2018, 44, 456–467. [Google Scholar] [CrossRef]
- Mao, Y.; Zhao, P.; McConohy, G.; Yang, H.; Tong, Y.; Wang, X. Sponge-Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self-Powered Electronic Systems. Adv. Energy Mater. 2014, 4, 1301624. [Google Scholar] [CrossRef]
- Xing, L.; Nie, Y.; Xue, X.; Zhang, Y. PVDF Mesoporous Nanostructures as the Piezo-Separator for a Self-Charging Power Cell. Nano Energy 2014, 10, 44–52. [Google Scholar] [CrossRef]
- Xu, Y.; Li, W.; Yu, T.; Li, Y.; Li, R.; Lin, Q. Pulsed-Laser Detectors Based on Metal Halide Perovskites. Laser Photonics Rev. 2021, 15, 2100169. [Google Scholar] [CrossRef]
- Pullano, S.A.; Mahbub, I.; Islam, S.K.; Fiorillo, A.S. PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices. Sensors 2017, 17, 850. [Google Scholar] [CrossRef] [PubMed]
- Sung, M.; Shin, K.; Moon, W. A New Transduction Mechanism for Hydrophones Employing Piezoelectricity and a Field-Effect Transistor. Sens. Actuators Phys. 2015, 233, 557–568. [Google Scholar] [CrossRef]
- Jia, F.-F.; Zhong, H.; Zhang, W.-G.; Li, X.-R.; Wang, G.-Y.; Song, J.; Cheng, Z.-P.; Yin, J.-Z.; Guo, L.-P. A Novel Nonenzymatic ECL Glucose Sensor Based on Perovskite LaTiO3-Ag0.1 Nanomaterials. Sens. Actuators B Chem. 2015, 212, 174–182. [Google Scholar] [CrossRef]
- Müller, R.; Gutschwager, B.; Hollandt, J.; Kehrt, M.; Monte, C.; Müller, R.; Steiger, A. Characterization of a Large-Area Pyroelectric Detector from 300 GHz to 30 THz. J. Infrared Millim. Terahertz Waves 2015, 36, 654–661. [Google Scholar] [CrossRef]
- Müller, R.; Bohmeyer, W.; Kehrt, M.; Lange, K.; Monte, C.; Steiger, A. Novel Detectors for Traceable THz Power Measurements. J. Infrared Millim. Terahertz Waves 2014, 35, 659–670. [Google Scholar] [CrossRef]
- Wang, J.; Gou, J.; Li, W. Preparation of Room Temperature Terahertz Detector with Lithium Tantalate Crystal and Thin Film. AIP Adv. 2014, 4, 027106. [Google Scholar] [CrossRef]
- Winnewisser, C.; Jepsen, P.U.; Schall, M.; Schyja, V.; Helm, H. Electro-Optic Detection of THz Radiation in LiTaO3, LiNbO3 and ZnTe. Appl. Phys. Lett. 1997, 70, 3069–3071. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Kurnikov, A.; Li, W.; Kazakov, V.; Ni, R.; Subochev, P.; Razansky, D. Sensitive Ultrawideband Transparent PVDF-ITO Ultrasound Detector for Optoacoustic Microscopy. Opt. Lett. 2022, 47, 4163–4166. [Google Scholar] [CrossRef]
- Sherstov, I.V.; Kolker, D.B. Photoacoustic Methane Gas Analyser Based on a 3.3-μm Optical Parametric Oscillator. Quantum Electron. 2020, 50, 1063. [Google Scholar] [CrossRef]
- Minin, O.V.; Calvo-Gallego, J.; Meziani, Y.M.; Minin, I.V. Improvement of an InfraRed Pyroelectric Detector Performances in THz Range Using the Terajet Effect. Appl. Sci. 2021, 11, 7011. [Google Scholar] [CrossRef]
- Tavakoli, F.; Zarrabi, F.B.; Saghaei, H. Modeling and Analysis of High-Sensitivity Refractive Index Sensors Based on Plasmonic Absorbers with Fano Response in the near-Infrared Spectral Region. Appl. Opt. 2019, 58, 5404–5414. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhao, X.; Li, X.; Deng, H.; Yan, H.; Yang, L.; Di, W.; Luo, H.; Neumann, N. 3D-Printing of Inverted Pyramid Suspending Architecture for Pyroelectric Infrared Detectors with Inhibited Microphonic Effect. Infrared Phys. Technol. 2016, 76, 111–115. [Google Scholar] [CrossRef]
- Yap, E.W.; Kumar, N.; Damjanovic, D.; Preston, R.M.; Daniels, J.E. Pyroelectric Material Property Considerations for X-ray Generation. J. Appl. Phys. 2022, 131, 114503. [Google Scholar] [CrossRef]
- Paulish, A.G.; Gusachenko, A.V.; Morozov, A.O.; Dorozhkin, K.V.; Suslyaev, V.I.; Golyashov, V.A.; Minin, O.V.; Minin, I.V. Characterization of Tetraaminediphenyl-Based Pyroelectric Detector from Visible to Millimeter Wave Ranges. Opt. Eng. 2019, 59, 061612. [Google Scholar] [CrossRef]
- Lehman, J.; Sanders, A.; Hanssen, L.; Wilthan, B.; Zeng, J.; Jensen, C. Very Black Infrared Detector from Vertically Aligned Carbon Nanotubes and Electric-Field Poling of Lithium Tantalate. Nano Lett. 2010, 10, 3261–3266. [Google Scholar] [CrossRef]
- Hammerich, M.; Olafsson, A. A Versatile, Low-Cost Pyroelectric Laser Power Monitor for the 1 mW to 50 W Range. J. Phys. E 1988, 21, 80. [Google Scholar] [CrossRef]
- Zhu, W.; Izatt, J.R.; Deka, B.K. Pyroelectric Detection of Submicrosecond Laser Pulses between 230 and 530 μm. Appl. Opt. 1989, 28, 3647–3651. [Google Scholar] [CrossRef]
- Mittleman, D.M. Perspective: Terahertz Science and Technology. J. Appl. Phys. 2017, 122, 230901. [Google Scholar] [CrossRef]
- Zhang, X.C.; Shkurinov, A.; Zhang, Y. Extreme Terahertz Science. Nat. Photonics 2017, 11, 16–18. [Google Scholar] [CrossRef]
- Kulipanov, G.N.; Bagryanskaya, E.G.; Chesnokov, E.N.; Choporova, Y.Y.; Gerasimov, V.V.; Getmanov, Y.V.; Kiselev, S.L.; Knyazev, B.A.; Kubarev, V.V.; Peltek, S.E.; et al. Novosibirsk Free Electron Laser—Facility Description and Recent Experiments. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 798–809. [Google Scholar] [CrossRef]
- Shevchenko, O.A.; Arbuzov, V.S.; Vinokurov, N.A.; Vobly, P.D.; Volkov, V.N.; Getmanov, Y.V.; Gorbachev, Y.I.; Davidyuk, I.V.; Deychuly, O.I.; Dementyev, E.N.; et al. The Novosibirsk Free Electron Laser—Unique Source of Terahertz and Infrared Coherent Radiation. Phys. Procedia 2016, 84, 13–18. [Google Scholar] [CrossRef]
- Kubarev, V.V.; Chesnokov, E.N. New Time-Domain Spectroscopic Methods at Novosibirsk FEL. In Proceedings of the 2022 International Conference Laser Optics (ICLO), St. Petersburg, Russia, 20–24 June 2022; p. 1. [Google Scholar]
- Kubarev, V.; Bae, S.; Getmanov, Y.; Jeong, Y.U.; Shevchenko, O. Fine and Hyperfine Structure of FEL Emission Spectra; JACOW Publishing: Geneva, Switzerland, 2019; pp. 276–281. [Google Scholar]
- Shevchenko, O.A.; Melnikov, A.R.; Tararyshkin, S.V.; Getmanov, Y.V.; Serednyakov, S.S.; Bykov, E.V.; Kubarev, V.V.; Fedin, M.V.; Veber, S.L. Electronic Modulation of THz Radiation at NovoFEL: Technical Aspects and Possible Applications. Materials 2019, 12, 3063. [Google Scholar] [CrossRef]
- Veber, S.L.; Tumanov, S.V.; Fursova, E.Y.; Shevchenko, O.A.; Getmanov, Y.V.; Scheglov, M.A.; Kubarev, V.V.; Shevchenko, D.A.; Gorbachev, I.I.; Salikova, T.V.; et al. X-Band EPR Setup with THz Light Excitation of Novosibirsk Free Electron Laser: Goals, Means, Useful Extras. J. Magn. Reson. 2018, 288, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Melnikov, A.R.; Kiskin, M.A.; Getmanov, Y.V.; Shevchenko, O.A.; Fedin, M.V.; Veber, S.L. Technical and Software Improvements of the EPR Spectroscopy Endstation at the NovoFEL Facility: Status 2020. AIP Conf. Proc. 2020, 2299, 030010. [Google Scholar] [CrossRef]
- Liang, Z.; Li, S.; Liu, Z.; Jiang, Y.; Li, W.; Wang, T.; Wang, J. High Responsivity of Pyroelectric Infrared Detector Based on Ultra-Thin (10 μm) LiTaO3. J. Mater. Sci. Mater. Electron. 2015, 26, 5400–5404. [Google Scholar] [CrossRef]
- Kubarev, V.V.; Sozinov, G.I.; Scheglov, M.A.; Vodopyanov, A.V.; Sidorov, A.V.; Melnikov, A.R.; Veber, S.L. The Radiation Beamline of Novosibirsk Free-Electron Laser Facility Operating in Terahertz, Far-Infrared, and Mid-Infrared Ranges. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 634–646. [Google Scholar] [CrossRef]
- Farhan, M.S.; Zalnezhad, E.; Bushroa, A.R.; Sarhan, A.A.D. Electrical and Optical Properties of Indium-Tin Oxide (ITO) Films by Ion-Assisted Deposition (IAD) at Room Temperature. Int. J. Precis. Eng. Manuf. 2013, 14, 1465–1469. [Google Scholar] [CrossRef]
- Richards, P.L. Bolometers for Infrared and Millimeter Waves. J. Appl. Phys. 1994, 76, 1–24. [Google Scholar] [CrossRef]
- Iwasaki, T.; Inoue, T.; Nemoto, T. A Matched-Load Type PVF2 Pyroelectric Detector for Millimeter Waves. IEEE Trans. Instrum. Meas. 1979, 28, 88–89. [Google Scholar] [CrossRef]
- Melnikov, A.R.; Zikirin, S.B.; Kalneus, E.V.; Ivannikov, V.I.; Grishin, Y.A.; Anisimov, O.A. Application of Pyroelectric Sensors Based on PVDF Films for EPR Spectra Detection by Heat Release. Sensors 2021, 21, 8426. [Google Scholar] [CrossRef] [PubMed]
- Sizov, F.F.; Reva, V.P.; Golenkov, A.G.; Zabudsky, V.V. Uncooled Detectors Challenges for THz/Sub-THz Arrays Imaging. J. Infrared Millim. Terahertz Waves 2011, 32, 1192–1206. [Google Scholar] [CrossRef]
- Kubarev, V.V.; Kazakevitch, G.M.; Jeong, Y.U.; Lee, B.C. Quasi-Optical Highly Sensitive Schottky-Barrier Detector for a Wide-Band FIR FEL. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2003, 507, 523–526. [Google Scholar] [CrossRef]
- Bozhkov, V.G. Semiconductor Detectors, Mixers, and Frequency Multipliers for the Terahertz Band. Radiophys. Quantum Electron. 2003, 46, 631–656. [Google Scholar] [CrossRef]
- Hesler, J.L.; Crowe, T.W. Responsivity and noise measurements of zero-bias Schottky diode detectors. In Proceedings of the 18th International Symposium Space Terahertz Technology (ISSTT 2007), Pasadena, CA, USA, 21–23 March 2007; pp. 89–92. [Google Scholar]
- Hwang, T.; Schwarz, S.E.; Rutledge, D.B. Microbolometers for Infrared Detection. Appl. Phys. Lett. 2008, 34, 773–776. [Google Scholar] [CrossRef]
- Grossman, E.N.; Miller, A.J. Active Millimeter-Wave Imaging for Concealed Weapons Detection. In Proceedings of the Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, Orlando, FL, USA, 23–24 April 2003; SPIE: Bellingham, WA, USA, 2003; Volume 5077, pp. 62–70. [Google Scholar]
- Javadi, E.; But, D.B.; Ikamas, K.; Zdanevičius, J.; Knap, W.; Lisauskas, A. Sensitivity of Field-Effect Transistor-Based Terahertz Detectors. Sensors 2021, 21, 2909. [Google Scholar] [CrossRef]
- Ikamas, K.; Cibiraite, D.; Lisauskas, A.; Bauer, M.; Krozer, V.; Roskos, H.G. Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz. IEEE Electron Device Lett. 2018, 39, 1413–1416. [Google Scholar] [CrossRef]
- Venkatachalam, S.; Zeranska-Chudek, K.; Zdrojek, M.; Hourlier, D. Carbon-Based Terahertz Absorbers: Materials, Applications, and Perspectives. Nano Sel. 2020, 1, 471–490. [Google Scholar] [CrossRef]
- Didari-Bader, A.; Saghaei, H. Penrose Tiling-Inspired Graphene-Covered Multiband Terahertz Metamaterial Absorbers. Opt. Express 2023, 31, 12653–12668. [Google Scholar] [CrossRef] [PubMed]
- Alden Mostaan, S.M.; Saghaei, H. A Tunable Broadband Graphene-Based Metamaterial Absorber in the Far-Infrared Region. Opt. Quantum Electron. 2021, 53, 96. [Google Scholar] [CrossRef]
Detector | NEP a (μW·Hz−1/2) | ||||
---|---|---|---|---|---|
Wavenumber (cm−1); Wavelength (μm); Frequency (THz) | |||||
66.7; 150; 2.0 | 66.7; 150; 2.0 b | 50.8; 197; 1.5 | 41.7; 240; 1.25 | 28.6; 350; 0.85 | |
QS-IF5 c | 2.2 × 10−2 | 1.8 × 10−2 | 2.8 × 10−2 | 2.9 × 10−2 | 4.7 × 10−2 |
MG-32 d,e | 1.3 × 10−2 | 1.6 × 10−2 | 1.5 × 10−2 | 1.0 × 10−2 | 1.3 × 10−2 |
ITO c | 2.3 | 2.5 | 2.2 | 3.1 | 2.8 |
Cu/Ni c | 41.8 | 33.8 | 23.0 | 37.3 | 50.3 |
Au c | 53.3 | 59.6 | 48.0 | 88.3 | 109.5 |
Ag-ink f | 28.9 | 26.7 | 23.7 | 37.2 | 144.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melnikov, A.R.; Kalneus, E.V.; Getmanov, Y.V.; Shevchenko, D.A.; Gerasimov, V.V.; Anisimov, O.A.; Fedin, M.V.; Veber, S.L. Comparative Study of Single Crystal and Polymeric Pyroelectric Detectors in the 0.9–2.0 THz Range Using Monochromatic Laser Radiation of the NovoFEL. Polymers 2023, 15, 4124. https://doi.org/10.3390/polym15204124
Melnikov AR, Kalneus EV, Getmanov YV, Shevchenko DA, Gerasimov VV, Anisimov OA, Fedin MV, Veber SL. Comparative Study of Single Crystal and Polymeric Pyroelectric Detectors in the 0.9–2.0 THz Range Using Monochromatic Laser Radiation of the NovoFEL. Polymers. 2023; 15(20):4124. https://doi.org/10.3390/polym15204124
Chicago/Turabian StyleMelnikov, Anatoly R., Evgeny V. Kalneus, Yaroslav V. Getmanov, Darya A. Shevchenko, Vasily V. Gerasimov, Oleg A. Anisimov, Matvey V. Fedin, and Sergey L. Veber. 2023. "Comparative Study of Single Crystal and Polymeric Pyroelectric Detectors in the 0.9–2.0 THz Range Using Monochromatic Laser Radiation of the NovoFEL" Polymers 15, no. 20: 4124. https://doi.org/10.3390/polym15204124
APA StyleMelnikov, A. R., Kalneus, E. V., Getmanov, Y. V., Shevchenko, D. A., Gerasimov, V. V., Anisimov, O. A., Fedin, M. V., & Veber, S. L. (2023). Comparative Study of Single Crystal and Polymeric Pyroelectric Detectors in the 0.9–2.0 THz Range Using Monochromatic Laser Radiation of the NovoFEL. Polymers, 15(20), 4124. https://doi.org/10.3390/polym15204124