Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (137)

Search Parameters:
Keywords = pulse-bursts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2583 KiB  
Article
Burst-Mode Operation of End-Pumped, Passively Q-Switched (Er/Yb):Glass Lasers
by Stephen R. Chinn, Lew Goldberg and A. D. Hays
Photonics 2025, 12(8), 750; https://doi.org/10.3390/photonics12080750 - 25 Jul 2025
Viewed by 132
Abstract
We describe the output characteristics of a compact, passively Q-switched, diode-end-pumped (Er/Yb):Glass laser operating in a multi-pulse burst mode. Such operation enables much higher optical efficiency and larger output of total energy than possible with conventional solitary pulse emissions. The laser generated a [...] Read more.
We describe the output characteristics of a compact, passively Q-switched, diode-end-pumped (Er/Yb):Glass laser operating in a multi-pulse burst mode. Such operation enables much higher optical efficiency and larger output of total energy than possible with conventional solitary pulse emissions. The laser generated a 15-pulse burst of pulses at 1.5 μm with a combined energy of 5.8 mJ. Measurements of pulse energies, spatial mode characteristics, output beam divergence, and impact of thermal effects in the (Er/Yb):Glass are described. These results are compared to predictions of a numerical simulation using a finite-difference beam propagation method (FD-BPM) that incorporates thermal effects caused by distributed local heating in the glass. We show good agreement between the measured and simulated laser output characteristics. Full article
(This article belongs to the Special Issue Laser Technology and Applications)
Show Figures

Figure 1

10 pages, 2216 KiB  
Article
A Solid-State Three-Stage Nd:YVO4 Laser Amplifier System Based on AOM Pulse Picker-Integrated Modulator
by Zhenyu Li, Yawen Zheng, Zhengtao Zhang, Peipei Lu, Zhen Zeng, Zhongsheng Zhai and Boya Xie
Quantum Beam Sci. 2025, 9(3), 22; https://doi.org/10.3390/qubs9030022 - 1 Jul 2025
Viewed by 274
Abstract
In recent years, ultrafast bursts with high power have been applied in many significant fields. However, the peak power of the pulse train generated by fiber lasers is limited by fiber characteristics from nonlinear effects, which can only be at the level of [...] Read more.
In recent years, ultrafast bursts with high power have been applied in many significant fields. However, the peak power of the pulse train generated by fiber lasers is limited by fiber characteristics from nonlinear effects, which can only be at the level of milliwatt. In this research, the pulse frequency is reduced by an AOM pulse picker-integrated modulator. With M2 and pulse width guaranteed, the frequency of the reduced pulse train is amplified by a solid-state three-stage Nd:YVO4 amplifier system. Finally, the peak power of the pulse train is increased. The final output pulse repetition rate of the experiment is 1 MHz with a pulse width of 8.09 picoseconds and a peak power of up to 3.7 MW. Full article
(This article belongs to the Section High-Power Laser Physics)
Show Figures

Figure 1

19 pages, 5533 KiB  
Article
Design and Development of a New Long-Pulse-Width Power Supply
by Kangqiao Ma, Lifeng Zhang and Tianwei Zhang
Energies 2025, 18(12), 3150; https://doi.org/10.3390/en18123150 - 16 Jun 2025
Viewed by 330
Abstract
In order to achieve a long-pulse-width output, a new long-pulse-width modulator based on the charging power supply of LCC-type high-frequency resonant converters and the pulse-generating unit in series IGBT switching technology has been designed. The relationship between the resonant cavity gain and the [...] Read more.
In order to achieve a long-pulse-width output, a new long-pulse-width modulator based on the charging power supply of LCC-type high-frequency resonant converters and the pulse-generating unit in series IGBT switching technology has been designed. The relationship between the resonant cavity gain and the switching frequency has been derived. In the charging phase, the critical intermittent control mode is used to increase the charging speed, and in the voltage stabilization phase, the hysteresis burst control strategy is used to improve voltage accuracy. The simulation results show that the output pulse amplitude is 10 kV, the pulse width can reach 650 μs, and the top-drop is about 12%. Thus, a long pulse width modulator is developed. The output pulse voltage can reach 4 kV, and the output pulse width is 650 μs. The power supply reduces the capacity of the energy storage capacitor, which has industrial application value. Full article
(This article belongs to the Special Issue Pulsed Power Science and High Voltage Discharge)
Show Figures

Figure 1

23 pages, 9331 KiB  
Article
Non-Ideal Hall MHD Rayleigh–Taylor Instability in Plasma Induced by Nanosecond and Intense Femtosecond Laser Pulses
by Roman S. Zemskov, Maxim V. Barkov, Evgeniy S. Blinov, Konstantin F. Burdonov, Vladislav N. Ginzburg, Anton A. Kochetkov, Aleksandr V. Kotov, Alexey A. Kuzmin, Sergey E. Perevalov, Il’ya A. Shaikin, Sergey E. Stukachev, Ivan V. Yakovlev, Alexander A. Soloviev, Andrey A. Shaykin, Efim A. Khazanov, Julien Fuchs and Mikhail V. Starodubtsev
Plasma 2025, 8(2), 23; https://doi.org/10.3390/plasma8020023 - 10 Jun 2025
Viewed by 1355
Abstract
A pioneering detailed comparative study of the dynamics of plasma flows generated by high-power nanosecond and high-intensity femtosecond laser pulses with similar fluences of up to 3×104 J/cm2 is presented. The experiments were conducted on the petawatt laser facility [...] Read more.
A pioneering detailed comparative study of the dynamics of plasma flows generated by high-power nanosecond and high-intensity femtosecond laser pulses with similar fluences of up to 3×104 J/cm2 is presented. The experiments were conducted on the petawatt laser facility PEARL using two types of high-power laser radiation: femtosecond pulses with energy exceeding 10 J and a duration less than 60 fs, and nanosecond pulses with energy exceeding 10 J and a duration on the order of 1 ns. In the experiments, high-velocity (>100 km/s) flows of «femtosecond» (created by femtosecond laser pulses) and «nanosecond» plasmas propagated in a vacuum across a uniform magnetic field with a strength over 14 T. A significant difference in the dynamics of «femtosecond» and «nanosecond» plasma flows was observed: (i) The «femtosecond» plasma initially propagated in a vacuum (no B-field) as a collimated flow, while the «nanosecond» flow diverged. (ii) The «nanosecond» plasma interacting with external magnetic field formed a quasi-spherical cavity with Rayleigh–Taylor instability flutes. In the case of «femtosecond» plasma, such flutes were not observed, and the flow was immediately redirected into a narrow plasma sheet (or «tongue») propagating across the magnetic field at an approximately constant velocity. (iii) Elongated «nanosecond» and «femtosecond» plasma slabs interacting with a transverse magnetic field broke up into Rayleigh–Taylor «tongues». (iv) The ends of these «tongues» in the femtosecond case twisted into vortex structures aligned with the ion motion in the external magnetic field, whereas the «tongues» in the nanosecond case were randomly oriented. It was suggested that the twisting of femtosecond «tongues» is related to Hall effects. The experimental results are complemented by and consistent with numerical 3D magnetohydrodynamic simulations. The potential applications of these findings for astrophysical objects, such as short bursts in active galactic nuclei, are discussed. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

26 pages, 6795 KiB  
Article
Analysis of Time-Domain Characteristics of Microsecond-Scale Repetitive Pulse Discharge Events in Lightning
by Jinxing Shen, Zheng Sun, Lihua Shi and Shi Qiu
Atmosphere 2025, 16(5), 606; https://doi.org/10.3390/atmos16050606 - 16 May 2025
Viewed by 381
Abstract
To clarify the background of multiple burst (MB) specifications in the aviation lightning test standards, a broadband lightning electromagnetic field measurement system was employed to collect 91 sets of VLF/LF band nature flash data. A total of 719 typical repetitive pulse (RP) groups [...] Read more.
To clarify the background of multiple burst (MB) specifications in the aviation lightning test standards, a broadband lightning electromagnetic field measurement system was employed to collect 91 sets of VLF/LF band nature flash data. A total of 719 typical repetitive pulse (RP) groups were identified, and 163,589 single pulse samples were analyzed statistically. The variational mode decomposition (VMD) method and a trend-free correlation on index (TFCI) were used to extract RPs from the slowly varying trends and high-frequency noises from the measured data. The time-domain characteristics of four kinds of RPs corresponding to the lightning discharge events—initial breakdown pulse (IBP), regular pulse bursts (RPB), chaotic pulse train (CPT), and dart-stepped leader (DSL)—were investigated. By comparing previous statistics and the definition in current international aviation standards, the intrinsic correlation between RPs and the defined parameters of MBs was explored. New recommendations for the MB test standard were subsequently proposed. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

12 pages, 2593 KiB  
Article
Multiclass CNN Approach for Automatic Classification of Dolphin Vocalizations
by Francesco Di Nardo, Rocco De Marco, Daniel Li Veli, Laura Screpanti, Benedetta Castagna, Alessandro Lucchetti and David Scaradozzi
Sensors 2025, 25(8), 2499; https://doi.org/10.3390/s25082499 - 16 Apr 2025
Cited by 1 | Viewed by 885
Abstract
Monitoring dolphins in the open sea is essential for understanding their behavior and the impact of human activities on the marine ecosystems. Passive Acoustic Monitoring (PAM) is a non-invasive technique for tracking dolphins, providing continuous data. This study presents a novel approach for [...] Read more.
Monitoring dolphins in the open sea is essential for understanding their behavior and the impact of human activities on the marine ecosystems. Passive Acoustic Monitoring (PAM) is a non-invasive technique for tracking dolphins, providing continuous data. This study presents a novel approach for classifying dolphin vocalizations from a PAM acoustic recording using a convolutional neural network (CNN). Four types of common bottlenose dolphin (Tursiops truncatus) vocalizations were identified from underwater recordings: whistles, echolocation clicks, burst pulse sounds, and feeding buzzes. To enhance classification performances, edge-detection filters were applied to spectrograms, with the aim of removing unwanted noise components. A dataset of nearly 10,000 spectrograms was used to train and test the CNN through a 10-fold cross-validation procedure. The results showed that the CNN achieved an average accuracy of 95.2% and an F1-score of 87.8%. The class-specific results showed a high accuracy for whistles (97.9%), followed by echolocation clicks (94.5%), feeding buzzes (94.0%), and burst pulse sounds (92.3%). The highest F1-score was obtained for whistles, exceeding 95%, while the other three vocalization typologies maintained an F1-score above 80%. This method provides a promising step toward improving the passive acoustic monitoring of dolphins, contributing to both species conservation and the mitigation of conflicts with fisheries. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

31 pages, 14095 KiB  
Article
Range and Wave Height Corrections to Account for Ocean Wave Effects in SAR Altimeter Measurements Using Neural Network
by Jiaxue Wang, Maofei Jiang and Ke Xu
Remote Sens. 2025, 17(6), 1031; https://doi.org/10.3390/rs17061031 - 15 Mar 2025
Viewed by 665
Abstract
Compared to conventional pulse-limited altimeters (i.e., low-resolution mode, LRM), the synthetic aperture radar (SAR, i.e., high-resolution mode, HRM) altimeter offers superior precision and along-track resolution abilities. However, because the SAR altimeter relies on Doppler shifts caused by the relative movement between radar scattering [...] Read more.
Compared to conventional pulse-limited altimeters (i.e., low-resolution mode, LRM), the synthetic aperture radar (SAR, i.e., high-resolution mode, HRM) altimeter offers superior precision and along-track resolution abilities. However, because the SAR altimeter relies on Doppler shifts caused by the relative movement between radar scattering points and the altimeter antenna, the geophysical parameters obtained by the SAR altimeter are sensitive to the direction of ocean wave movements driven by the wind and waves. Both practice and theory have shown that the wind and wave effects have a greater impact on HRM data than LRM. LRM values of range and significant wave height (SWH) from modern retracking are the best representations there are of these quantities, and this study aims to bring HRM data into line with them. In this study, wind and wave effects in SAR altimeter measurements were analyzed and corrected. The radar altimeter onboard the Sentinel-6 satellite is the first SAR altimeter to operate in an interleaved open burst mode. It has the capability of simultaneous generation of both LRM and HRM data. This study utilizes Sentinel-6 altimetry data and ERA5 re-analysis data to identify the influence of ocean waves. The analysis is based on the altimeter range and SWH differences between the HRM and LRM measurements with respect to different geophysical parameters derived from model data. Results show that both HRM range and SWH measurements are impacted by SWH and wind speed, and the HRM SWH measurements are also significantly impacted by vertical velocity. An upwave/downwave bias between HRM and LRM range is observed. To reduce wave impact on the SAR altimeter measurements, a back-propagation neural network (BPNN) method is proposed to correct the HRM range and SWH measurements. Based on Sentinel-6 measurements and ERA5 re-analysis data, our corrections significantly reduce biases between LRM and HRM range and SWH values. Finally, the accuracies of the sea surface height (SSH) and SWH measurements after correction are assessed using crossover analysis and compared against NDBC buoy data. The standard deviation (STD) of the HRM SSH differences at crossovers has no significant changes before (3.97 cm) and after (3.94 cm) correction. In comparison to the NDBC data, the root mean square error (RMSE) of the corrected HRM SWH data is 0.187 m, which is significantly better than that with no correction (0.265 m). Full article
Show Figures

Graphical abstract

14 pages, 5580 KiB  
Article
Burst Ultrafast Laser Welding of Quartz Glass
by Xianshi Jia, Yinzhi Fu, Kai Li, Chengaonan Wang, Zhou Li, Cong Wang and Ji’an Duan
Materials 2025, 18(5), 1169; https://doi.org/10.3390/ma18051169 - 6 Mar 2025
Cited by 2 | Viewed by 1089
Abstract
Ultrafast laser welding of transparent materials has been widely used in sensors, microfluidics, optics, etc. However, the existing ultrafast laser welding depths are limited by the short laser Rayleigh length, which makes it difficult to realize the joining of transparent materials in the [...] Read more.
Ultrafast laser welding of transparent materials has been widely used in sensors, microfluidics, optics, etc. However, the existing ultrafast laser welding depths are limited by the short laser Rayleigh length, which makes it difficult to realize the joining of transparent materials in the millimeter depth range and becomes a new challenge. Based on temporal shaping, we realized Burst mode ultrafast laser output with different sub-pulse numbers and explored the effect of different Burst modes on the welding performance using high-speed shadow in situ imaging. The experimental results show that the Burst mode femtosecond laser (twelve sub-pulses with a total energy of 28.9 μJ) of 238 fs, 1035 nm and 1000 kHz can form a molten structure with a maximum depth of 5 mm inside the quartz, and the welding strength can be higher than 18.18 MPa. In this context, we analyzed the transient process of forming teardrop molten structures inside transparent materials using high-speed shadow in situ imaging detection and systematically analyzed the fracture behavior of the samples. In addition, we further reveal the Burst femtosecond laser welding mechanism of transparent materials comprehensively by exploring the difference in welding performance under the effect of Burst modes with different sub-pulse numbers. This paper is the first to realize molten structures in the range of up to 5 mm, which is expected to provide a new welding method for curved surfaces and large-size transparent materials, helping to improve the packaging strength of photoelectric devices and the window strength of aerospace materials. Full article
(This article belongs to the Special Issue Advancements in Ultrasonic Testing for Metallurgical Materials)
Show Figures

Figure 1

10 pages, 2831 KiB  
Article
Controllable Burst-Mode Nd3+:YAG/Cr4+:YAG Laser Pumped by 808 nm Polarization-Combined Laser Diodes
by Xincheng Dang, Nihui Zhang, Hai Wang, Di Xin, Tongtong Li, Weiqiao Zhang, Xuyan Zhou, Wanhua Zheng and Hongbo Zhang
Photonics 2025, 12(3), 202; https://doi.org/10.3390/photonics12030202 - 26 Feb 2025
Viewed by 647
Abstract
This paper presents a time-shared pumping technology for semiconductor lasers based on polarization-combined technology, which enables a compact passively Q-switched Nd3+:YAG/Cr4+:YAG laser to generate tunable pulse sequence output. Two 808 nm laser diodes (LDs) with high polarization were integrated [...] Read more.
This paper presents a time-shared pumping technology for semiconductor lasers based on polarization-combined technology, which enables a compact passively Q-switched Nd3+:YAG/Cr4+:YAG laser to generate tunable pulse sequence output. Two 808 nm laser diodes (LDs) with high polarization were integrated into a casing system measuring 61.5 mm × 32 mm × 12.5 mm through the implementation of fast and slow axis collimation, polarization-combined, and beam-shaping techniques. The study introduces a temporal modulation function to the electrical driving signals, allowing for synchronous and delayed control of the two laser pump sources. By adjusting the pumping delays (200 μs, 240 μs, 280 μs, and 320 μs), two types of pulse sequences combined by “1 + 1” and “2 + 2” at 1064 nm were successfully generated. Experimental results demonstrated that the energy and intensity of each sub-pulse within the burst-mode remain stable throughout the entire sequence, with adjustable sub-pulse interval. Furthermore, the laser system exhibited good beam quality with near-diffraction-limited output characteristics (M2 < 1.5). In general, the tunable pulse sequence laser source offers significant potential for applications in high-precision laser processing, laser ranging and precision measurement, demonstrating its broad application potential. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

12 pages, 6137 KiB  
Article
520 μJ Microsecond Burst-Mode Pulse Fiber Amplifier with GHz-Tunable Intra-Burst Pulse and Flat-Top Envelope
by Yanran Gu, Xinyue Niu, Muyu Yi, Jinmei Yao, Langning Wang, Tao Xun and Jinliang Liu
Photonics 2025, 12(2), 97; https://doi.org/10.3390/photonics12020097 - 22 Jan 2025
Viewed by 1103
Abstract
We present a 520 μJ microsecond burst-mode pulse fiber amplifier with a GHz-tunable intra-burst repetition rate and a nearly flat-top pulse envelope. The amplifier architecture comprises a microsecond pulse seed, a high-bandwidth electro-optic modulator (EOM), two pre-amplifier stages, a waveform-compensated acoustic-optic modulator (AOM), [...] Read more.
We present a 520 μJ microsecond burst-mode pulse fiber amplifier with a GHz-tunable intra-burst repetition rate and a nearly flat-top pulse envelope. The amplifier architecture comprises a microsecond pulse seed, a high-bandwidth electro-optic modulator (EOM), two pre-amplifier stages, a waveform-compensated acoustic-optic modulator (AOM), and two main amplifier stages. To address amplified spontaneous emission (ASE) and nonlinear effects, a multistage synchronous pumping scheme that achieved a maximum energy output of 520 μJ and has a peak power of 160 W was used. To produce a flat-topped burst pulse envelope, the AOM generates an editable waveform with a leading edge and a high trailing edge to compensate for waveform distortion, resulting in a 5 μs nearly flat-top pulse envelope at maximum energy. The laser provides an adjustable intra-burst pulse repetition rate range of 1–5 GHz through the high-bandwidth EOM modulation. The intra-burst pulse jitter time of the laser remains below 4.31 ps at different frequencies. Moreover, the beam quality of the amplifier is M2x = 1.04 and M2y = 1.1. This amplifier exhibits promising potential and can be further amplified as an optical drive source for high-power, large-bandwidth microwave photon (MWP) radar applications. Meanwhile, it is also potentially applicable as a pulse source for high-speed optical communications, the high-precision processing of special materials, and LIDAR ranging. Full article
Show Figures

Figure 1

7 pages, 2734 KiB  
Communication
High-Energy Burst-Mode 3.5 μm MIR KTA-OPO
by Haowen Guo, Chunyan Jia, Shuai Ye, Yongping Yao, Tiejun Ma, Jiayu Zhang, Meng Bai, Jinbao Xia, Hongkun Nie, Bo Yao, Jingliang He and Baitao Zhang
Photonics 2025, 12(1), 72; https://doi.org/10.3390/photonics12010072 - 15 Jan 2025
Viewed by 883
Abstract
In this paper, a high energy 3.5 μm mid-infrared (MIR) burst-mode KTA optical parametric oscillator (OPO) was demonstrated. Utilizing a quasi-continuous wave (QCW) laser diode (LD) side-pump module and electro-optic (EO) Q-switching technique, a high beam quality 1064 nm burst-mode laser was achieved [...] Read more.
In this paper, a high energy 3.5 μm mid-infrared (MIR) burst-mode KTA optical parametric oscillator (OPO) was demonstrated. Utilizing a quasi-continuous wave (QCW) laser diode (LD) side-pump module and electro-optic (EO) Q-switching technique, a high beam quality 1064 nm burst-mode laser was achieved as the fundamental source, generating 30 mJ high-energy pulses at burst repetition rates of 100 Hz and 200 Hz with sub-burst repetition rates of 20 kHz, 40 kHz, and 50 kHz. The KTA-OPO produced a 3.5 μm MIR burst-mode laser output with 4 to 11 sub-pulses per pulse envelope. The output energies were 2.9 mJ, 2.81 mJ, and 2.79 mJ at 100 Hz, as well as 2.8 mJ, 2.75 mJ, and 2.72 mJ at 200 Hz, with corresponding conversion efficiencies of 9.6%, 9.3%, and 9.3% at 100 Hz, as well as 9.3%, 9.2%, and 9.1% at 200 Hz, respectively. Our results pave a new way for generating burst-mode MIR lasers. Full article
Show Figures

Figure 1

14 pages, 6163 KiB  
Article
In-Volume Glass Modification Using a Femtosecond Laser: Comparison Between Repetitive Single-Pulse, MHz Burst, and GHz Burst Regimes
by Manon Lafargue, Théo Guilberteau, Pierre Balage, Bastien Gavory, John Lopez and Inka Manek-Hönninger
Materials 2025, 18(1), 78; https://doi.org/10.3390/ma18010078 - 27 Dec 2024
Viewed by 1071
Abstract
In this study, we report, for the first time, to the best of our knowledge, on in-volume glass modifications produced by GHz bursts of femtosecond pulses. We compare three distinct methods of energy deposition in glass, i.e., the single-pulse, MHz burst, and GHz [...] Read more.
In this study, we report, for the first time, to the best of our knowledge, on in-volume glass modifications produced by GHz bursts of femtosecond pulses. We compare three distinct methods of energy deposition in glass, i.e., the single-pulse, MHz burst, and GHz burst regimes, and evaluate the resulting modifications. Specifically, we investigate in-volume modifications produced by each regime under varying parameters such as the pulse/burst energy, the scanning velocity, and the number of pulses in the burst, with the aim of establishing welding process windows for both sodalime and fused silica. Full article
(This article belongs to the Special Issue Fabrication of Advanced Materials)
Show Figures

Figure 1

10 pages, 6865 KiB  
Article
Burst-Mode 355 nm UV Laser Based on a QCW LD-Side-Pumped Electro-Optical Q-Switched Nd: YAG Laser
by Haowen Guo, Chunyan Jia, Shuai Ye, Yongping Yao, Tiejun Ma, Jiayu Zhang, Meng Bai, Jinbao Xia, Hongkun Nie, Bo Yao, Jingliang He and Baitao Zhang
Photonics 2024, 11(11), 1071; https://doi.org/10.3390/photonics11111071 - 14 Nov 2024
Cited by 1 | Viewed by 1525
Abstract
In this paper, a high-repetition-rate, high-peak-power burst-mode nanosecond 355 nm UV laser was demonstrated. A quasi-continuous wave (QCW) laser diode (LD) side-pumped electro-optical (EO) Q-switched burst-mode Nd: YAG laser was performed as the fundamental laser source. Under the pumping duration of 250 μs [...] Read more.
In this paper, a high-repetition-rate, high-peak-power burst-mode nanosecond 355 nm UV laser was demonstrated. A quasi-continuous wave (QCW) laser diode (LD) side-pumped electro-optical (EO) Q-switched burst-mode Nd: YAG laser was performed as the fundamental laser source. Under the pumping duration of 250 μs and a burst repetition rate of 100 Hz, the pulse energy of 20 kHz burst-mode UV laser reached 5.3 mJ with a single pulse energy of 1.325 mJ, pulse width of 68 ns, resulting in a peak power of 19.49 kW. The as-generated millijoule burst-mode UV laser has great potential for high-end processing of laser lift-off, annealing and slicing in display semiconductor fields. Full article
(This article belongs to the Special Issue Novel Ultraviolet Laser: Generation, Properties and Applications)
Show Figures

Figure 1

19 pages, 4846 KiB  
Article
Development of Hybrid Implantable Local Release Systems Based on PLGA Nanoparticles with Applications in Bone Diseases
by Maria Viorica Ciocîlteu, Andreea Gabriela Mocanu, Andrei Biță, Costel Valentin Manda, Claudiu Nicolicescu, Gabriela Rău, Ionela Belu, Andreea Silvia Pîrvu, Maria Balasoiu, Valentin Nănescu and Oana Elena Nicolaescu
Polymers 2024, 16(21), 3064; https://doi.org/10.3390/polym16213064 - 31 Oct 2024
Cited by 3 | Viewed by 1257
Abstract
The current strategy for treating osteomyelitis includes surgical procedures for complete debridement of the formed biofilm and necrotic tissues, systemic and oral antibiotic therapy, and the clinical use of cements and three-dimensional scaffolds as bone defect fillers and delivery systems for therapeutic agents. [...] Read more.
The current strategy for treating osteomyelitis includes surgical procedures for complete debridement of the formed biofilm and necrotic tissues, systemic and oral antibiotic therapy, and the clinical use of cements and three-dimensional scaffolds as bone defect fillers and delivery systems for therapeutic agents. The aim of our research was to formulate a low-cost hybrid nanoparticulate biomaterial using poly(lactic-co-glycolic acid) (PLGA), in which we incorporated the therapeutic agent (ciprofloxacin), and to deposit this material on titanium plates using the matrix-assisted pulsed laser evaporation (MAPLE) technique. The deposited material demonstrated antibacterial properties, with all analyzed samples inhibiting the growth of tested bacterial strains, confirming the release of active substances from the investigated biocomposite. The poly(lactic-co-glycolic acid)-ciprofloxacin (PLGA-CIP) nanoparticle scaffolds displayed a prolonged local sustained release profile over a period of 45 days, which shows great promise in bone infections. Furthermore, the burst release ensures a highly efficient concentration, followed by a constant sustained release which allows the drug to remain in the implant-adjacent area for an extended time period. Full article
(This article belongs to the Special Issue Polymer Materials for Drug Delivery and Tissue Engineering II)
Show Figures

Figure 1

13 pages, 8119 KiB  
Article
Bessel Beam Femtosecond Laser Interaction with Fused Silica Before and After Chemical Etching: Comparison of Single Pulse, MHz-Burst, and GHz-Burst
by Théo Guilberteau, Pierre Balage, Manon Lafargue, John Lopez, Laura Gemini and Inka Manek-Hönninger
Micromachines 2024, 15(11), 1313; https://doi.org/10.3390/mi15111313 - 29 Oct 2024
Cited by 4 | Viewed by 2101
Abstract
We investigate the elongated modifications resulting from a Bessel beam-shaped femtosecond laser in fused silica under three different operation modes, i.e., the single-pulse, MHz-burst, and GHz-burst regimes. The single-pulse and MHz-burst regimes show rather similar behavior in glass, featuring elongated and slightly tapered [...] Read more.
We investigate the elongated modifications resulting from a Bessel beam-shaped femtosecond laser in fused silica under three different operation modes, i.e., the single-pulse, MHz-burst, and GHz-burst regimes. The single-pulse and MHz-burst regimes show rather similar behavior in glass, featuring elongated and slightly tapered modifications. Subsequent etching with Potassium Hydroxide exhibits an etching rate and selectivity of up to 606 μm/h and 2103:1 in single-pulse operation and up to 322 μm/h and 2230:1 in the MHz-burst regime, respectively. Interestingly, in the GHz-burst mode, modification by a single burst of 50 pulses forms a taper-free hole without any etching. This constitutes a significant result paving the way for chemical-free, on-the-fly drilling of high aspect-ratio holes in glass. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

Back to TopTop