Burst-Mode 355 nm UV Laser Based on a QCW LD-Side-Pumped Electro-Optical Q-Switched Nd: YAG Laser
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Yu, Y.; Li, S.; Feng, Y.; Li, J.; Yang, C.; Li, W. Laser debonding application in ultra-thin device processing. Appl. Opt. 2023, 62, 6140–6146. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.S.; Cheng, J.-H.; Peng, W.C.; Ouyang, H. Effects of laser sources on the reverse-bias leakages of laser lift-off GaN-based light-emitting diodes. Appl. Phys. Lett. 2007, 90, 251110. [Google Scholar] [CrossRef]
- Delmdahl, R.; Pätzel, R.; Brune, J. Large-Area Laser-Lift-Off Processing in Microelectronics. Phys. Procedia 2013, 41, 241–248. [Google Scholar] [CrossRef]
- Ziegelwanger, T.; Reisinger, M.; Matoy, K.; Medjahed, A.A.; Zalesak, J.; Gruber, M.; Meindlhumer, M.; Keckes, J. Backside metallization affects residual stress and bending strength of the recast layer in laser-diced Si. Mat. Sci. Semicon Proc. 2024, 181, 108579. [Google Scholar] [CrossRef]
- Marks, M.R.; Yong, F.K.; Cheong, K.Y.; Hassan, Z. Mechanism study of SiO2 layer formation and separation at the Si die sidewall during nanosecond laser dicing of ultrathin Si wafers with Cu backside layer. Appl. Phys. A 2020, 126, 138. [Google Scholar] [CrossRef]
- Park, C.; Shin, B.-S.; Kang, M.-S.; Ma, Y.-W.; Oh, J.-Y.; Hong, S.-M. Experimental study on micro-porous patterning using UV pulse laser hybrid process with chemical foaming agent. Int. J. Precis. Eng. Man. 2015, 16, 1385–1390. [Google Scholar] [CrossRef]
- Kim, Y.; Noh, Y.; Park, S.; Kim, B.-K.; June Kim, H. Ablation of polyimide thin-film on carrier glass using 355 nm and 37 ns laser pulses. Int. J. Heat. Mass. Tran. 2020, 147, 118896. [Google Scholar] [CrossRef]
- Ryoo, K.; Kim, M.; Sung, J.; Kim, K.; Kang, M. Maskless laser direct imaging lithography using a 355-nm UV light source in manufacturing of flexible fine dies. J. Mech. Sci. Technol. 2015, 29, 365–370. [Google Scholar] [CrossRef]
- Shin, J.; Nam, K. Groove Formation in Glass Substrate by a UV Nanosecond Laser. Appl. Sci. 2020, 10, 987. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, M.; Huang, Y.; Wang, W.; Xing, H.; Fang, R.; Luo, J.; Luo, Q.; Yang, J.; Rong, K.; et al. Laser processing of glass plates using nanosecond lasers with three wavelengths. In AOPC 2022: Advanced Laser Technology and Applications; SPIE: St., Bellingham, WA, USA, 2023. [Google Scholar]
- Zakariyah, S.S.; Conway, P.P.; Hutt, D.A.; Selviah, D.R.; Wang, K.; Rygate, J.; Calver, J.; Kandulski, W. Fabrication of Polymer Waveguides by Laser Ablation Using a 355 nm Wavelength Nd:YAG Laser. J. Light. Technol. 2011, 29, 3566–3576. [Google Scholar] [CrossRef]
- Zhang, J.; Tao, S.; Wang, B.; Zhao, J.; Klotzbach, U.; Kling, R.; Watanabe, A. Development of industrial scale laser micro-processing solution for mobile devices. Proc. SPIE 2019, 10906. [Google Scholar] [CrossRef]
- Mason, P.; Barrett, H.; Banerjee, S.; Butcher, T.; Collier, J. Generation of Joule-level green bursts of nanosecond pulses from a DPSSL amplifier. Opt. Express 2023, 31, 19510–19522. [Google Scholar] [CrossRef] [PubMed]
- De Vido, M.; Quinn, G.; Clarke, D.; McHugh, L.; Mason, P.; Spear, J.; Smith, J.M.; Divoky, M.; Pilar, J.; Denk, O.; et al. Demonstration of stable, long-term operation of a nanosecond pulsed DPSSL at 10 J, 100 Hz. Opt. Express 2024, 32, 11907–11915. [Google Scholar] [CrossRef] [PubMed]
- Knappe, R.; Haloui, H.; Seifert, A.; Weis, A.; Nebel, A. Scaling ablation rates for picosecond lasers using burst micromachining. Proc. SPIE 2010, 7585, 150–155. [Google Scholar] [CrossRef]
- Žemaitis, A.; Gudauskytė, U.; Steponavičiūtė, S.; Gečys, P.; Gedvilas, M. The ultrafast burst laser ablation of metals: Speed and quality come together. Opt. Laser Technol. 2025, 180, 111458. [Google Scholar] [CrossRef]
- Kerse, C.; Kalaycioglu, H.; Elahi, P.; Cetin, B.; Kesim, D.K.; Akcaalan, O.; Yavas, S.; Asik, M.D.; Oktem, B.; Hoogland, H.; et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 2016, 537, 84–88. [Google Scholar] [CrossRef]
- Metzner, D.; Lickschat, P.; Weißmantel, S. Optimization of the ablation process using ultrashort pulsed laser radiation in different burst modes. J. Laser Appl. 2021, 33, 012057. [Google Scholar] [CrossRef]
- Brian, T.; Naibo, J.; Mo, S.; Walter, L. Narrow-linewidth megahertz-rate pulse-burst laser for high-speed flow diagnostics. Appl. Opt. 2004, 43, 5064–5073. [Google Scholar]
- Li, G.; Zhou, Q.; Xu, G.; Wang, X.; Han, W.; Wang, J.; Zhang, G.; Zhang, Y.; Yuan, Z.A.; Song, S.; et al. Lidar-radar for underwater target detection using a modulated sub-nanosecond Q-switched laser. Opt. Laser Technol. 2021, 142, 107234. [Google Scholar] [CrossRef]
- Smyser, M.E.; Rahman, K.A.; Slipchenko, M.N.; Roy, S.; Meyer, T.R. Compact burst-mode Nd:YAG laser for kHz-MHz bandwidth velocity and species measurements. Opt. Lett. 2018, 43, 735–738. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Wang, Z.; Qi, F. Single camera 20 kHz two-color formaldehyde PLIF thermometry using a dual-wavelength-switching burst mode laser. Opt. Lett. 2021, 46, 5149–5152. [Google Scholar] [CrossRef]
- Michael, J.B.; Venkateswaran, P.; Miller, J.D.; Slipchenko, M.N.; Gord, J.R.; Roy, S.; Meyer, T.R. 100 kHz thousand-frame burst-mode planar imaging in turbulent flames. Opt. Lett. 2014, 39, 739–742. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Y.; Ding, K.; Jia, F.; Li, K.; Copner, N. 3.5 ps burst mode pulses based on all-normal dispersion harmonic mode-locked. Appl. Phys. B 2020, 126, 127. [Google Scholar] [CrossRef]
- Wei, K.-H.; Jiang, P.-P.; Wu, B.; Chen, T.; Shen, Y.-H. Fiber laser pumped burst-mode operated picosecond mid-infrared laser. Chin. Phys. B 2015, 24, 024217. [Google Scholar] [CrossRef]
- Jung, M.; Lee, J.; Melkumov, M.; Khopin, V.F.; Dianov, E.M.; Lee, J.H. Burst-mode pulse generation from a bismuth-doped germanosilicate fiber laser through self Q-switched mode-locking. Laser Phys. Lett. 2014, 11, 125102. [Google Scholar] [CrossRef]
- Yu, H.; Qi, Y.; Zhang, J.; Zou, S.; Zhang, L.; He, C.; Chen, H.; Li, B.; Lin, X. 8.3 mJ, 166 W Burst Mode Pulse Fiber Amplifier Based on a Q-Switched Mode-Locked Fiber Seed Laser. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–5. [Google Scholar] [CrossRef]
- Mackenzie, J.I.; JelÍnková, H.; Taira, T.; Abdou Ahmed, M.; Pan, H.; Yan, R.; Li, X.; Ma, Y.; Yu, X.; Chen, D. LD-pumped acousto-optical Q-switched burst-mode Nd:YAG laser. Proc. SPIE 2016, 9893, 165–170. [Google Scholar] [CrossRef]
- Yang, X.; Bo, Y.; Peng, Q.; Geng, A. QCW diode-pumped 654 W AO Q-switched Nd:YAG rod oscillator-amplifier laser. Optik 2011, 122, 467–470. [Google Scholar] [CrossRef]
- Li, C.Y.; Peng, Q.J.; Wang, B.S.; Bo, Y.; Cui, D.F.; Xu, Z.Y.; Feng, X.Q.; Pan, Y.B. QCW diode-side-pumped Nd:YAG ceramic laser with 247 W output power at 1123 nm. Appl Phys B 2010, 103, 285–289. [Google Scholar] [CrossRef]
- Wu, W.; Li, X.; Yan, R.; Zhou, Y.; Ma, Y.; Fan, R.; Dong, Z.; Chen, D. 100 kHz, 3.1 ns, 1.89 J cavity-dumped burst-mode Nd:YAG MOPA laser. Opt. Express 2017, 25, 26875–26884. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Yan, R.; Jiang, Y.; Fan, R.; Dong, Z.; Chen, D. Burst-mode YVO4/Nd:YVO4 laser oscillator with pulse repetition rate up to 500 kHz. Optik 2021, 228, 165789. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Jia, C.; Ye, S.; Yao, Y.; Ma, T.; Zhang, J.; Bai, M.; Xia, J.; Nie, H.; Yao, B.; et al. Burst-Mode 355 nm UV Laser Based on a QCW LD-Side-Pumped Electro-Optical Q-Switched Nd: YAG Laser. Photonics 2024, 11, 1071. https://doi.org/10.3390/photonics11111071
Guo H, Jia C, Ye S, Yao Y, Ma T, Zhang J, Bai M, Xia J, Nie H, Yao B, et al. Burst-Mode 355 nm UV Laser Based on a QCW LD-Side-Pumped Electro-Optical Q-Switched Nd: YAG Laser. Photonics. 2024; 11(11):1071. https://doi.org/10.3390/photonics11111071
Chicago/Turabian StyleGuo, Haowen, Chunyan Jia, Shuai Ye, Yongping Yao, Tiejun Ma, Jiayu Zhang, Meng Bai, Jinbao Xia, Hongkun Nie, Bo Yao, and et al. 2024. "Burst-Mode 355 nm UV Laser Based on a QCW LD-Side-Pumped Electro-Optical Q-Switched Nd: YAG Laser" Photonics 11, no. 11: 1071. https://doi.org/10.3390/photonics11111071
APA StyleGuo, H., Jia, C., Ye, S., Yao, Y., Ma, T., Zhang, J., Bai, M., Xia, J., Nie, H., Yao, B., He, J., & Zhang, B. (2024). Burst-Mode 355 nm UV Laser Based on a QCW LD-Side-Pumped Electro-Optical Q-Switched Nd: YAG Laser. Photonics, 11(11), 1071. https://doi.org/10.3390/photonics11111071