Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (448)

Search Parameters:
Keywords = pulse width modulation converters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1586 KB  
Article
Modular, Multiport AC-DC Converter with Add-On HF Isolating Units
by Pawel B. Derkacz, Pawel Milewski, Daniel Wojciechowski, Natalia Strzelecka and Ryszard Strzelecki
Energies 2026, 19(1), 85; https://doi.org/10.3390/en19010085 - 23 Dec 2025
Abstract
In this paper, we propose a novel concept of a modular, multiport, single-stage, bidirectional, isolated, three-phase AC-DC converter system. This new system is realized using add-ons to a standard voltage source inverter, including both grid-connected AC-DC converters, like PWM rectifiers, and AC-drive DC-AC [...] Read more.
In this paper, we propose a novel concept of a modular, multiport, single-stage, bidirectional, isolated, three-phase AC-DC converter system. This new system is realized using add-ons to a standard voltage source inverter, including both grid-connected AC-DC converters, like PWM rectifiers, and AC-drive DC-AC inverters. The proposed add-on converters provide isolated DC ports and can be installed into existing inverters of the abovementioned types, with no need for any modification of their topology or control system. Moreover, the add-on converters provide a minimum transistor count and high efficiency. The efficiency of the proposed add-on converters can be further improved by switching the type of pulse width modulation (PWM) scheme based on their operating point. The proposed converter system is validated for a power of 20 kW, an output voltage of 500–800 V DC, and a 40 kHz PWM frequency. Full article
(This article belongs to the Section F3: Power Electronics)
29 pages, 4561 KB  
Article
Straightforward Multilevel Space Vector Modulation for a Modular Multilevel Converter for PV Generation
by Santiago de Pablo, Yad N. Bakir, Fernando Martinez-Rodrigo, Luis C. Herrero-de-Lucas and Alexis B. Rey-Boue
Electronics 2026, 15(1), 53; https://doi.org/10.3390/electronics15010053 - 23 Dec 2025
Abstract
Many methods have been developed for multilevel Space Vector Modulation (SVM), but despite their inherent advantages, all of them have been more complex than the alternative option of using Pulse Width Modulation (PWM) with sinusoidal or modified references. Different axes like g-h at [...] Read more.
Many methods have been developed for multilevel Space Vector Modulation (SVM), but despite their inherent advantages, all of them have been more complex than the alternative option of using Pulse Width Modulation (PWM) with sinusoidal or modified references. Different axes like g-h at 60° or ja-jb-jc at 120° have been used to simplify the operations to find the three nearest vectors and their duty cycles, but the control signals of multilevel converters are the duty cycles of phases, not the duty cycles of vectors. Moreover, throughout this paper, it was found that local information is not sufficient to compute the duty cycles of the phases: global information should be taken into account to obtain full control on the common mode voltage (CMV), and the selection of the starting vector in the switching sequence is also critical to obtain a balanced CMV. The natural coordinates ab-bc-ca were used in this paper, and a straightforward method is proposed for multilevel SVM: a method that is comparable in complexity to multilevel PWM with modified references and leads to exactly the same control signals. This method can be used as an easy starting point to develop other SVM techniques for multilevel converters. Full article
(This article belongs to the Special Issue New Horizons and Recent Advances of Power Electronics)
Show Figures

Figure 1

19 pages, 5899 KB  
Article
Small-Signal Modeling of Asymmetric PWM Control-Based Parallel Resonant Converter
by Na-Yeon Kim and Kui-Jun Lee
Electronics 2025, 14(24), 4970; https://doi.org/10.3390/electronics14244970 - 18 Dec 2025
Viewed by 90
Abstract
This paper proposes a small-signal model of a DC–DC parallel resonant converter operating in continuous conduction mode based on asymmetric pulse-width modulation (APWM) under light-load conditions. The parallel resonant converter enables soft switching and no-load control over a wide load range because the [...] Read more.
This paper proposes a small-signal model of a DC–DC parallel resonant converter operating in continuous conduction mode based on asymmetric pulse-width modulation (APWM) under light-load conditions. The parallel resonant converter enables soft switching and no-load control over a wide load range because the resonant capacitor is connected in parallel with the load. However, the resonant energy required for soft switching is already sufficient, and the current flowing through the resonant tank is independent of the load magnitude; therefore, as the load decreases, the energy that is not delivered to the load and instead circulates meaninglessly inside the resonant tank increases. This results in conduction loss and reduced efficiency. To address this issue, APWM with a fixed switching frequency is required, which reduces circulating energy and improves efficiency under light-load conditions. Precise small-signal modeling is required to optimize the APWM controller. Unlike PFM or PSFB, APWM includes not only sine components but also DC and cosine components in the control signal due to its asymmetric switching characteristics, and this study proposes a small-signal model that can relatively accurately reflect these multi-harmonic characteristics. The proposed model is derived based on the Extended Describing Function (EDF) concept, and the derived transfer function is useful for systematically analyzing the dynamic characteristics of the APWM-based parallel resonant converter. In addition, it provides information that can systematically analyze the dynamic characteristics of various APWM-based resonant converters and control signals that reflect various harmonic characteristics, and it can be widely applied to future control design and analysis studies. The validity of the model is verified through MATLAB (R2025b) and PLECS (4.7.5) switching-model simulations and experimental results, confirming its high accuracy and practicality. Full article
(This article belongs to the Special Issue New Insights in Power Electronics: Prospects and Challenges)
Show Figures

Figure 1

18 pages, 5879 KB  
Article
Study on HILS Implementation of FPGA-Based PFC Circuits Using Sub-Cycle Average Models
by Tae-Hun Kim, Won-Cheol Hong, Su-Han Pyo, Byeong-Hyeon An and Tae-Sik Park
Energies 2025, 18(24), 6443; https://doi.org/10.3390/en18246443 - 9 Dec 2025
Viewed by 176
Abstract
This paper presents a Field-Programmable Gate Array (FPGA)-based Hardware-in-the-Loop (HIL) simulation of an Interleaved Boost Power Factor Correction (PFC) converter using the Sub-Cycle Average (SCA) modeling technique. The main objective is to achieve accurate real-time simulation performance given the hardware constraints of low-cost [...] Read more.
This paper presents a Field-Programmable Gate Array (FPGA)-based Hardware-in-the-Loop (HIL) simulation of an Interleaved Boost Power Factor Correction (PFC) converter using the Sub-Cycle Average (SCA) modeling technique. The main objective is to achieve accurate real-time simulation performance given the hardware constraints of low-cost FPGAs. By combining the SCA modeling approach with a time-averaging correction method, the proposed model effectively reduces sampling delays and duty-cycle estimation errors arising from asynchronous Pulse Width Modulation (PWM) signal acquisition. The SCA-based converter model and time-averaging correction technique were implemented in MATLAB/Simulink R2024b using the HDL Coder environment. To validate real-time simulation accuracy, power factor improvement was evaluated for a two-phase Interleaved Boost PFC operating at a switching frequency of 60 kHz. Experimental results confirm that the proposed approach enables accurate Controller–HIL testing of power converters, even when implemented on low-cost FPGA platforms such as the Zybo Z7-10 evaluation board. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

27 pages, 4388 KB  
Article
High-Performance One-Quadrant DC Drive for Pumping Applications Using Ultra-Sparse Matrix Rectifier
by Mohamed Azab
Vehicles 2025, 7(4), 144; https://doi.org/10.3390/vehicles7040144 - 28 Nov 2025
Viewed by 209
Abstract
Traditional low-cost DC drives, such as Buck converter-fed DC drives, do not take into consideration the power quality requirements regarding the total harmonic distortion (THD) and the input power factor (PF). This paper proposes a high-performance one-quadrant DC drive based on the ultra-sparse [...] Read more.
Traditional low-cost DC drives, such as Buck converter-fed DC drives, do not take into consideration the power quality requirements regarding the total harmonic distortion (THD) and the input power factor (PF). This paper proposes a high-performance one-quadrant DC drive based on the ultra-sparse matrix rectifier (USMR). The scheme is suitable for single-quadrant applications such as DC pumping systems. The proposed system leverages the advantages of the USMR, such as the accomplishment of the IEEE standards requirements related to harmonic limits and distortions of the AC currents and operation at (or near) unity PF. Two pulse width modulation (PWM) techniques were investigated: the hysteresis current controller with a tolerance band and the triangular carrier-based PWM modulator. The system was studied under different operating conditions. The obtained results demonstrate the high performance of the USMR system with both types of PWM techniques. A comparative study with the one-quadrant Buck converter-based DC drive was conducted. The USMR-based DC drive outperforms the conventional scheme in power quality issues. The quantitative assessment proves the validity and suitability of the USMR for developing high-performance DC drives for single-quadrant applications. Full article
Show Figures

Figure 1

15 pages, 1184 KB  
Article
Discrete Switching Sequence Control for Universal Current Tracking in Wind Power Converters
by Jiawei Yu, Xuetong Wang, Guangqi Li, Wenzhe Hao, Chao Luo and Zhiyong Dai
Electronics 2025, 14(23), 4608; https://doi.org/10.3390/electronics14234608 - 24 Nov 2025
Viewed by 330
Abstract
With increasing wind power penetration in modern grids, high-performance current control of converters is essential for efficient power transfer, harmonic reduction, and system stability. A novel discrete switching sequence control (dSSC) is proposed to ensure power converters universally track current references without steady-state [...] Read more.
With increasing wind power penetration in modern grids, high-performance current control of converters is essential for efficient power transfer, harmonic reduction, and system stability. A novel discrete switching sequence control (dSSC) is proposed to ensure power converters universally track current references without steady-state error. A discrete model of the H-bridge converter is developed, together with a detailed, systematic design methodology to realize the dSSC. The resulting controller is applicable to arbitrary current references and guarantees zero steady-state error. Compared with pulse width modulation (PWM), the dSSC accounts for converter switching characteristics and provides a systematic design framework for both dynamic performance and steady-state accuracy. Moreover, the average switching frequency is approximately half that of PWM, which reduces maintenance and improves converter efficiency in wind-turbine applications. Simulation and experimental results validate the proposed method. Full article
Show Figures

Figure 1

15 pages, 7899 KB  
Article
Digital Pulse-Width and Pulse-Density Modulator Based on Binary Counting
by Vítor Viegas
Electronics 2025, 14(22), 4516; https://doi.org/10.3390/electronics14224516 - 19 Nov 2025
Viewed by 338
Abstract
This study presents a digitally controlled, combined pulse-width and pulse-density modulator (PWDM) that leverages the inherent pulse-width modulation associated with natural binary counting. The proposed approach involves combining the individual bit-counting pulses to synthesize a modulated signal where the mean voltage is directly [...] Read more.
This study presents a digitally controlled, combined pulse-width and pulse-density modulator (PWDM) that leverages the inherent pulse-width modulation associated with natural binary counting. The proposed approach involves combining the individual bit-counting pulses to synthesize a modulated signal where the mean voltage is directly proportional to the input digital code. A circuit design, based on general-purpose components, is proposed for an 8-bit digital-to-analog converter. The architectural concept is scalable, supporting resolutions that can accommodate any number of bits. The paper describes the simulations conducted to verify the proper functioning of the circuit and to evaluate its performance. Tests were performed to determine the static characteristic of the converter, measure its nonlinearity, and observe its step response. The circuit combines the benefits of both PWMs and PDMs, offering a blend of energy efficiency with simplicity and better smoothing. Full article
(This article belongs to the Special Issue Analog/RF Circuits: Latest Advances and Prospects)
Show Figures

Figure 1

16 pages, 6413 KB  
Article
High-Efficiency Soft-Switching Technique for a Cascaded Buck–Boost Converter Based on Model Predictive Control Using GaN Devices
by Li Liu, Jialiang Dai, Ju Lee, Seonheui Kang and Changsung Jin
Electronics 2025, 14(22), 4499; https://doi.org/10.3390/electronics14224499 - 18 Nov 2025
Viewed by 567
Abstract
Improving the efficiency of buck–boost converters has long been a major focus in power electronics. To enhance efficiency and overcome existing limitations, this paper proposes a soft-switching technique for a cascaded buck–boost converter (CBBC). The proposed approach integrates high-frequency switching of four gallium [...] Read more.
Improving the efficiency of buck–boost converters has long been a major focus in power electronics. To enhance efficiency and overcome existing limitations, this paper proposes a soft-switching technique for a cascaded buck–boost converter (CBBC). The proposed approach integrates high-frequency switching of four gallium nitride (GaN) devices, improving both dynamic and steady-state performance from hardware and control perspectives. First, a soft-switching modulation scheme based on negative-current pulse width modulation (PWM) is implemented by introducing a new switching sequence in the CBBC, controlled by a modulation variable. This scheme ensures that the GaN switches operate under zero-current switching (ZCS) and zero-voltage switching (ZVS) conditions during transitions. Furthermore, the CBBC operating modes are divided into four intervals for modeling and analysis, upon which a model predictive control (MPC) strategy is developed to achieve fast closed-loop regulation of both output voltage and current. To further minimize current ripple and device losses, the MPC cost function is optimized by constraining the control parameters. Experimental results obtained from a 300-W hardware prototype verify the effectiveness and feasibility of the proposed soft-switching control method. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

23 pages, 7471 KB  
Article
Analysis of Transition Mode Operation and Characteristic Curves in a Buck–Boost Converter for Unmanned Guided Vehicles
by Kai-Jun Pai, Chih-Tsung Chang and Tzu-Chi Li
Electronics 2025, 14(22), 4388; https://doi.org/10.3390/electronics14224388 - 10 Nov 2025
Viewed by 272
Abstract
This study presents the development of a buck–boost converter for application in unmanned guided vehicles (UGVs). The converter was designed with its input connected to a lithium iron phosphate battery pack and its output connected to an inverter. This configuration enabled the inverter, [...] Read more.
This study presents the development of a buck–boost converter for application in unmanned guided vehicles (UGVs). The converter was designed with its input connected to a lithium iron phosphate battery pack and its output connected to an inverter. This configuration enabled the inverter, which powered the drive motor, to receive a stable DC voltage, thereby mitigating the effects of battery voltage fluctuations and enhancing the overall system stability. A pulse-width modulation (PWM) controller was employed to regulate the developed buck–boost converter. During the transition from buck mode to buck–boost mode, both power MOSFETs were simultaneously turned on; however, the datasheet of the PWM controller did not provide operational details or characteristic curve analysis for this mode. Therefore, this study derived the relationship between voltage gain and duty cycle ratio for the transition mode. To analyze the input voltage versus duty cycle characteristics, the linear equation was employed. This analytical model was adjusted to meet different converter specifications developed for experimental validation. Furthermore, the external-connect test capacitor method was used to extract the equivalent parasitic inductance and capacitance present in the practical circuit of the buck–boost converter. Based on these parameters, a snubber circuit was designed and connected across the drain–source terminals of the power MOSFETs to suppress voltage spikes occurring at the junctions. Finally, the developed buck–boost converter prototype was installed on an unmanned guided vehicle to convert the power from the lithium battery pack into the input power required by two inverters. A computer host was used to control the motor speed. By measuring the output voltage and current of the buck–boost converter, its electrical functionality and performance specifications were verified. The dimensions of the developed UGV chassis prototype were 40 cm in length, 45 cm in width, and 18.3 cm in height. Full article
Show Figures

Figure 1

19 pages, 4034 KB  
Article
Assessment of a Hybrid Modulation Strategy for Asymmetrical Cascaded Multilevel Inverters Under Comparative Analysis
by Gerlando Frequente, Massimo Caruso, Giuseppe Schettino and Rosario Miceli
Electronics 2025, 14(21), 4354; https://doi.org/10.3390/electronics14214354 - 6 Nov 2025
Viewed by 392
Abstract
This paper presents a novel hybrid modulation technique for Asymmetrical Cascaded H-Bridge Multilevel Inverters (ACHBMLIs), specifically designed to enhance both efficiency and harmonic performance. Unlike conventional strategies, the proposed method optimizes the switching scheme by operating the high-voltage H-Bridge at the fundamental frequency, [...] Read more.
This paper presents a novel hybrid modulation technique for Asymmetrical Cascaded H-Bridge Multilevel Inverters (ACHBMLIs), specifically designed to enhance both efficiency and harmonic performance. Unlike conventional strategies, the proposed method optimizes the switching scheme by operating the high-voltage H-Bridge at the fundamental frequency, thereby significantly reducing switching losses while maintaining low harmonic distortion levels comparable to traditional Pulse Width Modulation (PWM). To assess the effectiveness of the approach, a comprehensive comparison was conducted against two widely adopted modulation techniques for ACHBMLIs: Multicarrier Pulse Width Modulation (MPWM) and the Staircase Modulation Strategy (SMS). The evaluation involved both simulation and real-time Hardware-in-the-Loop (HIL) testing of a 7-level three-phase ACHBMLI, with a focus on key performance indicators such as voltage and current harmonic distortion, as well as converter efficiency. The results demonstrate that the proposed hybrid modulation achieves higher efficiency than PWM and lower current Total Harmonic Distortion (THD) than SMS. These findings highlight the potential of the hybrid strategy as a compelling solution for applications that demand an optimal balance between energy efficiency and waveform quality. Full article
(This article belongs to the Special Issue Power Electronics and Renewable Energy System)
Show Figures

Graphical abstract

20 pages, 8476 KB  
Article
Three-Phase Space Vector PWM Inverter for Induction Motor Drive with Leakage Current Reduction
by Gerardo Vazquez-Guzman, Panfilo R. Martinez-Rodriguez, Julio C. Rosas-Caro, Emmanuel Rivera-Perez, Juan A. Verdin-Cruz, Christopher J. Rodriguez-Cortes and Diego Langarica-Cordoba
Sustainability 2025, 17(20), 9317; https://doi.org/10.3390/su17209317 - 20 Oct 2025
Viewed by 854
Abstract
Several industrial applications rely on induction motors to carry out processes essential for product manufacturing. Speed control of an induction motor commonly requires a pulse width modulated inverter capable of driving a system with long cables, suppression of common mode voltage, reduction in [...] Read more.
Several industrial applications rely on induction motors to carry out processes essential for product manufacturing. Speed control of an induction motor commonly requires a pulse width modulated inverter capable of driving a system with long cables, suppression of common mode voltage, reduction in common mode current, and suppression of electromagnetic interference. This paper proposes a three-phase motor drive aimed at maintaining a constant common-mode voltage. The proposed system consists of two three-phase conventional full bridge inverters connected in parallel and having as an input two separate direct current sources. The proposed system is controlled by using the space vector pulse width modulation technique. By properly designing the switching signal sequences for both converters, the common-mode voltage can be maintained constant, thereby reducing the associated common-mode current to an RMS value of 92.3 mA and enhancing the overall reliability of the system. The proposed system is validated through numerical simulations and by the implementation of an experimental prototype. Full article
(This article belongs to the Special Issue Power Electronics on Recent Sustainable Energy Conversion Systems)
Show Figures

Figure 1

22 pages, 4835 KB  
Article
Enhanced Voltage Balancing Algorithm and Implementation of a Single-Phase Modular Multilevel Converter for Power Electronics Applications
by Valentine Obiora, Wenzhi Zhou, Wissam Jamal, Chitta Saha, Soroush Faramehr and Petar Igic
Machines 2025, 13(10), 955; https://doi.org/10.3390/machines13100955 - 16 Oct 2025
Viewed by 582
Abstract
This paper presents an innovative primary control strategy for a modular multilevel converter aimed at enhancing reliability and dynamic performance for power electronics applications. The proposed method utilises interactive modelling tools, including MATLAB Simulink (2022b) for algorithm design and Typhoon HIL (2023.2) for [...] Read more.
This paper presents an innovative primary control strategy for a modular multilevel converter aimed at enhancing reliability and dynamic performance for power electronics applications. The proposed method utilises interactive modelling tools, including MATLAB Simulink (2022b) for algorithm design and Typhoon HIL (2023.2) for real-time validation. The circuit design and component analysis were carried out using Proteus Design Suite (v8.17) and LTSpice (v17) to optimise the hardware implementation. A power hardware-in-the-loop experimental test setup was built to demonstrate the robustness and adaptability of the control algorithm under fixed load conditions. The simulation results were compared and verified against the experimental data. Additionally, the proposed control strategy was successfully validated through experiments, demonstrating its effectiveness in simplifying control development through efficient co-simulation. Full article
(This article belongs to the Special Issue Power Converters: Topology, Control, Reliability, and Applications)
Show Figures

Figure 1

22 pages, 5131 KB  
Article
Predictive Torque Control for Induction Machine Fed by Voltage Source Inverter: Theoretical and Experimental Analysis on Acoustic Noise
by Bouyahi Henda and Adel Khedher
Acoustics 2025, 7(4), 63; https://doi.org/10.3390/acoustics7040063 - 11 Oct 2025
Viewed by 645
Abstract
Induction motors piloted by voltage source inverters constitute a major source of acoustic noise in industry. The discrete tonal bands generated by induction motor stator current spectra controlled by the fixed Pulse Width Modulation (PWM) technique have damaging effects on the electronic noise [...] Read more.
Induction motors piloted by voltage source inverters constitute a major source of acoustic noise in industry. The discrete tonal bands generated by induction motor stator current spectra controlled by the fixed Pulse Width Modulation (PWM) technique have damaging effects on the electronic noise source. Nowadays, the investigation of new advanced control techniques for variable speed drives has developed a potential investigation field. Finite state model predictive control has recently become a very popular research focus for power electronic converter control. The flexibility of this control shows that the switching times are generated using all the information on the drive status. Predictive Torque Control (PTC), space vector PWM and random PWM are investigated in this paper in terms of acoustic noise emitted by an induction machine fed by a three-phase two-level inverter. A comparative study based on electrical and mechanical magnitudes, as well as harmonic analysis of the stator current, is presented and discussed. An experimental test bench is also developed to examine the effect of the proposed PTC and PWM techniques on the acoustic noise of an induction motor fed by a three-phase two-level voltage source converter. Full article
Show Figures

Figure 1

25 pages, 8078 KB  
Article
Robust Sensorless Predictive Power Control of PWM Converters Using Adaptive Neural Network-Based Virtual Flux Estimation
by Noumidia Amoura, Adel Rahoui, Boussad Boukais, Koussaila Mesbah, Abdelhakim Saim and Azeddine Houari
Electronics 2025, 14(18), 3620; https://doi.org/10.3390/electronics14183620 - 12 Sep 2025
Viewed by 587
Abstract
The rapid evolution of modern power systems, driven by the large-scale integration of renewable energy sources and the emergence of smart grids, presents new challenges in maintaining grid stability, power quality, and control reliability. As critical interfacing elements, three-phase pulse width modulation (PWM) [...] Read more.
The rapid evolution of modern power systems, driven by the large-scale integration of renewable energy sources and the emergence of smart grids, presents new challenges in maintaining grid stability, power quality, and control reliability. As critical interfacing elements, three-phase pulse width modulation (PWM) converters must now ensure resilient and efficient operation under increasingly adverse and dynamic grid conditions. This paper proposes an adaptive neural network-based virtual flux (VF) estimator for sensorless predictive direct power control (PDPC) of PWM converters under nonideal grid voltage conditions. The proposed estimator is realized using an adaptive linear neuron (ADALINE) configured as a quadrature signal generator, offering robustness against grid voltage disturbances such as voltage unbalance, DC offset and harmonic distortion. In parallel, a PDPC scheme based on the extended pq theory is developed to reject active-power oscillations and to maintain near-sinusoidal grid currents under unbalanced conditions. The resulting VF-based PDPC (VF-PDPC) strategy is validated via real-time simulations on the OPAL-RT platform. Comparative analysis confirms that the ADALINE-based estimator surpasses conventional VF estimation techniques. Moreover, the VF-PDPC achieves superior performance over conventional PDPC and extended pq theory-based PDPC strategies, both of which rely on physical voltage sensors, confirming its robustness and effectiveness under non-ideal grid conditions. Full article
Show Figures

Figure 1

30 pages, 7066 KB  
Article
Development and Analysis of a Fast-Charge EV-Charging Station Model for Power Quality Assessment in Distribution Systems
by Pathomthat Chiradeja, Suntiti Yoomak, Panu Srisuksai, Jittiphong Klomjit, Atthapol Ngaopitakkul and Santipont Ananwattanaporn
Appl. Sci. 2025, 15(17), 9645; https://doi.org/10.3390/app15179645 - 2 Sep 2025
Viewed by 1564
Abstract
With the rapid rise in electric vehicle (EV) adoption, the deployment of EV charging infrastructure—particularly fast-charging stations—has expanded significantly to meet growing energy demands. While fast charging offers the advantage of reduced charging time and improved user convenience, it imposes considerable stress on [...] Read more.
With the rapid rise in electric vehicle (EV) adoption, the deployment of EV charging infrastructure—particularly fast-charging stations—has expanded significantly to meet growing energy demands. While fast charging offers the advantage of reduced charging time and improved user convenience, it imposes considerable stress on existing power distribution systems due to its high power and current requirements. This study investigated the impact of EV fast charging on power quality within Thailand’s distribution network, emphasizing compliance with accepted standards such as IEEE Std 519-2014. We developed a control-oriented EV-charging station model in power systems computer-aided design and electromagnetic transients, including DC (PSCAD/EMTDC), which integrates grid-side vector control with DC fast-charging (CC/CV) behavior. Active/reactive power setpoints were mapped onto dq current references via Park’s transformation and regulated by proportional integral (PI) controllers with sinusoidal pulse-width modulation (SPWM) to command the voltage source converter (VSC) switches. The model enabled dynamic studies across battery state-of-charge and staggered charging schedules while monitoring voltage, current, and total harmonic distortion (THD) at both transformer sides, charger AC terminals, and DC adapters. Across all scenarios, the developed control achieved grid-current THDi of <5% and voltage THD of <1.5%, thereby meeting IEEE 519-2014 limits. These quantitative results show that the proposed, implementation-ready approach maintains acceptable power quality under diverse fast-charging patterns and provides actionable guidance for planning and scaling EV fast-charging infrastructure in Thailand’s urban networks. Full article
(This article belongs to the Topic Innovation, Communication and Engineering)
Show Figures

Figure 1

Back to TopTop