Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,032)

Search Parameters:
Keywords = pulmonary pressure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 456 KiB  
Review
The Role of Obstructive Sleep Apnea in Pulmonary Hypertension Associated with Lung Diseases (Group 3 Pulmonary Hypertension): A Narrative Review
by Athiwat Tripipitsiriwat, Atul Malhotra, Hannah Robertson, Nick H. Kim, Jenny Z. Yang and Janna Raphelson
J. Clin. Med. 2025, 14(15), 5442; https://doi.org/10.3390/jcm14155442 - 1 Aug 2025
Viewed by 728
Abstract
Obstructive sleep apnea (OSA) could increase pulmonary artery pressure. However, the clinical consequences vary, mainly depending on comorbidities. Patients with pulmonary hypertension associated with lung diseases (World Health Organization (WHO) Group 3 pulmonary hypertension) are particularly vulnerable increases in pulmonary artery pressure. Managing [...] Read more.
Obstructive sleep apnea (OSA) could increase pulmonary artery pressure. However, the clinical consequences vary, mainly depending on comorbidities. Patients with pulmonary hypertension associated with lung diseases (World Health Organization (WHO) Group 3 pulmonary hypertension) are particularly vulnerable increases in pulmonary artery pressure. Managing pulmonary hypertension in this specific patient population presents a considerable challenge. While positive airway pressure therapy for OSA has shown promise in improving pulmonary hemodynamics in patients with obesity hypoventilation syndrome and chronic obstructive pulmonary disease, evidence is lacking for similar improvements in those with other pulmonary diseases and hypoventilation disorders. Furthermore, pulmonary-artery-specific therapies may carry a risk of clinical worsening in this group. Weight management and new pharmacotherapy have together emerged as a crucial intervention, demonstrating benefits for both OSA and pulmonary hemodynamics. We reviewed key studies that provide insights into the influence of OSA on WHO Group 3 pulmonary hypertension and the clinical management of both conditions. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

14 pages, 1906 KiB  
Article
Integrating CT-Based Lung Fibrosis and MRI-Derived Right Ventricular Function for the Detection of Pulmonary Hypertension in Interstitial Lung Disease
by Kenichi Ito, Shingo Kato, Naofumi Yasuda, Shungo Sawamura, Kazuki Fukui, Tae Iwasawa, Takashi Ogura and Daisuke Utsunomiya
J. Clin. Med. 2025, 14(15), 5329; https://doi.org/10.3390/jcm14155329 - 28 Jul 2025
Viewed by 388
Abstract
Background/Objectives: Interstitial lung disease (ILD) is frequently complicated by pulmonary hypertension (PH), which is associated with reduced exercise capacity and poor prognosis. Early and accurate non-invasive detection of PH remains a clinical challenge. This study evaluated whether combining quantitative CT analysis of [...] Read more.
Background/Objectives: Interstitial lung disease (ILD) is frequently complicated by pulmonary hypertension (PH), which is associated with reduced exercise capacity and poor prognosis. Early and accurate non-invasive detection of PH remains a clinical challenge. This study evaluated whether combining quantitative CT analysis of lung fibrosis with cardiac MRI-derived measures of right ventricular (RV) function improves the diagnostic accuracy of PH in patients with ILD. Methods: We retrospectively analyzed 72 ILD patients who underwent chest CT, cardiac MRI, and right heart catheterization (RHC). Lung fibrosis was quantified using a Gaussian Histogram Normalized Correlation (GHNC) software that computed the proportions of diseased lung, ground-glass opacity (GGO), honeycombing, reticulation, consolidation, and emphysema. MRI was used to assess RV end-systolic volume (RVESV), ejection fraction, and RV longitudinal strain. PH was defined as a mean pulmonary arterial pressure (mPAP) ≥ 20 mmHg and pulmonary vascular resistance ≥ 3 Wood units on RHC. Results: Compared to patients without PH, those with PH (n = 21) showed significantly reduced RV strain (−13.4 ± 5.1% vs. −16.4 ± 5.2%, p = 0.026) and elevated RVESV (74.2 ± 18.3 mL vs. 59.5 ± 14.2 mL, p = 0.003). CT-derived indices also differed significantly: diseased lung area (56.4 ± 17.2% vs. 38.4 ± 12.5%, p < 0.001), GGO (11.8 ± 3.6% vs. 8.65 ± 4.3%, p = 0.005), and honeycombing (17.7 ± 4.9% vs. 12.8 ± 6.4%, p = 0.0027) were all more prominent in the PH group. In receiver operating characteristic curve analysis, diseased lung area demonstrated an area under the curve of 0.778 for detecting PH. This increased to 0.847 with the addition of RVESV, and further to 0.854 when RV strain was included. Combined models showed significant improvement in risk reclassification: net reclassification improvement was 0.700 (p = 0.002) with RVESV and 0.684 (p = 0.004) with RV strain; corresponding IDI values were 0.0887 (p = 0.03) and 0.1222 (p = 0.01), respectively. Conclusions: Combining CT-based fibrosis quantification with cardiac MRI-derived RV functional assessment enhances the non-invasive diagnosis of PH in ILD patients. This integrated imaging approach significantly improves diagnostic precision and may facilitate earlier, more targeted interventions in the management of ILD-associated PH. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Figure 1

21 pages, 14138 KiB  
Case Report
Multi-Level Oncological Management of a Rare, Combined Mediastinal Tumor: A Case Report
by Vasileios Theocharidis, Thomas Rallis, Apostolos Gogakos, Dimitrios Paliouras, Achilleas Lazopoulos, Meropi Koutourini, Myrto Tzinevi, Aikaterini Vildiridi, Prokopios Dimopoulos, Dimitrios Kasarakis, Panagiotis Kousidis, Anastasia Nikolaidou, Paraskevas Vrochidis, Maria Mironidou-Tzouveleki and Nikolaos Barbetakis
Curr. Oncol. 2025, 32(8), 423; https://doi.org/10.3390/curroncol32080423 - 28 Jul 2025
Viewed by 476
Abstract
Malignant mediastinal tumors are a group representing some of the most demanding oncological challenges for early, multi-level, and successful management. The timely identification of any suspicious clinical symptomatology is urgent in achieving an accurate, staged histological diagnosis, in order to follow up with [...] Read more.
Malignant mediastinal tumors are a group representing some of the most demanding oncological challenges for early, multi-level, and successful management. The timely identification of any suspicious clinical symptomatology is urgent in achieving an accurate, staged histological diagnosis, in order to follow up with an equally detailed medical therapeutic plan (interventional or not) and determine the principal goals regarding efficient overall treatment in these patients. We report a case of a 24-year-old male patient with an incident-free prior medical history. An initial chest X-ray was performed after the patient reported short-term, consistent moderate chest pain symptomatology, early work fatigue, and shortness of breath. The following imaging procedures (chest CT, PET-CT) indicated the presence of an anterior mediastinal mass (meas. ~11 cm × 10 cm × 13 cm, SUV: 8.7), applying additional pressure upon both right heart chambers. The Alpha-Fetoprotein (aFP) blood levels had exceeded at least 50 times their normal range. Two consecutive diagnostic attempts with non-specific histological results, a negative-for-malignancy fine-needle aspiration biopsy (FNA-biopsy), and an additional tumor biopsy, performed via mini anterior (R) thoracotomy with “suspicious” cellular gatherings, were performed elsewhere. After admission to our department, an (R) Video-Assisted Thoracic Surgery (VATS) was performed, along with multiple tumor biopsies and moderate pleural effusion drainage. The tumor’s measurements had increased to DMax: 16 cm × 9 cm × 13 cm, with a severe degree of atelectasis of the Right Lower Lobe parenchyma (RLL) and a pressure-displacement effect upon the Superior Vena Cava (SVC) and the (R) heart sinus, based on data from the preoperative chest MRA. The histological report indicated elements of a combined, non-seminomatous germ-cell mediastinal tumor, posthuberal-type teratoma, and embryonal carcinoma. The imminent chemotherapeutic plan included a “BEP” (Bleomycin®/Cisplatin®/Etoposide®) scheme, which needed to be modified to a “VIP” (Cisplatin®/Etoposide®/Ifosfamide®) scheme, due to an acute pulmonary embolism incident. While the aFP blood levels declined, even reaching normal measurements, the tumor’s size continued to increase significantly (DMax: 28 cm × 25 cm × 13 cm), with severe localized pressure effects, rapid weight loss, and a progressively worsening clinical status. Thus, an emergency surgical intervention took place via median sternotomy, extended with a complementary “T-Shaped” mini anterior (R) thoracotomy. A large, approx. 4 Kg mediastinal tumor was extracted, with additional RML and RUL “en-bloc” segmentectomy and partial mediastinal pleura decortication. The following histological results, apart from verifying the already-known posthuberal-type teratoma, indicated additional scattered small lesions of combined high-grade rabdomyosarcoma, chondrosarcoma, and osteosarcoma, as well as numerous high-grade glioblastoma cellular gatherings. No visible findings of the previously discovered non-seminomatous germ-cell and embryonal carcinoma elements were found. The patient’s postoperative status progressively improved, allowing therapeutic management to continue with six “TIP” (Cisplatin®/Paclitaxel®/Ifosfamide®) sessions, currently under his regular “follow-up” from the oncological team. This report underlines the importance of early, accurate histological identification, combined with any necessary surgical intervention, diagnostic or therapeutic, as well as the appliance of any subsequent multimodality management plan. The diversity of mediastinal tumors, especially for young patients, leaves no place for complacency. Such rare examples may manifest, with equivalent, unpredictable evolution, obliging clinical physicians to stay constantly alert and not take anything for granted. Full article
(This article belongs to the Section Thoracic Oncology)
Show Figures

Graphical abstract

20 pages, 4051 KiB  
Review
Right Heart Evaluation: A Tough Challenge for Clinicians
by Martina Pucci, Luca Maria Capece, Mariateresa Pontoriero, Daniele Paoletta, Marina Iacono, Francesca La Rocca, Roberto Luise and Roberta Esposito
Life 2025, 15(8), 1194; https://doi.org/10.3390/life15081194 - 27 Jul 2025
Viewed by 333
Abstract
The right heart–pulmonary circulation unit (RH-PCU) constitutes an integrated anatomo-functional system characterized by high-volume blood flow, low intravascular pressure, and minimal pulmonary vascular resistance. The RH-PCU dysfunction is a challenge for clinicians, as it can result from numerous pathological conditions, each with different [...] Read more.
The right heart–pulmonary circulation unit (RH-PCU) constitutes an integrated anatomo-functional system characterized by high-volume blood flow, low intravascular pressure, and minimal pulmonary vascular resistance. The RH-PCU dysfunction is a challenge for clinicians, as it can result from numerous pathological conditions, each with different clinical presentations. The pathophysiological changes underlying the hemodynamic alterations in the pressure and volume affecting the right ventricle can lead the patient to present with the primary symptom: dyspnea. We review the clinical presentation, the laboratory test, and the role of multimodality imaging in the evaluation of the disfunction of the RHPCU, including echocardiography, stress echocardiography, computed tomography, magnetic resonance imaging, nuclear imaging, and invasive pressure measurement through catheterization. We therefore aimed to describe the various diagnostic options available to clinicians, evaluating their effectiveness and limitations of use. Full article
Show Figures

Figure 1

22 pages, 5657 KiB  
Article
SUL-150 Limits Vascular Remodeling and Ventricular Failure in Pulmonary Arterial Hypertension
by Lysanne M. Jorna, Dalibor Nakládal, Johannes N. van Heuveln, Diederik E. van der Feen, Quint A. J. Hagdorn, Guido P. L. Bossers, Annemieke van Oosten, Michel Weij, Ludmila Tkáčiková, Soňa Tkáčiková, Robert H. Henning, Martin C. Harmsen, Rolf M. F. Berger and Guido Krenning
Int. J. Mol. Sci. 2025, 26(15), 7181; https://doi.org/10.3390/ijms26157181 - 25 Jul 2025
Viewed by 268
Abstract
Pulmonary arterial hypertension (PAH) is a rare, progressive, and incurable disease characterized by an elevated pulmonary blood pressure, extensive remodeling of the pulmonary vasculature, increased pulmonary vascular resistance, and culminating in right ventricular failure. Mitochondrial dysfunction has a major role in the pathogenesis [...] Read more.
Pulmonary arterial hypertension (PAH) is a rare, progressive, and incurable disease characterized by an elevated pulmonary blood pressure, extensive remodeling of the pulmonary vasculature, increased pulmonary vascular resistance, and culminating in right ventricular failure. Mitochondrial dysfunction has a major role in the pathogenesis of PAH and secondary right ventricular failure, and its targeting may offer therapeutic benefit. In this study, we provide proof-of-concept for the use of the mitochondrially active drug SUL-150 to treat PAH. PAH was induced in rats by monocrotaline, followed by the placement of an aortocaval shunt one week later. The mitoprotective compound SUL-150 (~6 mg·kg−1·day−1) or vehicle was administered intraperitoneally via osmotic minipump for 28 days, implanted at the time of aortocaval shunt placement. Vehicle-treated PAH rats had dyspnea and showed pulmonary artery remodeling with increased responsiveness to phenylephrine, in addition to remodeling of the intrapulmonary arterioles. SUL-150 administration mitigated the dyspnea and the remodeling responses. Vehicle-treated PAH rats developed right ventricular hypertrophy, fibrosis, and failure. SUL-150 administration precluded cardiomyocyte hypertrophy and inhibited ventricular fibrogenesis. Right ventricular failure in vehicle-treated PAH rats induced mitochondrial loss and dysfunction associated with a decrease in mitophagy. SUL-150 was unable to prevent the mitochondrial loss but improved mitochondrial health in the right ventricle, which culminated in the preservation of right ventricular function. We conclude that SUL-150 improves PAH-associated morbidity by the amelioration of pulmonary vascular remodeling and right ventricular failure and may be considered a promising therapeutic candidate to slow disease progression in pulmonary arterial hypertension and secondary right ventricular failure. Full article
Show Figures

Figure 1

20 pages, 2643 KiB  
Article
Modulation of Pulmonary Fibrosis by Pulmonary Surfactant-Associated Phosphatidylethanolamine In Vitro and In Vivo
by Beatriz Tlatelpa-Romero, Luis G. Vázquez-de-Lara Cisneros, Olga Cañadas, Amaya Blanco-Rivero, Barbara Olmeda, Jesús Pérez-Gil, Criselda Mendoza-Milla, José Luis Martinez-Vaquero, Yair Romero, David Atahualpa Contreras-Cruz, René de-la-Rosa Paredes, Sinuhé Ruiz-Salgado, Roberto Berra-Romani, Alonso Antonio Collantes-Gutiérrez, María Susana Pérez-Fernández, María Guadalupe Hernández-Linares and Gabriel Guerrero-Luna
Int. J. Mol. Sci. 2025, 26(15), 7132; https://doi.org/10.3390/ijms26157132 - 24 Jul 2025
Viewed by 275
Abstract
Pulmonary fibrosis (PF) is characterized by excessive collagen deposition and impaired lung function. Pulmonary surfactant may modulate fibroblast activity and offer therapeutic benefits. We developed a natural porcine pulmonary surfactant (NPPS) enriched with 1,2-dipalmitoyl-rac-glycero-3-phosphatidylethanolamine (PE) and evaluated its biophysical and biological properties. Biophysical [...] Read more.
Pulmonary fibrosis (PF) is characterized by excessive collagen deposition and impaired lung function. Pulmonary surfactant may modulate fibroblast activity and offer therapeutic benefits. We developed a natural porcine pulmonary surfactant (NPPS) enriched with 1,2-dipalmitoyl-rac-glycero-3-phosphatidylethanolamine (PE) and evaluated its biophysical and biological properties. Biophysical analysis showed that PE improved surfactant performance by increasing surface pressure and stability. In vitro, NPPS-PE reduced collagen expression and induced apoptosis in normal human lung fibroblasts; in addition, it decreased proliferation in fibroblasts stimulated with TGF-β. In vivo, NPPS-PE improved gas exchange and significantly reduced collagen deposition in bleomycin-treated mice. These findings suggest that NPPS-PE may be a promising therapeutic strategy for fibrosing lung diseases. Full article
(This article belongs to the Special Issue Molecular Pathways and Therapeutic Strategies for Fibrotic Conditions)
Show Figures

Figure 1

19 pages, 9109 KiB  
Article
Metformin Enhances Doxycycline Efficacy Against Pasteurella multocida: Evidence from In Vitro, In Vivo, and Morphological Studies
by Nansong Jiang, Weiwei Wang, Qizhang Liang, Qiuling Fu, Rongchang Liu, Guanghua Fu, Chunhe Wan, Longfei Cheng, Yu Huang and Hongmei Chen
Microorganisms 2025, 13(8), 1724; https://doi.org/10.3390/microorganisms13081724 - 23 Jul 2025
Viewed by 265
Abstract
Pasteurella multocida (Pm) is a zoonotic pathogen that poses a significant threat to animal health and causes substantial economic losses, further aggravated by rising tetracycline resistance. To restore the efficacy of tetracyclines to Pm, we evaluated the synergistic antibacterial activity [...] Read more.
Pasteurella multocida (Pm) is a zoonotic pathogen that poses a significant threat to animal health and causes substantial economic losses, further aggravated by rising tetracycline resistance. To restore the efficacy of tetracyclines to Pm, we evaluated the synergistic antibacterial activity of doxycycline combined with metformin, an FDA-approved antidiabetic agent. Among several non-antibiotic adjuvant candidates, metformin exhibited the most potent in vitro synergy with doxycycline, especially against capsular serogroup A strain (PmA). The combination demonstrated minimal cytotoxicity and hemolysis in both mammalian and avian cells and effectively inhibited resistance development under doxycycline pressure. At 50 mg/kg each, the combination of metformin and doxycycline significantly reduced mortality in mice and ducks acutely infected with PmA (from 100% to 60%), decreased pulmonary bacterial burdens, and alleviated tissue inflammation and damage. Mechanistic validation confirmed that metformin enhances membrane permeability in Pm without compromising membrane integrity, dissipates membrane potential, increases intracellular doxycycline accumulation, and downregulates the transcription of the tetracycline efflux gene tet(B). Morphological analyses further revealed pronounced membrane deformation and possible leakage of intracellular contents. These findings highlight metformin as a potent, low-toxicity tetracycline adjuvant with cross-species efficacy, offering a promising therapeutic approach for managing tetracycline-resistant Pm infections. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

9 pages, 418 KiB  
Review
The Occult Cascade That Leads to CTEPH
by Charli Fox and Lavannya M. Pandit
BioChem 2025, 5(3), 22; https://doi.org/10.3390/biochem5030022 - 23 Jul 2025
Viewed by 191
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare, progressive form of pre-capillary pulmonary hypertension characterized by persistent, organized thromboemboli in the pulmonary vasculature, leading to vascular remodeling, elevated pulmonary artery pressures, right heart failure, and significant morbidity and mortality if untreated. Despite advances, [...] Read more.
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare, progressive form of pre-capillary pulmonary hypertension characterized by persistent, organized thromboemboli in the pulmonary vasculature, leading to vascular remodeling, elevated pulmonary artery pressures, right heart failure, and significant morbidity and mortality if untreated. Despite advances, CTEPH remains underdiagnosed due to nonspecific symptoms and overlapping features with other forms of pulmonary hypertension. Basic Methodology: This review synthesizes data from large international registries, epidemiologic studies, translational research, and multicenter clinical trials. Key methodologies include analysis of registry data to assess incidence and risk factors, histopathological examination of lung specimens, and molecular studies investigating endothelial dysfunction and inflammatory pathways. Diagnostic modalities and treatment outcomes are evaluated through observational studies and randomized controlled trials. Recent Advances and Affected Population: Research has elucidated that CTEPH arises from incomplete resolution of pulmonary emboli, with subsequent fibrotic transformation mediated by dysregulated TGF-β/TGFBI signaling, endothelial dysfunction, and chronic inflammation. Affected populations are typically older adults, often with prior venous thromboembolism, splenectomy, or prothrombotic conditions, though up to 25% have no history of acute PE. The disease burden is substantial, with delayed diagnosis contributing to worse outcomes and higher societal costs. Microvascular arteriopathy and PAH-like lesions in non-occluded vessels further complicate the clinical picture. Conclusions: CTEPH is now recognized as a treatable disease, with multimodal therapies—surgical endarterectomy, balloon pulmonary angioplasty, and targeted pharmacotherapy—significantly improving survival and quality of life. Ongoing research into molecular mechanisms and biomarker-driven diagnostics promises earlier identification and more personalized management. Multidisciplinary care and continued translational investigation are essential to further reduce mortality and optimize outcomes for this complex patient population. Full article
(This article belongs to the Special Issue Feature Papers in BioChem, 2nd Edition)
Show Figures

Figure 1

11 pages, 1579 KiB  
Article
Effect of Iron Deficiency on Right Ventricular Strain in Patients Diagnosed with Acute Heart Failure
by Kemal Engin, Umit Yasar Sinan, Sukru Arslan and Mehmet Serdar Kucukoglu
J. Clin. Med. 2025, 14(15), 5188; https://doi.org/10.3390/jcm14155188 - 22 Jul 2025
Viewed by 273
Abstract
Background: Iron deficiency (ID) is a prevalent comorbidity of heart failure (HF), affecting up to 59% of patients, regardless of the presence of anaemia. Although its negative impact on left ventricular (LV) function is well documented, its effect on right ventricular (RV) function [...] Read more.
Background: Iron deficiency (ID) is a prevalent comorbidity of heart failure (HF), affecting up to 59% of patients, regardless of the presence of anaemia. Although its negative impact on left ventricular (LV) function is well documented, its effect on right ventricular (RV) function remains unclear. This study assessed the effects of ID on RV global longitudinal strain (RV-GLS) in patients diagnosed with acute decompensated HF (ADHF). Methods: This study included data from 100 patients hospitalised with ADHF irrespective of LV ejection fraction (LVEF) value. ID was defined according to the European Society of Cardiology HF guidelines as serum ferritin <100 ng/mL or ferritin 100–299 ng/mL, with transferrin saturation <20%. Anaemia was defined according to World Health Organization criteria as haemoglobin level <12 g/dL in women and <13 g/dL in men. RV systolic function was assessed using parameters including RV ejection fraction (RVEF), tricuspid annular plane systolic excursion (TAPSE), RV fractional area change (FAC), peak systolic tissue Doppler velocity of the RV annulus (RV TDI S′), acceleration time of the RV outflow tract, and RV free wall GLS. Results: The mean (±SD) age of the study population (64% male) was 70 ± 10 years. The median LVEF was 35%, with 66% of patients classified with HF with reduced ejection fraction, 6% with HF with mid-range ejection fraction, and 28% with HF with preserved ejection fraction. Fifty-eight percent of patients had ID. There were no significant differences between patients with and without ID regarding demographics, LVEF, RV FAC, RV TDI S′, or systolic pulmonary artery pressure. However, TAPSE (15.6 versus [vs.] 17.2 mm; p = 0.05) and RV free wall GLS (−14.7% vs. −18.2%; p = 0.005) were significantly lower in patients with ID, indicating subclinical RV systolic dysfunction. Conclusions: ID was associated with subclinical impairment of RV systolic function in patients diagnosed with ADHF, as evidenced by reductions in TAPSE and RV-GLS, despite the preservation of conventional RV systolic function parameters. Further research validating these findings and exploring the underlying mechanisms is warranted. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

11 pages, 892 KiB  
Article
Sotatercept for Connective Tissue Disease-Associated Pulmonary Arterial Hypertension with Concomitant Interstitial Lung Disease: Efficacy and Safety Insights
by Chebly Dagher, Maria Akiki, Kristin Swanson, Brett Carollo, Garett Fiscus, Harrison W. Farber and Raj Parikh
J. Clin. Med. 2025, 14(15), 5177; https://doi.org/10.3390/jcm14155177 - 22 Jul 2025
Viewed by 407
Abstract
Background/Objectives: Sotatercept has demonstrated efficacy in pulmonary arterial hypertension (PAH), but its use has not been studied in patients with Group 3 pulmonary hypertension (PH). Additionally, patients with connective tissue disease-associated PAH (CTD-PAH) were underrepresented in the STELLAR trial. Given the limited [...] Read more.
Background/Objectives: Sotatercept has demonstrated efficacy in pulmonary arterial hypertension (PAH), but its use has not been studied in patients with Group 3 pulmonary hypertension (PH). Additionally, patients with connective tissue disease-associated PAH (CTD-PAH) were underrepresented in the STELLAR trial. Given the limited treatment options for pulmonary hypertension in patients with interstitial lung disease (PH-ILD), this study aimed to evaluate the use of sotatercept in CTD-PAH patients with concomitant ILD. Methods: Eligible patients (n = 7) had a confirmed diagnosis of CTD-PAH with concomitant ILD. The patients were already receiving background PAH therapy. Baseline hemodynamic and clinical measurements were reassessed after 24 weeks of sotatercept therapy. The variables assessed included six-minute walk distance (6MWD), pulmonary vascular resistance (PVR), echocardiographic right ventricular systolic pressure (eRVSP), N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, World Health Organization (WHO) functional class, and supplemental oxygen requirements. Results: The study included seven patients with a mean age of 57 years (range: 39–73 years). After 24 weeks, the mean 6MWT distance increased from 211 m to 348 m (p < 0.01). Mean PVR decreased from 7.77 WU at baseline to 4.53 WU (p < 0.01). Mean eRVSP decreased from 79.43 mmHg to 54.14 mmHg (p < 0.01). NT-proBNP decreased from 3056.86 pg/mL to 1404.29 pg/mL (p < 0.01). The WHO functional class and supplemental oxygen requirements improved in all patients. Conclusions: Sotatercept was tolerated in patients with CTD-PAH and ILD, with no evidence of adverse respiratory effects. When added to foundational PAH therapy, sotatercept resulted in significant improvements across multiple parameters. These findings suggest that sotatercept may be a promising therapeutic option as an adjunctive treatment in this patient population. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

28 pages, 2909 KiB  
Review
State of the Art in Pulmonary Arterial Hypertension: Molecular Basis, Imaging Modalities, and Right Heart Failure Treatment
by Melika Shafeghat, Yasmin Raza, Roberta Catania, Amir Ali Rahsepar, Blair Tilkens, Michael J. Cuttica, Benjamin H. Freed, Jingbo Dai, You-Yang Zhao and James C. Carr
Biomedicines 2025, 13(7), 1773; https://doi.org/10.3390/biomedicines13071773 - 20 Jul 2025
Viewed by 735
Abstract
Pulmonary hypertension (PH) is broadly defined as a mean pulmonary arterial pressure (mPAP) exceeding 20 mm Hg at rest. Pulmonary arterial hypertension (PAH) is a specific subset of PH characterized by a normal pulmonary arterial wedge pressure (PAWP), combined with elevated mPAP and [...] Read more.
Pulmonary hypertension (PH) is broadly defined as a mean pulmonary arterial pressure (mPAP) exceeding 20 mm Hg at rest. Pulmonary arterial hypertension (PAH) is a specific subset of PH characterized by a normal pulmonary arterial wedge pressure (PAWP), combined with elevated mPAP and increased pulmonary vascular resistance (PVR), without other causes of pre-capillary hypertension such as lung diseases or chronic thromboembolic pulmonary hypertension. The majority of PAH cases are idiopathic; other common etiologies include connective tissue disease-associated PAH, congenital heart disease, and portopulmonary hypertension. To a lesser extent, genetic and familial forms of PAH can also occur. The pathophysiology of PAH involves the following four primary pathways: nitric oxide, endothelin-1, prostacyclin, and activin/bone morphogenetic protein (BMP). Dysregulation of these pathways leads to a progressive vasculopathy marked by vasoconstriction, vascular proliferation, elevated right heart afterload, and ultimately right-sided heart failure. Diagnosing PAH is challenging and often occurs at advanced stages. The gold standard for diagnosis remains invasive right heart catheterization. Along with invasive hemodynamic measurements, several noninvasive imaging modalities such as echocardiography and ventilation-perfusion scanning are key adjunct techniques. Also, recent advancements in cardiac magnetic resonance (CMR) have opened a new era for PAH management. Additionally, CMR and echocardiography not only enable diagnosis but also aid in evaluating disease severity and monitoring treatment responses. Current PAH treatments focus on targeting molecular pathways, reducing inflammation, and inhibiting right-sided heart failure. Integrating imaging with basic science techniques is crucial for enhanced patient diagnosis, and precision medicine is emerging as a key strategy in PAH management. Additionally, the incorporation of artificial intelligence into both molecular and imaging approaches holds significant potential. There is a growing need to integrate new imaging modalities with high resolution and reduced radiation exposure into clinical practice. In this review, we discuss the molecular pathways involved in PAH, the imaging modalities utilized for diagnosis and monitoring, and current targeted therapies. Advances in molecular understanding and imaging technologies, coupled with precision medicine, could hold promise in improving patient outcomes and revolutionizing the management of PAH patients. Full article
Show Figures

Graphical abstract

22 pages, 2627 KiB  
Review
Pulmonary Hypertension: Let’s Take Stock!
by Michele Cacia, Egidio Imbalzano, Vincenzo Antonio Ciconte and Marco Vatrano
Life 2025, 15(7), 1137; https://doi.org/10.3390/life15071137 - 18 Jul 2025
Viewed by 341
Abstract
Pulmonary hypertension (PH) encompasses a group of conditions characterized by elevated pulmonary arterial pressure, with pulmonary arterial hypertension (PAH) representing a distinct and severe subset. This review provides a comprehensive overview of the current classification system, highlighting the five clinical groups of PH [...] Read more.
Pulmonary hypertension (PH) encompasses a group of conditions characterized by elevated pulmonary arterial pressure, with pulmonary arterial hypertension (PAH) representing a distinct and severe subset. This review provides a comprehensive overview of the current classification system, highlighting the five clinical groups of PH and the specific hemodynamic criteria defining PAH. We discuss the complex pathophysiological mechanisms underlying PAH, including vascular remodeling, endothelial dysfunction, and genetic predisposition. Advances in diagnostic approaches are explored. Current treatment strategies targeting key molecular pathways such as endothelin, nitric oxide, and prostacyclin are reviewed alongside novel and investigational therapies. Prognostic indicators and risk stratification tools are evaluated to guide clinical management. Finally, we underscore the critical role of expert centers in accurate diagnosis, multidisciplinary care, and enrollment in clinical trials, which collectively improve patient outcomes in this challenging disease spectrum. Full article
Show Figures

Figure 1

18 pages, 386 KiB  
Review
Role of Non-Invasive Ventilation in Elderly Patients: Therapeutic Opportunity or Medical Futility? An Updated Narrative Review
by Francesca Sangiovanni, Giulia Sartori, Nadia Castaldo, Alberto Fantin and Ernesto Crisafulli
Medicina 2025, 61(7), 1288; https://doi.org/10.3390/medicina61071288 - 17 Jul 2025
Viewed by 450
Abstract
Background and Objectives: Acute respiratory failure (ARF) represents an increasingly relevant clinical challenge in older subjects due to population aging and the high prevalence of cardiopulmonary comorbidities. Non-invasive ventilation (NIV), developed as continuous positive airway pressure (CPAP) or bilevel positive airway pressure [...] Read more.
Background and Objectives: Acute respiratory failure (ARF) represents an increasingly relevant clinical challenge in older subjects due to population aging and the high prevalence of cardiopulmonary comorbidities. Non-invasive ventilation (NIV), developed as continuous positive airway pressure (CPAP) or bilevel positive airway pressure (BiPAP), has become a first-line treatment in various forms of ARF, including acute cardiogenic pulmonary oedema (ACPE) and acute exacerbations of COPD (AECOPD), offering several clinical advantages. In this context, the limited evidence on the efficacy of NIV in older patients leaves considerable uncertainty as to whether it constitutes a valid therapeutic option or represents medical futility in these patients. Materials and Methods: This narrative review explores the use of NIV and its outcomes in four key clinical scenarios in the elderly: ARF due to ACPE, AECOPD, community-acquired pneumonia (CAP), and palliative/end-of-life care. Results: Strong evidence supports NIV use with improved outcomes in ACPE and AECOPD, even in older populations. Conversely, data on its use in pneumonia are inconclusive, with potential harm if applied inappropriately. In palliative care, NIV can help relieve symptoms, but if not used appropriately, it may extend suffering. Conclusions: Age alone does not appear to be a sufficient factor to determine whether or not to use NIV; it becomes relevant only when considered in conjunction with the purpose of its use and the patient’s clinical history and condition. Data remain limited and often conflicting, particularly when investigating the elderly population and patients with a “do not intubate” (DNI) order. There is a need for additional research on these patients, focusing on long-term outcomes and quality of life. Full article
(This article belongs to the Section Pulmonology)
18 pages, 532 KiB  
Review
Respiratory Muscle Training in Mechanically Ventilated Adult Patients: Toward a Precise Prescription Based on Current Evidence: A Scoping Review
by Jennifer Andrea Carabalí-Rivera, Valeria Salazar-Muñoz, Evelyn dayana Villanueva-Londoño, Katherine González-Ruiz and Leonardo Arzayus-Patiño
J. Clin. Med. 2025, 14(14), 5058; https://doi.org/10.3390/jcm14145058 - 17 Jul 2025
Viewed by 667
Abstract
Respiratory muscle training (RMT) has been proposed as a supportive strategy for adults receiving invasive mechanical ventilation; however, the way RMT is prescribed—mode, intensity, frequency, and volume—remains highly heterogeneous. Objectives: This study aimed to describe the current evidence regarding the prescription of [...] Read more.
Respiratory muscle training (RMT) has been proposed as a supportive strategy for adults receiving invasive mechanical ventilation; however, the way RMT is prescribed—mode, intensity, frequency, and volume—remains highly heterogeneous. Objectives: This study aimed to describe the current evidence regarding the prescription of respiratory muscle strengthening in terms of frequency, intensity, method, and volume in adult patients under mechanical ventilation in intensive care units. Methods: A scoping review was conducted following the PRISMA-ScR guidelines based on searches in electronic databases including Scopus, SciELO, ScienceDirect, PubMed, LILACS, Springer, Web of Science, Google Scholar, PEDro, Dialnet, and Cochrane. Results: Seven studies met the established inclusion criteria and described prescription protocols for respiratory muscle strengthening in adult patients under mechanical ventilation in intensive care units. Conclusions: The most frequently reported protocol involved threshold load training at 40–50% of maximal inspiratory pressure, administered twice daily, every day of the week, with a volume of 30 repetitions. This intervention showed promising results in improving inspiratory muscle strength, with potential additional benefits in weaning success and pulmonary function. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

12 pages, 1282 KiB  
Article
Prognostic Value of Pulmonary Hypertension as an Incidental Finding Detected by Echocardiography in Patients Without Known Cardiovascular or Pulmonary Diseases
by Avia Ashur, Amalia Levy, Noah Liel-Cohen, Ruslan Sergienko and Sergio L. Kobal
J. Clin. Med. 2025, 14(14), 5044; https://doi.org/10.3390/jcm14145044 - 16 Jul 2025
Viewed by 213
Abstract
Aims: The global prevalence of pulmonary hypertension (PHT) among the elderly population aged 65 years and above is estimated to be 10%. While it is known to be associated with poor prognoses in patients with cardiovascular or pulmonary diseases, the significance of [...] Read more.
Aims: The global prevalence of pulmonary hypertension (PHT) among the elderly population aged 65 years and above is estimated to be 10%. While it is known to be associated with poor prognoses in patients with cardiovascular or pulmonary diseases, the significance of PHT as an incidental finding among individuals without these conditions remains unclear. The aim of this study was to investigate the relationship between incidental PHT detected by echocardiography and long-term all-cause mortality in patients without known cardiovascular or pulmonary diseases. Methods and Results: This retrospective, single-center cohort study included 8283 patients who underwent two consecutive echocardiographic examinations evaluating pulmonary pressure by assessing the maximal velocity of the tricuspid regurgitation jet. In total, 1705 (20.6%) patients were found to have PHT during the first echocardiography. Using a Cox proportional hazard model for all-cause mortality, PHT was found to be a significant and independent risk factor for all-cause mortality, increasing the risk by 34% (Adj. HR—1.34, 95% CI 1.21–1.47, p < 0.001). There was a direct relationship between PHT severity and long-term all-cause mortality, with patients with severe PHT having a two-fold higher risk compared to those with normal pulmonary blood pressure (Adj. HR—2, 95% CI: 1.58–2.54, p < 0.001). A “cutoff point” of sPAP > 40 mmHg was established, where pulmonary pressure values remained high and even worsened over time (p < 0.001). Conclusions: The incidental diagnosis of PHT by echocardiography in patients without known cardiovascular or pulmonary diseases is an independent risk factor for long-term all-cause mortality. Patients with sPAP ≥ 40 mmHg warrant a comprehensive clinical assessment. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

Back to TopTop