Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = psychrophilic conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3662 KiB  
Article
A Study on the Temperature-Dependent Behavior of Small Heat Shock Proteins from Methanogens
by Nina Kurokawa, Mima Ogawa, Rio Midorikawa, Arisa Kanno, Wakaba Naka, Keiichi Noguchi, Ken Morishima, Rintaro Inoue, Masaaki Sugiyama and Masafumi Yohda
Int. J. Mol. Sci. 2025, 26(12), 5748; https://doi.org/10.3390/ijms26125748 - 16 Jun 2025
Viewed by 286
Abstract
Small heat shock proteins (sHsps) are ubiquitous low-molecular-weight chaperones that prevent protein aggregation under cellular stress conditions. In the absence of stress, they assemble into large oligomers. In response to stress, such as elevated temperatures, they undergo conformational changes that expose hydrophobic surfaces, [...] Read more.
Small heat shock proteins (sHsps) are ubiquitous low-molecular-weight chaperones that prevent protein aggregation under cellular stress conditions. In the absence of stress, they assemble into large oligomers. In response to stress, such as elevated temperatures, they undergo conformational changes that expose hydrophobic surfaces, allowing them to interact with denatured proteins. At heat shock temperatures in bacteria, large sHsp oligomers disassemble into smaller oligomeric forms. Methanogens are a diverse group of microorganisms, ranging from thermophilic to psychrophilic and halophilic species. Accordingly, their sHsps exhibit markedly different temperature dependencies based on their optimal growth temperatures. In this study, we characterized sHsps from both hyperthermophilic and mesophilic methanogens to investigate the mechanisms underlying their temperature-dependent behavior. Using analytical ultracentrifugation, we observed the dissociation of sHsps from a mesophilic methanogen into dimers. The dissociation equilibrium of these oligomers was found to be dependent not only on temperature but also on protein concentration. Furthermore, by generating various mutants, we identified the specific amino acid residues responsible for the temperature dependency observed. The C-terminal region containing the IXI/V motif and the α-crystallin domain were found to be the primary determinants of oligomer stability and its temperature dependence. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Japan)
Show Figures

Figure 1

41 pages, 3877 KiB  
Review
Cell Response to Oxidative Stress in Antarctic Filamentous Fungi
by Radoslav Abrashev, Jeny Miteva-Staleva, Yana Gocheva, Galina Stoyancheva, Vladislava Dishliyska, Boryana Spasova, Ekaterina Krumova and Maria Angelova
Appl. Sci. 2025, 15(9), 5149; https://doi.org/10.3390/app15095149 - 6 May 2025
Cited by 2 | Viewed by 744
Abstract
Antarctica, with its harsh environmental conditions, is home to a wide variety of microorganisms, including filamentous fungi. The survival of Antarctic mycoflora has led to increasing interest in their adaptation. Extreme low temperatures, low water availability, frequent freeze–thaw cycles, strong winds, ultraviolet radiation, [...] Read more.
Antarctica, with its harsh environmental conditions, is home to a wide variety of microorganisms, including filamentous fungi. The survival of Antarctic mycoflora has led to increasing interest in their adaptation. Extreme low temperatures, low water availability, frequent freeze–thaw cycles, strong winds, ultraviolet radiation, etc., are all prerequisites for accelerated production of reactive oxygen species (ROS) and the occurrence of oxidative stress (OS). Antarctic fungi have effective mechanisms to cope with the damaging effects of ROS. While the distribution, morphology, physiology, and biotechnological potential of these fungi are well documented, the role of oxidative stress in their adaptation is poorly understood. This has been one of the main research topics of our team for a long time, and a number of papers on our results have been published. This review summarizes the existing literature on the induction of oxidative stress in Antarctic psychrophilic, psychrotolerant, and mesophilic fungi by extreme conditions. The most recent and relevant studies reporting on the relationship between cold stress and OS biomarkers and the damaging effects of ROS on key intracellular biomolecules are presented. The contribution of both enzymatic and non-enzymatic antioxidant defenses to the fungal cell response is discussed. Full article
Show Figures

Figure 1

22 pages, 840 KiB  
Review
Advanced Optimization of Bioprocess Parameters for Exopolysaccharides Synthesis in Extremophiles
by Nadja Radchenkova and Songül Yaşar Yıldız
Processes 2025, 13(3), 822; https://doi.org/10.3390/pr13030822 - 11 Mar 2025
Cited by 2 | Viewed by 1566
Abstract
Exopolysaccharides (EPSs) represent versatile biopolymers finding diverse applications in food, pharmaceuticals, and bioremediation industries. Extremophiles, thriving under extreme environmental conditions, have emerged as a promising source of novel EPSs with better stability and bioactivity. The present work reviews the complex influence of various [...] Read more.
Exopolysaccharides (EPSs) represent versatile biopolymers finding diverse applications in food, pharmaceuticals, and bioremediation industries. Extremophiles, thriving under extreme environmental conditions, have emerged as a promising source of novel EPSs with better stability and bioactivity. The present work reviews the complex influence of various abiotic factors and bioprocess parameters such as temperature, pH, carbon and nitrogen sources, C/N ratios, and oxygen transfer dynamics on the production of EPSs from extremophilic microorganisms. Results underline the important role of temperature for structural and functional properties of EPSs, from the synthesis of cryoprotective polymers in psychrophiles to the production of thermostable EPSs in thermophiles under cold stress. The pH has an extensive effect on enzymatic activities: optimal neutral to slightly acidic conditions exist for most strains. Carbon sources determine not only the yield of EPSs but also its structural features, while nitrogen sources and C/N ratios regulate the balance between biomass production and polymer biosynthesis. Besides that, oxygen transfer limitations—which may happen in particularly viscous or saline media—are overtaken by optimized bioreactor configuration and stirring strategies. These findings are highly relevant to the development of tailored cultivation conditions enabling the maximization of EPS yields and adaptation of its properties to comply with industrial requirements. This study provides a framework for enhancing EPS production by leveraging the adaptive traits of extremophiles. This approach supports the sustainable use of biopolymers, advances fermentation production processes, and helps uncover the underlying mechanisms involved. Full article
Show Figures

Figure 1

28 pages, 3185 KiB  
Review
Extremophilic Exopolysaccharides: Bioprocess and Novel Applications in 21st Century
by Chandni Upadhyaya, Hiren Patel, Ishita Patel and Trushit Upadhyaya
Fermentation 2025, 11(1), 16; https://doi.org/10.3390/fermentation11010016 - 2 Jan 2025
Cited by 3 | Viewed by 2886
Abstract
Extremophiles, microorganisms blooming in extreme environmental conditions, hold particular significance in the domain of microbial research. This review paper focuses on extremophilic microorganisms, emphasizing their adaptations and the diverse products they generate, with a particular emphasis on exopolysaccharides (EPSs). EPSs, high molecular weight [...] Read more.
Extremophiles, microorganisms blooming in extreme environmental conditions, hold particular significance in the domain of microbial research. This review paper focuses on extremophilic microorganisms, emphasizing their adaptations and the diverse products they generate, with a particular emphasis on exopolysaccharides (EPSs). EPSs, high molecular weight carbohydrate biopolymers, stand out as valuable products with applications across various industries. The review explores EPS production by bacteria in extreme conditions, including thermophilic, halophilic, and psychrophilic environments. Noteworthy examples, such as B. thermantarcticus and H. smyrnensis AAD6T, highlight the vast potential of extremophiles in EPS production. Additionally, the paper explores the major synthesis pathways of EPSs, shedding light on the factors influencing biosynthesis. The commercial significance of EPSs, especially for extremophiles, is underlined by their applications in medicine, food, environmental protection, agriculture, cosmetics, and more. Furthermore, the review sheds light on the role of extremophiles in various ecosystems, such as acidophiles, alkaliphiles, halophiles, hyperthermophiles, oligotrophs, osmophiles, piezophiles, and radioresistant organisms. This comprehensive analysis highlights the broad impact of extremophilic microorganisms and their EPS products in scientific exploration and commercial innovation. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

18 pages, 3626 KiB  
Article
Effect of Organic Nitrogen Supply on the Kinetics and Quality of Anaerobic Digestion of Less Nitrogenous Substrates: Case of Anaerobic Co-Digestion (AcoD) of Cassava Effluent and Chicken Droppings as a Nitrogen Source
by Haro Kayaba, Nourou Abdel Anziph Sergel Khalid, Sandwidi Sayouba, Compaore Abdoulaye, Palm Sie Auguste, Sessouma Oumou, Ouedraogo Ibrahim Kourita, Sinon Souleymane, Tubreoumya Guy Christian, Bere Antoine, Daho Tizane and Sanogo Oumar
Fuels 2025, 6(1), 2; https://doi.org/10.3390/fuels6010002 - 30 Dec 2024
Viewed by 1041
Abstract
This study aims to explore anaerobic co-digestion (AcoD) of cassava (EUM) and poultry (FP) effluents using one inoculum/substrate ratio (30%) and three EUM vs. FP substrate composition ratios (25:75, 50:50, and 75:25). The AcoD process was therefore designed for 20 L batch digesters, [...] Read more.
This study aims to explore anaerobic co-digestion (AcoD) of cassava (EUM) and poultry (FP) effluents using one inoculum/substrate ratio (30%) and three EUM vs. FP substrate composition ratios (25:75, 50:50, and 75:25). The AcoD process was therefore designed for 20 L batch digesters, under mesophilic conditions, with less than 5% total solids for 66 days. The results showed that EUMs were highly resistant to degradation, while FPs were the most easily degradable. Kinetic analysis indicated specific organic matter (MO) reduction rates of 0.28% per day for EUM and 0.76% per day for FP. EUM alone produced 45.47 mL/g MO, while the 50:50 substrate produced 1184.60 mL/g MOV. The main factors contributing to EUM inefficiency were the inability to tame acidic conditions and the accumulation of volatile fatty acids. AcoD produced 23 to 50 times more methane than EUM alone, 2 to 5 times more than FP alone, and 2 to 4 times more than inoculum. As a result, the AcoD of both types of waste had a qualitative and quantitative effect on biogas production. CH4 content increased from around 2 to 75%, depending on the amount of organic nitrogen added. The addition of nitrogen by AcoD, even under mesophilic conditions, improves the kinetics and quality of anaerobic digestion of low-nitrogen substrates. Its impact on thermophilic and psychrophilic conditions needs to be verified. Full article
(This article belongs to the Special Issue Biomass Conversion to Biofuels)
Show Figures

Figure 1

30 pages, 2332 KiB  
Review
Cold-Adapted Fungi: Goldmine of Biomolecules Applicable in Industry
by Iga Jodłowska and Aneta Monika Białkowska
Appl. Sci. 2024, 14(24), 11950; https://doi.org/10.3390/app142411950 - 20 Dec 2024
Cited by 2 | Viewed by 1463
Abstract
Fungi, which are widely distributed across the Earth, have successfully managed to colonize cold environments (e.g., polar regions, alpine ecosystems, and glaciers) despite the challenging conditions for life. They are capable of living in extremely harsh environments due to their ecological versatility and [...] Read more.
Fungi, which are widely distributed across the Earth, have successfully managed to colonize cold environments (e.g., polar regions, alpine ecosystems, and glaciers) despite the challenging conditions for life. They are capable of living in extremely harsh environments due to their ecological versatility and morphological plasticity. It is also believed that lower eukaryotes are the most adapted to life at low temperatures among microorganisms that thrive in cold environments. They play important ecological roles, contributing to nutrient recycling and organic matter mineralization. These highly specialized microorganisms have developed adaptation strategies to overcome the direct and indirect harmful influences of low temperatures. They have evolved a wide range of complex and cooperative adaptations at various cellular levels, including modifications to the cell envelope and enzymes, the production of cryoprotectants and chaperones, and the development of new metabolic functions. Adaptation to cold environments has made fungi an exciting source for the discovery of new cold-adapted enzymes (e.g., proteinases, lipases) and secondary metabolites (e.g., pigments, osmolytes, polyunsaturated fatty acids) for widespread use in biotechnology, food technology, agriculture, pharmaceutics, molecular biology, textile industry, and environmental bioremediation in cold climates. This review aims to provide a comprehensive overview of the adaptive strategies employed by psychrophilic yeasts and fungi, highlighting their ecological roles and biotechnological potential. Understanding these adaptive mechanisms not only sheds light on microbial life in extreme environments but also paves the way for innovative applications in the food industry and agriculture. Full article
(This article belongs to the Special Issue Role of Microbes in Agriculture and Food, 2nd Edition)
Show Figures

Figure 1

17 pages, 2226 KiB  
Article
Enhancing Agricultural Biogas Desulfurization: Improving Cost-Efficiency and Robustness Through Micro-Aeration with Psychrophilic Anaerobic Liquid/Solid Media
by Rajinikanth Rajagopal and Bernard Goyette
Agriculture 2024, 14(12), 2113; https://doi.org/10.3390/agriculture14122113 - 22 Nov 2024
Viewed by 1203
Abstract
This study endeavors to develop an economical and user-friendly biological sulfide oxidation system and explore its mechanism for generating biological elemental sulfur under micro-aerobic conditions using psychrophilic anaerobically digested media (liquid/solid inoculums obtained from agricultural livestock wastes) for sulfide-free biogas production. With an [...] Read more.
This study endeavors to develop an economical and user-friendly biological sulfide oxidation system and explore its mechanism for generating biological elemental sulfur under micro-aerobic conditions using psychrophilic anaerobically digested media (liquid/solid inoculums obtained from agricultural livestock wastes) for sulfide-free biogas production. With an initial hydrogen sulfide concentration of 5000 ppm, a biogas flow rate ranging from 0.9 to 1.8 L/h-Linoculum-mix, and an air injection rate of 0.6–1% (oxygen concentration in biogas), a remarkable biodesulfurization efficiency of 99–100% was attained using solid inoculum as the biodesulfurization medium. This efficiency was achieved without compromising the methane quality in the treated biogas. Compared to liquid inoculum, solid inoculum requires less than half the volume and no mixing equipment, such as bubble column reactors. The biodesulfurization reactor requires only 1 m3, which is approximately 1.5% of the volume of a wet anaerobic digester and 3% of a dry anaerobic digester, while processing cow manure (Total Solids: 20%) at 1.03 m3 of manure per day. Moreover, it can be operated at (19–20 °C), leading to substantial reductions in cost and footprint. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

14 pages, 3172 KiB  
Article
The Antarctic Yeast Sporobolomyces roseus AL103 as a Promising Source of Health-Promoting Biologically Active Compounds
by Snezhana Rusinova-Videva, Maya M. Zaharieva, Dilyana Hristova, Stefka Nachkova, Margarita Kambourova, Hristo Najdenski and Spiro Konstantinov
Fermentation 2024, 10(10), 508; https://doi.org/10.3390/fermentation10100508 - 2 Oct 2024
Cited by 1 | Viewed by 1642
Abstract
Antarctic yeasts represent a poorly explored source of novel bioactive compounds with antineoplastic activity and a favorable toxicological profile. The present paper presents the newest data on the antiproliferative and antimicrobial potential of extracts obtained from the psychrophilic strain AL103 of the [...] Read more.
Antarctic yeasts represent a poorly explored source of novel bioactive compounds with antineoplastic activity and a favorable toxicological profile. The present paper presents the newest data on the antiproliferative and antimicrobial potential of extracts obtained from the psychrophilic strain AL103 of the species Sporobolomyces roseus. The capacity of AL103 to grow under different cultivation conditions, including in a bioreactor system with optimal biomass quantities of approximately 6.0 g/L, was demonstrated. A comparative examination of the metabolic profiles (GC-MS-based) of yeast extracts revealed a wide variety of synthesized molecules responsible for the different levels of antineoplastic activity depending on the tissue origin of the malignant cell lines. Concentration response curves were generated by the MTT dye reduction test. The respective IC50 values were extrapolated and found between 35.3 and 163 µg/mL. The antibacterial potential of both extracts was evaluated with the broth microdilution test against four referent pathogenic bacterial strains. The estimated minimal inhibitory concentrations revealed a moderate antibacterial activity. According to the GC-MS results, both extracts are rich in long-chain fatty acids which are known for their antibacterial properties. In conclusion, the Antarctic strain AL103 possesses promising potential for further pharmacological investigations aiming to elucidate its application as a health-promoting food additive or/and as a source of biologically active compounds. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

16 pages, 1475 KiB  
Article
Effects of Domestic Pollution on European Brook Lamprey Ammocoetes in a Lowland River: Insights from Microbiological Analysis
by Grzegorz Zięba, Magdalena Moryl, Dominika Drzewiecka, Mirosław Przybylski, Kacper Pyrzanowski and Joanna Grabowska
Water 2024, 16(16), 2349; https://doi.org/10.3390/w16162349 - 21 Aug 2024
Cited by 1 | Viewed by 1254
Abstract
This study investigates the impact of water faecal contamination on highly threatened European brook lamprey larvae (Lampetra planeri). Water samples and the midgut contents of lampreys collected from a small lowland river upstream (site 1) and downstream from a wastewater treatment [...] Read more.
This study investigates the impact of water faecal contamination on highly threatened European brook lamprey larvae (Lampetra planeri). Water samples and the midgut contents of lampreys collected from a small lowland river upstream (site 1) and downstream from a wastewater treatment plant (WWTP) discharge (site 2) were analysed to check how the faecal microbial load of the habitat is reflected in the intestines of larval lampreys. The counts of viable mesophiles, psychrophiles, Escherichia coli and faecal streptococci as bacterial indicators of microbial (including faecal) water contamination were estimated. Microbial composition and abundance in larval midgut contents depended on the numbers of various microorganisms in the water environment. At site 2, the water was heavily microbiologically contaminated throughout the year by sewage inflow from the WWTP, and the amounts of studied bacteria were also high in the midgut of lampreys inhabiting site 2 regardless of the season. At site 1, water quality was better, and the levels of tested microbial indicators were lower in the intestines of the lampreys living there. The numbers of bacteria dependent on water temperature were growing in warmer seasons both in water and in intestines. Sewage pollution negatively influenced the condition of lampreys in site 2, where they exhibited lower body condition than in site 1. Full article
(This article belongs to the Special Issue Freshwater Species: Status, Monitoring and Assessment)
Show Figures

Figure 1

13 pages, 584 KiB  
Article
Thermochemical Pretreatment for Improving the Psychrophilic Anaerobic Digestion of Coffee Husks
by Tzyy Shyuan Yang, Carla Flores-Rodriguez, Lorena Torres-Albarracin and Ariovaldo José da Silva
Methane 2024, 3(2), 214-226; https://doi.org/10.3390/methane3020013 - 29 Mar 2024
Cited by 1 | Viewed by 2012
Abstract
Psychrophilic anaerobic digestion emerges as an appealing integrated solution for the management of agricultural waste, particularly for farmers in regions where the average temperature does not exceed 26 °C, as seen in coffee cultivation. Therefore, this study seeks to assess the biomethane potential [...] Read more.
Psychrophilic anaerobic digestion emerges as an appealing integrated solution for the management of agricultural waste, particularly for farmers in regions where the average temperature does not exceed 26 °C, as seen in coffee cultivation. Therefore, this study seeks to assess the biomethane potential of thermochemical-treated coffee husk through psychrophilic anaerobic digestion (C3-20 °C-w/pretreatment). To examine its viability, outcomes were compared with reactors operating at both mesophilic (C1-35 °C) and psychrophilic (C2-20 °C) conditions, albeit without the use of pretreated coffee husk. The C3-20 °C-w/pretreatment test demonstrated a 36.89% increase (150.47 NmL CH4/g VS; 161.04 NmL CH4/g COD), while the C1-35 °C test exhibited a 24.03% increase (124.99 NmL CH4/g VS; 133.77 NmL CH4/g COD), both in comparison to the C2-20 °C test (94.96 NmL CH4/g VS; 101.63 NmL CH4/g COD). Notably, the C3-20 °C-w/pretreatment trial yielded superior outcomes, accompanied by an associated energy output of 3199.25 GWh/year, sufficient to meet the annual energy demands of 494 residences. This marks an increase of 83 and 182 million residences compared to the mesophilic and psychrophilic AD of CH without pretreatment, respectively. Full article
(This article belongs to the Special Issue Anaerobic Digestion Process: Converting Waste to Energy)
Show Figures

Figure 1

14 pages, 2686 KiB  
Article
Anaerobic Treatment of Food Waste with Biogas Recirculation under Psychrophilic Temperature
by Tafannum Torsha and Catherine N. Mulligan
Waste 2024, 2(1), 58-71; https://doi.org/10.3390/waste2010003 - 23 Jan 2024
Viewed by 2429
Abstract
Food waste has emerged as a pressing concern, and thus advanced techniques to valorize food waste into nutrition rich materials as well as renewable energy are highly important. The exceptional biodegradability of food waste renders it a highly suitable substrate for anaerobic treatment. [...] Read more.
Food waste has emerged as a pressing concern, and thus advanced techniques to valorize food waste into nutrition rich materials as well as renewable energy are highly important. The exceptional biodegradability of food waste renders it a highly suitable substrate for anaerobic treatment. This leads to energy production and a reduction in the carbon footprint. Nevertheless, in frigid territories like Canada, the conventional mesophilic anaerobic digestion at 30–40 °C can require substantial amounts of energy. Consequently, this study introduces a new approach to treat food waste at psychrophilic temperatures (1–20 °C). Lower temperatures can negatively impact cellular processes during anaerobic treatment, rendering substrates less accessible to microscopic organisms. To address this challenge associated with lower temperatures, the study introduces an innovative biogas recirculation strategy. The primary objectives of this study are to assess the viability of anaerobic treatment for food waste at psychrophilic temperatures and to investigate the effectiveness of reintroduction of the produced biogas to the anaerobic system in enhancing biomethane generation and stability of the system. Batch experiments were conducted on food waste in various assessments, both with and without biogas recirculation. The outcomes revealed a methane concentration ranging from 68% to 93% when biogas recirculation was employed, whereas without this technique, methane concentration varied between 10% and 45%. Moreover, with biogas recirculation, the reduction in volatile solids reached a maximum of 92%, and there was an 82% decrease in chemical oxygen demand. In conclusion, the utilization of the recirculation of biogas at the psychrophilic temperature range enhanced biomethane production and reduction of volatile solids and chemical oxygen demand. This study underscores the potential of employing anaerobic treatment with reintroduction of produced biogas into the system in cold regions as an economically viable and sustainable choice for treating food waste with nominal energy consumption. Full article
Show Figures

Figure 1

7 pages, 768 KiB  
Proceeding Paper
Pseudogymnoascus destructans as the Agent of White-Nose Syndrome (WNS) in Bat Populations
by Andreia Garcês and Isabel Pires
Biol. Life Sci. Forum 2024, 31(1), 20; https://doi.org/10.3390/ECM2023-16696 - 9 Jan 2024
Cited by 2 | Viewed by 2550
Abstract
Pseudogymnoascus destructans is a psychrophilic fungus that causes white-nose syndrome (WNS), an emerging disease in North America. This fungus has caused unprecedented population declines. It has also been described in Europe and Asia, where it has not caused significant mortality. The first evidence [...] Read more.
Pseudogymnoascus destructans is a psychrophilic fungus that causes white-nose syndrome (WNS), an emerging disease in North America. This fungus has caused unprecedented population declines. It has also been described in Europe and Asia, where it has not caused significant mortality. The first evidence of WNS in North America came from a photograph of a hibernating bat taken during the winter of 2005–2006 in a cave near Albany, New York. P. destructans develops when the body temperature decreases during winter hibernation. This fungus thrives in humid and cold conditions characteristic of caves. Infected bats can develop visible white fungal growth on the nose, ears, and wings, and awaken more frequently from torpor. It leads to physiologic changes that result in weight loss, dehydration, electrolyte imbalances, and the death of bats. The fungi can persist in the environments of underground bat hibernation sites and are believed to spread primarily by the natural movements of infected bats. Also, there is a strong possibility that it may also be transmitted by humans inadvertently carrying the fungus from cave to cave on their clothing and gear. WNS has a big impact on bat populations with high levels of mortality, particularly endangered species. Some populations will take many years to recover. The decline of bats also has an impact on the spread of diseases, since many species of bat feed on insect carriers of several pathogens. Full article
(This article belongs to the Proceedings of The 2nd International Electronic Conference on Microbiology)
Show Figures

Figure 1

11 pages, 1034 KiB  
Article
Occupational Exposure to Biological Agents in a Typical Restaurant Setting: Is a Photocatalytic Air Purifier Helpful?
by Matteo Ratti, Daniele Ceriotti, Rabia Bibi, Andrea Conti and Massimiliano Panella
Safety 2023, 9(4), 81; https://doi.org/10.3390/safety9040081 - 21 Nov 2023
Cited by 2 | Viewed by 2304
Abstract
According to many national legislations, biological agents represent an occupational hazard that must be managed in order to ensure safety at workplace. Bioaerosols have been associated to many pathological conditions but, despite many efforts, precise threshold limit values (TLV) are still undefined. We [...] Read more.
According to many national legislations, biological agents represent an occupational hazard that must be managed in order to ensure safety at workplace. Bioaerosols have been associated to many pathological conditions but, despite many efforts, precise threshold limit values (TLV) are still undefined. We planned and conducted an environmental study concerning a typical restaurant that aimed to evaluate: (1) the occupational exposure to bacterial and fungal bioaerosol; (2) the efficacy of a photocatalytic air purifier device in mitigating such exposure. This observational study evaluated two dining rooms (Area 1 and Area 2) of a restaurant which can be considered typical during two consecutive weeks. Based on a national protocol, we monitored total bacterial and mycotic loads searching for two typologies of bacteria, psychrophilic bacteria (environmental contamination) along with mesophilic bacteria (human or animal origin source), and two types of fungi, mold and yeast. Baseline total bacterial load was 346.8 CFU/m3 for Area 1 and 412.9 CFU/m3 for Area 2. When the sanitizing device was operative, the total bacterial load decreased to 202.7 CFU/m3 (−41.50%—p value: <0.01) for Area 1 and to 342.2 CFU/m3 (17.10%—p value: 0.06) for Area 2. Considering the fungal load, the mean baseline value was 189.7 CFU/m3 for Area 1 and 141.1 CFU/m3 for Area 2. When the device was kept on, the total fungal load was 108.0 CFU/m3 (43.10%—p value: 0.055) for Area 1 and 205.0 CFU/m3 (+45.30%—p value: 0.268) for Area 2. Our findings supported the conclusion that, concerning the occupational risk derived from biological agents, a typical restaurant should be considered relatively safe. In order to mitigate or limit any possible increase of such risk, a photocatalytic device may be helpful, but not against the pollution caused by mold or yeasts. Our research also reaffirmed the need of further research assessing the kind of relationship between diseases and exposure levels, before considering the need of setting precise threshold limit values. Full article
Show Figures

Figure 1

22 pages, 2349 KiB  
Review
Biogas Production in AnMBRs via Treatment of Municipal and Domestic Wastewater: Opportunities and Fouling Mitigation Strategies
by Wirginia Tomczak, Marek Gryta, Ireneusz Grubecki and Justyna Miłek
Appl. Sci. 2023, 13(11), 6466; https://doi.org/10.3390/app13116466 - 25 May 2023
Cited by 8 | Viewed by 2258
Abstract
In recent years, significant progress has been achieved in developing the potential of anaerobic membrane bioreactors (AnMBRs). The present paper presents a comprehensive review of studies focused on biogas production via the treatment of municipal and domestic wastewater with the use of such [...] Read more.
In recent years, significant progress has been achieved in developing the potential of anaerobic membrane bioreactors (AnMBRs). The present paper presents a comprehensive review of studies focused on biogas production via the treatment of municipal and domestic wastewater with the use of such technology. The main aim of the current work was to evaluate the impact of operating parameters on the biogas production yield. Moreover, the possibilities of applying various fouling mitigation strategies have been discussed in detail. Analyses have been performed and reported in the literature, which were conducted with the use of submerged and external AnMBRs equipped with both polymeric and ceramic membranes. It has been shown that, so far, the impact of the hydraulic retention time (HRT) on biogas yield is ambiguous. This finding indicates that future studies on this issue are required. In addition, it was demonstrated that temperature has a positive impact on process performance. However, as presented in the literature, investigations have been carried out mainly under psychrophilic and mesophilic conditions. Hence, performing further experimental studies at temperatures above 40 °C is highly recommended. Moreover, it has been shown that in order to restore the initial permeate flux, a combination of several membrane cleaning methods is often required. The findings presented in the current study may be particularly important for the determination of operating conditions and suitable fouling mitigation strategies for laboratory-scale and pilot-scale AnMBRs used for biogas production via the treatment of municipal and domestic conditions. Full article
(This article belongs to the Special Issue Production, Treatment, Utilization and Future Opportunities of Biogas)
Show Figures

Figure 1

16 pages, 948 KiB  
Article
The Effect of Cold Plasma on Selected Parameters of Bovine Colostrum
by Elżbieta Bogusławska-Wąs, Alicja Dłubała, Wojciech Sawicki, Małgorzata Ożgo and Adam Lepczyński
Appl. Sci. 2023, 13(9), 5490; https://doi.org/10.3390/app13095490 - 28 Apr 2023
Cited by 3 | Viewed by 2725
Abstract
The main problem in processing bovine colostrum is preserving as many beneficial compounds as possible, most of which have low thermal stability. The present study evaluates the possibility of using cold plasma (CP) as a decontamination technology and its effect on selected biologically [...] Read more.
The main problem in processing bovine colostrum is preserving as many beneficial compounds as possible, most of which have low thermal stability. The present study evaluates the possibility of using cold plasma (CP) as a decontamination technology and its effect on selected biologically active fractions of freeze-dried bovine colostrum. The plasma process was carried out in air, nitrogen, and oxygen environments. The results revealed that the sterilization process using CP caused slight changes in the colour of the samples expressed by the attributes ΔC, ΔL, Δh and ΔE. The decontamination effect depended on the gas used and the type of microorganism. The highest decontamination effects were gained under oxygen conditions, where reductions were obtained for total psychrophilic bacteria (THPC) by log 1.24, mesophilic bacteria (THMC) by log 1.02, Enterobacteriaceae by log 1.16, E. coli by log 0.96, yeast (TYMC) by log 0.92. A significantly lower decontaminating effect was obtained for Gram-positive bacteria and sporophytic forms. Additionally, the application of CP, regardless of the gas used, affected the modification of protein structure and reduction of immunoglobulin concentration. as proven by proteomics analyses (1-DE, 2-DE, MALDI–TOF MS). The same applied to β-lactoglobulin in air and oxygen and BSA in nitrogen and air. Full article
Show Figures

Figure 1

Back to TopTop