Advanced Optimization of Bioprocess Parameters for Exopolysaccharides Synthesis in Extremophiles
Abstract
:1. Introduction
2. The Effect of Temperature on EPS Production in Extremophiles
2.1. EPS Production at Low Temperatures
2.1.1. Enhanced EPS Production Under Cold Stress
2.1.2. Structural and Functional Adaptations
2.1.3. Industrial Implications of Cold-Derived EPSs
2.2. EPS Production at High Temperatures
2.2.1. Optimal Temperature for EPS Synthesis
2.2.2. Thermal Stability of EPSs
2.2.3. Metabolic Efficiency and Cost-Effectiveness
2.3. Comparative Insights and Ecological Relevance
2.4. Industrial and Biotechnological Potential
3. The Effect of pH on EPS Production in Extremophiles
3.1. pH Sensitivity and Optimal Ranges for EPS Production
3.2. Mechanisms Influencing EPS Production Under Different pH Conditions
4. The Effect of Carbon Sources on EPS Production in Extremophiles
4.1. Effect on EPS Yield
4.2. Influence on Structural Properties
4.3. Economic and Industrial Relevance
5. The Effect of Nitrogen Sources on EPS Production in Extremophiles
5.1. Nitrogen Availability and Metabolic Flux
5.2. Structural and Functional Implications of Nitrogen Sources
6. The Effect of C/N Ratio on EPS Production in Extremophiles
6.1. Influence of C/N Ratio on EPS Yield
6.2. Impact on EPS Composition and Functional Properties
6.3. Practical Applications and Industrial Relevance
7. Oxygen Transfer and Hydrodynamics in EPS Production by Extremophiles
7.1. Factors Influencing Oxygen Transfer in Extremophiles
7.2. Oxygen Transfer in Saline and High-Viscosity Media
7.3. Measurement and Optimization of kLa
7.4. Industrial Implications
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohd Nadzir, M.; Nurhayati, R.W.; Idris, F.N.; Nguyen, M.H. Biomedical applications of bacterial exopolysaccharides: A review. Polymers 2021, 13, 530. [Google Scholar] [CrossRef] [PubMed]
- Netrusov, A.I.; Liyaskina, E.V.; Kurgaeva, I.V.; Liyaskina, A.U.; Yang, G.; Revin, V.V. Exopolysaccharides producing Bacteria: A review. Microorganisms 2023, 11, 1541. [Google Scholar] [CrossRef] [PubMed]
- Siddharth, T.; Sridhar, P.; Vinila, V.; Tyagi, R. Environmental applications of microbial extracellular polymeric substance (EPS): A review. J. Environ. Manag. 2021, 287, 112307. [Google Scholar] [CrossRef]
- Lee, H.S.; Park, S.H.; Lee, J.H.; Lee, H.K. Effect of aeration rates on production of extracellular polysaccharide, EPS-R, by marine bacterium Hahella chejuensis. Biotechnol. Bioprocess Eng. 2001, 6, 359–362. [Google Scholar] [CrossRef]
- Moscovici, M.; Ionescu, C.; Oniscu, C.; Fotea, O.; Protopopescu, P.; Hanganu, L.D. Improved exopolysaccharide production in fed-batch fermentation of Aureobasidium pullulans, with increased impeller speed. Biotechnol. Lett. 1996, 18, 787–790. [Google Scholar] [CrossRef]
- Rau, U.; Gura, E.; Olszewski, E.; Wagner, F. Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. J. Ind. Microbiol. 1992, 9, 19–25. [Google Scholar] [CrossRef]
- Yang, F.-C.; Liau, C.-B. The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures. Process Biochem. 1998, 33, 547–553. [Google Scholar] [CrossRef]
- Sutherland, I. Microbial Exopolysaccharide Synthesis; ACS Publications: Washington, DC, USA, 1977. [Google Scholar]
- Mouro, C.; Gomes, A.P.; Gouveia, I.C. Microbial exopolysaccharides: Structure, diversity, applications, and future frontiers in sustainable functional materials. Polysaccharides 2024, 5, 241–287. [Google Scholar] [CrossRef]
- Kiran, N.S.; Yashaswini, C.; Singh, S.; Prajapati, B.G. Revisiting microbial exopolysaccharides: A biocompatible and sustainable polymeric material for multifaceted biomedical applications. 3 Biotech 2024, 14, 95. [Google Scholar] [CrossRef]
- López-Ortega, M.A.; Chavarría-Hernández, N.; del Rocío López-Cuellar, M.; Rodríguez-Hernández, A.I. A review of extracellular polysaccharides from extreme niches: An emerging natural source for the biotechnology. From the adverse to diverse! Int. J. Biol. Macromol. 2021, 177, 559–577. [Google Scholar] [CrossRef]
- Poli, A.; Anzelmo, G.; Nicolaus, B. Bacterial exopolysaccharides from extreme marine habitats: Production, characterization and biological activities. Mar. Drugs 2010, 8, 1779–1802. [Google Scholar] [CrossRef] [PubMed]
- Roca, C.; Alves, V.D.; Freitas, F.; Reis, M.A. Exopolysaccharides enriched in rare sugars: Bacterial sources, production, and applications. Front. Microbiol. 2015, 6, 288. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.-T.; Pham, T.-T.; Nguyen, P.-T.; Le-Buanec, H.; Rabetafika, H.N.; Razafindralambo, H.L. Advances in Microbial Exopolysaccharides: Present and Future Applications. Biomolecules 2024, 14, 1162. [Google Scholar] [CrossRef]
- Marx, J.G.; Carpenter, S.D.; Deming, J.W. Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can. J. Microbiol. 2009, 55, 63–72. [Google Scholar] [CrossRef]
- Nichols, C.M.; Bowman, J.P.; Guezennec, J. Effects of incubation temperature on growth and production of exopolysaccharides by an Antarctic sea ice bacterium grown in batch culture. Appl. Environ. Microbiol. 2005, 71, 3519–3523. [Google Scholar] [CrossRef] [PubMed]
- Ali, P.; Shah, A.A.; Hasan, F.; Hertkorn, N.; Gonsior, M.; Sajjad, W.; Chen, F. A glacier bacterium produces high yield of cryoprotective exopolysaccharide. Front. Microbiol. 2020, 10, 3096. [Google Scholar] [CrossRef]
- Zhang, M.; Hong, M.; Wang, Z.; Jiao, X.; Wu, C. Temperature stress improved exopolysaccharide yield from Tetragenococcus halophilus: Structural differences and underlying mechanisms revealed by transcriptomic analysis. Bioresour. Technol. 2023, 390, 129863. [Google Scholar] [CrossRef]
- Mukti, I.J.; Sardari, R.R.; Kristjansdottir, T.; Hreggvidsson, G.O.; Karlsson, E.N. Medium development and production of carotenoids and exopolysaccharides by the extremophile Rhodothermus marinus DSM16675 in glucose-based defined media. Microb. Cell Factories 2022, 21, 220. [Google Scholar] [CrossRef]
- Yasar Yildiz, S.; Anzelmo, G.; Ozer, T.; Radchenkova, N.; Genç, S.; Di Donato, P.; Nicolaus, B.; Toksoy Oner, E.; Kambourova, M. Brevibacillus themoruber: A promising microbial cell factory for exopolysaccharide production. J. Appl. Microbiol. 2014, 116, 314–324. [Google Scholar] [CrossRef]
- Panosyan, H.; Di Donato, P.; Poli, A.; Nicolaus, B. Production and characterization of exopolysaccharides by Geobacillus thermodenitrificans ArzA-6 and Geobacillus toebii ArzA-8 strains isolated from an Armenian geothermal spring. Extremophiles 2018, 22, 725–737. [Google Scholar] [CrossRef]
- Tohme, S.; Hacıosmanoğlu, G.G.; Eroğlu, M.S.; Kasavi, C.; Genç, S.; Can, Z.S.; Oner, E.T. Halomonas smyrnensis as a cell factory for co-production of PHB and levan. Int. J. Biol. Macromol. 2018, 118, 1238–1246. [Google Scholar] [CrossRef] [PubMed]
- Kambourova, M.; Mandeva, R.; Dimova, D.; Poli, A.; Nicolaus, B.; Tommonaro, G. Production and characterization of a microbial glucan, synthesized by Geobacillus tepidamans V264 isolated from Bulgarian hot spring. Carbohydr. Polym. 2009, 77, 338–343. [Google Scholar] [CrossRef]
- Liu, S.-B.; Qiao, L.-P.; He, H.-L.; Zhang, Q.; Chen, X.-L.; Zhou, W.-Z.; Zhou, B.-C.; Zhang, Y.-Z. Optimization of fermentation conditions and rheological properties of exopolysaccharide produced by deep-sea bacterium Zunongwangia profunda SM-A87. PLoS ONE 2011, 6, e26825. [Google Scholar] [CrossRef]
- Radchenkova, N.; Vassilev, S.; Panchev, I.; Anzelmo, G.; Tomova, I.; Nicolaus, B.; Kuncheva, M.; Petrov, K.; Kambourova, M. Production and properties of two novel exopolysaccharides synthesized by a thermophilic bacterium Aeribacillus pallidus 418. Appl. Biochem. Biotechnol. 2013, 171, 31–43. [Google Scholar] [CrossRef]
- Baldanta, S.; Arnal, R.; Blanco-Rivero, A.; Guevara, G.; Navarro Llorens, J.M. First characterization of cultivable extremophile Chroococcidiopsis isolates from a solar panel. Front. Microbiol. 2023, 14, 982422. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Dey, P. Bacterial exopolysaccharides as emerging bioactive macromolecules: From fundamentals to applications. Res. Microbiol. 2023, 174, 104024. [Google Scholar] [CrossRef]
- Dhaulaniya, A.S.; Balan, B.; Kumar, M.; Agrawal, P.K.; Singh, D.K. Cold survival strategies for bacteria, recent advancement and potential industrial applications. Arch. Microbiol. 2019, 201, 1–16. [Google Scholar] [CrossRef]
- Babiak, W.; Krzemińska, I. Extracellular polymeric substances (EPS) as microalgal bioproducts: A review of factors affecting EPS synthesis and application in flocculation processes. Energies 2021, 14, 4007. [Google Scholar] [CrossRef]
- Purwar, S.; Srivastava, S. Adaptations of Psychrophilic Microorganism to Low-Temperature Environments. Appl. Microbiol. Theory Technol. 2024, 5, 168–188. [Google Scholar] [CrossRef]
- Caccamo, M.T.; Zammuto, V.; Gugliandolo, C.; Madeleine-Perdrillat, C.; Spanò, A.; Magazù, S. Thermal restraint of a bacterial exopolysaccharide of shallow vent origin. Int. J. Biol. Macromol. 2018, 114, 649–655. [Google Scholar] [CrossRef]
- Krembs, C.; Eicken, H.; Junge, K.; Deming, J. High concentrations of exopolymeric substances in Arctic winter sea ice: Implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep. Sea Res. Part I 2002, 49, 2163–2181. [Google Scholar] [CrossRef]
- Krembs, C.; Eicken, H.; Deming, J.W. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proc. Natl. Acad. Sci. USA 2011, 108, 3653–3658. [Google Scholar] [CrossRef]
- Tsuji, M.; Fujiu, S.; Xiao, N.; Hanada, Y.; Kudoh, S.; Kondo, H.; Tsuda, S.; Hoshino, T. Cold adaptation of fungi obtained from soil and lake sediment in the Skarvsnes ice-free area, Antarctica. FEMS Microbiol. Lett. 2013, 346, 121–130. [Google Scholar] [CrossRef]
- Phadtare, S. Recent developments in bacterial cold-shock response. Curr. Issues Mol. Biol. 2004, 6, 125–136. [Google Scholar] [CrossRef]
- Donot, F.; Fontana, A.; Baccou, J.; Schorr-Galindo, S. Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydr. Polym. 2012, 87, 951–962. [Google Scholar] [CrossRef]
- Casillo, A.; D’Angelo, C.; Parrilli, E.; Tutino, M.L.; Corsaro, M.M. Membrane and extracellular matrix glycopolymers of Colwellia psychrerythraea 34H: Structural changes at different growth temperatures. Front. Microbiol. 2022, 13, 820714. [Google Scholar] [CrossRef] [PubMed]
- Carrión, O.; Delgado, L.; Mercade, E. New emulsifying and cryoprotective exopolysaccharide from Antarctic Pseudomonas sp. ID1. Carbohydr. Polym. 2015, 117, 1028–1034. [Google Scholar] [CrossRef]
- Arserim Ucar, D.K.; Konuk Takma, D.; Korel, F. Exopolysaccharides in food processing industrials. In Microbial Exopolysaccharides as Novel and Significant Biomaterial; Nadda, A.K., Sajna, K.V., Sharma, S., Eds.; Springer: Cham, Switzerland, 2021; pp. 201–234. [Google Scholar] [CrossRef]
- Kong, Q.; Wang, D.; Cong, B.; Liu, S.; Zhang, P. Structure characterization and cryoprotective activity of an exopolysaccharide from Pseudoalteromonas sp. LP6-12-2. Food Biosci. 2024, 57, 103557. [Google Scholar] [CrossRef]
- de Lemos, E.A.; da Silva, M.B.F.; Coelho, F.S.; Jurelevicius, D.; Seldin, L. The role and potential biotechnological applications of biosurfactants and bioemulsifiers produced by psychrophilic/psychrotolerant bacteria. Polar Biol. 2023, 46, 397–407. [Google Scholar] [CrossRef]
- Fraser, A.; Wongpan, P.; Langhorne, P.; Klekociuk, A.; Kusahara, K.; Lannuzel, D.; Massom, R.; Meiners, K.; Swadling, K.; Atwater, D. Antarctic landfast sea ice: A review of its physics, biogeochemistry and ecology. Rev. Geophys. 2023, 61, e2022RG000770. [Google Scholar] [CrossRef]
- Michel, C.; Bény, C.; Delorme, F.; Poirier, L.; Spolaore, P.; Morin, D.; d’Hugues, P. New protocol for the rapid quantification of exopolysaccharides in continuous culture systems of acidophilic bioleaching bacteria. Appl. Microbiol. Biotechnol. 2009, 82, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Nicolaus, B.; Kambourova, M.; Oner, E.T. Exopolysaccharides from extremophiles: From fundamentals to biotechnology. Environ. Technol. 2010, 31, 1145–1158. [Google Scholar] [CrossRef] [PubMed]
- Yaşar Yildiz, S. Exploring the hot springs of golan: A source of thermophilic bacteria and enzymes with industrial promise. Curr. Microbiol. 2024, 81, 101. [Google Scholar] [CrossRef]
- Arbab, S.; Ullah, H.; Khan, M.I.; Khattak, M.N.; Zhang, J.; Li, K.; Hassan, I.U. Diversity and distribution of thermophilic microorganisms and their applications in biotechnology. J. Basic Microbiol. 2022, 62, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Krembs, C.; Deming, J.W. The role of exopolymers in microbial adaptation to sea ice In Psychrophiles: From Biodiversity to Biotechnology; Margesin, R., Schinner, F., Marx, J.C., Gerday, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 247–264. [Google Scholar] [CrossRef]
- Kambourova, M.; Radchenkova, N.; Tomova, I.; Bojadjieva, I. Thermophiles as a promising source of exopolysaccharides with interesting properties. In Biotechnology of Extremophiles: Advances and Challenges; Rampelotto, P., Ed.; Springer: Cham, Switzerland, 2016; pp. 117–139. [Google Scholar] [CrossRef]
- Wu, J.; Ding, Z.-Y.; Zhang, K.-C. Improvement of exopolysaccharide production by macro-fungus Auricularia auricula in submerged culture. Enzym. Microb. Technol. 2006, 39, 743–749. [Google Scholar] [CrossRef]
- Oleksy-Sobczak, M.; Klewicka, E. Optimization of media composition to maximize the yield of exopolysaccharides production by Lactobacillus rhamnosus strains. Probiotics Antimicrob. Proteins 2020, 12, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Arayes, M.A.; Mabrouk, M.E.; Sabry, S.A.; Abdella, B. Exopolysaccharide production from Alkalibacillus sp. w3: Statistical optimization and biological activity. Biologia 2023, 78, 229–240. [Google Scholar] [CrossRef]
- Rinker, K.D.; Kelly, R.M. Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima. Biotechnol. Bioeng. 2000, 69, 537–547. [Google Scholar] [CrossRef]
- Yaşar Yildiz, S.; Nikerel, E.; Toksoy Öner, E. Genome-scale metabolic model of a microbial cell factory (Brevibacillus thermoruber 423) with multi-industry potentials for exopolysaccharide production. OMICS J. Integr. Biol. 2019, 23, 237–246. [Google Scholar] [CrossRef]
- Finore, I.; Vigneron, A.; Vincent, W.F.; Leone, L.; Di Donato, P.; Schiano Moriello, A.; Nicolaus, B.; Poli, A. Novel psychrophiles and exopolymers from permafrost thaw lake sediments. Microorganisms 2020, 8, 1282. [Google Scholar] [CrossRef]
- Wang, J.; Goh, K.M.; Salem, D.R.; Sani, R.K. Genome analysis of a thermophilic exopolysaccharide-producing bacterium-Geobacillus sp. WSUCF1. Sci. Rep. 2019, 9, 1608. [Google Scholar] [CrossRef] [PubMed]
- Dudman, W. Immune diffusion analysis of the extracellular soluble antigens of two strains of Rhizobium meliloti. J. Bacteriol. 1964, 88, 782–794. [Google Scholar] [CrossRef]
- Torres, C.A.; Marques, R.; Ferreira, A.R.; Antunes, S.; Grandfils, C.; Freitas, F.; Reis, M.A. Impact of glycerol and nitrogen concentration on Enterobacter A47 growth and exopolysaccharide production. Int. J. Biol. Macromol. 2014, 71, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Fialho, A.M.; Moreira, L.M.; Granja, A.T.; Popescu, A.O.; Hoffmann, K.; Sá-Correia, I. Occurrence, production, and applications of gellan: Current state and perspectives. Appl. Microbiol. Biotechnol. 2008, 79, 889–900. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Cabrera-Barjas, G.; Singh, R.N.; Fabi, J.P.; Breig, S.J.M.; Tapia, J.; Sani, R.K.; Banerjee, A. Unveiling a novel exopolysaccharide produced by Pseudomonas alcaligenes Med1 isolated from a Chilean hot spring as biotechnological additive. Sci. Rep. 2024, 14, 25058. [Google Scholar] [CrossRef]
- López-Ortega, M.A.; Escalante-Avilés, M.; Rodríguez-Hernández, A.I.; del Rocio López-Cuellar, M.; Aguirre-Loredo, R.Y.; Martínez-Juárez, V.M.; Pérez-Guevara, F.; Hernández-Valdepeña, M.Á.; Chavarría-Hernández, N. Co-production of polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPSs) by halophilic archaeon Haloferax mucosum. New J. Chem. 2024, 48, 20188–20200. [Google Scholar] [CrossRef]
- Karuppiah, P.; Venkatasamy, V.; Viswaprakash, N.; Ramasamy, T. A statistical approach on optimization of exopolymeric substance production by Halomonas sp. S19 and its emulsification activity. Bioresour. Bioprocess 2015, 2, 48. [Google Scholar] [CrossRef]
- Sellami, M.; Oszako, T.; Miled, N.; Ben Rebah, F. Industrial wastewater as raw material for exopolysaccharide production by Rhizobium leguminosarum. Braz. J. Microbiol. 2015, 46, 407–413. [Google Scholar] [CrossRef]
- Soto, L.R.; Thabet, H.; Maghembe, R.; Gameiro, D.; Van-Thuoc, D.; Dishisha, T.; Hatti-Kaul, R. Metabolic potential of the moderate halophile Yangia sp. ND199 for co-production of polyhydroxyalkanoates and exopolysaccharides. Microbiol. Open 2021, 10, e1160. [Google Scholar] [CrossRef]
- de Siqueira, E.C.; de Andrade Alves, A.; da Costa e Silva, P.E.; de Barros, M.P.S.; Houllou, L.M. Polyhydroxyalkanoates and exopolysaccharides: An alternative for valuation of the co-production of microbial biopolymers. Biotechnol. Prog. 2024, 40, e3412. [Google Scholar] [CrossRef]
- Liu, Y.-S.; Wu, J.-Y.; Ho, K.-P. Characterization of oxygen transfer conditions and their effects on Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. Biochem. Eng. J. 2006, 27, 331–335. [Google Scholar] [CrossRef]
- Garcia-Calvo, E. Fluid dynamics of airlift reactors: Two-phase friction factors. AIChE J. Am. Inst. Chem. Eng. 1992, 38, 1662–1666. [Google Scholar] [CrossRef]
- Kawase, Y.; Halard, B.; Moo-Young, M. Liquid-phase mass transfer coefficients in bioreactors. Biotechnol. Bioeng. 1992, 39, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ochoa, F.; Gomez, E. Theoretical prediction of gas–liquid mass transfer coefficient, specific area and hold-up in sparged stirred tanks. Chem. Eng. Sci. 2004, 59, 2489–2501. [Google Scholar] [CrossRef]
- Garcia-Ochoa, F.; Gomez, E. Prediction of gas-liquid mass transfer coefficient in sparged stirred tank bioreactors. Biotechnol. Bioeng. 2005, 92, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Van’t Riet, K. Review of measuring methods and results in nonviscous gas-liquid mass transfer in stirred vessels. Ind. Eng. Chem. Process Des. Dev. 1979, 18, 357–364. [Google Scholar] [CrossRef]
- Puthli, M.S.; Rathod, V.K.; Pandit, A.B. Gas–liquid mass transfer studies with triple impeller system on a laboratory scale bioreactor. Biochem. Eng. J. 2005, 23, 25–30. [Google Scholar] [CrossRef]
- Vlaev, S.D.; Martinov, M. Shape effects on impeller power characteristic for mixing and gassing power law fluids. In Institution of Chemical Engineers Symposium Series; Hemsphere Publishing Corporation: London, UK, 1999; Volume 146, pp. 253–262. [Google Scholar]
- Vlaev, S.; Rusinova-Videva, S.; Pavlova, K.; Kuncheva, M.; Panchev, I.; Dobreva, S. Submerged culture process for biomass and exopolysaccharide production by Antarctic yeast: Some engineering considerations. Appl. Microbiol. Biotechnol. 2013, 97, 5303–5313. [Google Scholar] [CrossRef]
- Mahler, N.; Tschirren, S.; Pflügl, S.; Herwig, C. Optimized bioreactor setup for scale-up studies of extreme halophilic cultures. Biochem. Eng. J. 2018, 130, 39–46. [Google Scholar] [CrossRef]
- Radchenkova, N.; Boyadzhieva, I.; Hasköylü, M.E.; Atanasova, N.; Yıldız, S.Y.; Kuncheva, M.J.; Panchev, I.; Kisov, H.; Vassilev, S.; Oner, E.T. High bioreactor production and emulsifying activity of an unusual exopolymer by Chromohalobacter canadensis 28. Eng. Life Sci. 2020, 20, 357–367. [Google Scholar] [CrossRef]
- Bandaiphet, C.; Prasertsan, P. Effect of aeration and agitation rates and scale-up on oxygen transfer coefficient, kLa in exopolysaccharide production from Enterobacter cloacae WD7. Carbohydr. Polym. 2006, 66, 216–228. [Google Scholar] [CrossRef]
- Taguchi, H. Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation systems. J. Ferment. Technol. 1966, 44, 881–889. [Google Scholar]
Source of Isolation | Conditions of Testing | EPS Titer (mg/L) | RPS or CPS? | Effect of Changing Factors on EPS | Literature Source |
---|---|---|---|---|---|
Dairy fermentation products | 30 °C, aerobic conditions | 500–1200 mg/L | RPS | Higher sucrose increases yield | [8] |
Soil, extreme environments | Thermophilic conditions (50–60 °C) | 600–900 mg/L | unknown | Temperature shifts optimize EPS | [8] |
Deep-sea, Arctic regions | −8 °C to −14 °C under high salinity | 2500 mg/L | RPS | Salinity and cold stress boost EPS | [15] |
Marine, cold environments | −2 °C and 10 °C, high salinity | 30 times higher at −2 °C | RPS | Cold shock induces high EPS production | [16] |
Glacier environments | Low temperature (15 °C), cryoprotection | 273 mg/L at 15 °C | RPS | Lower temperatures stimulate EPS synthesis | [17] |
Saline environments, fermented foods | Moderate salinity, pH 6–7 | Increased at low temperatures (20 °C) | CPS | Moderate salinity improves yield | [18] |
Geothermal marine sites | Thermophilic (65 °C), marine salts | High sulfate content, stable at 65 °C | RPS | Temperature stress enhances sulfate modification | [19] |
Thermophilic soil environments | 55 °C, optimized aeration | 650 mg/L | unknown | Oxygen limitation promotes higher EPS | [20] |
Geothermal hot springs | 65 °C, controlled fermentation | Maximum at 65 °C | RPS | Controlled thermal conditions maximize yield | [21] |
Hypersaline environments | High salinity, osmotic stress | Yield varies with salt concentration | CPS | High salinity increases viscosity properties | [22] |
Hot springs, extreme geothermal sites | 70 °C, nutrient limitation | 850 mg/L | unknown | Nutrient limitation enhances polymer stability | [23] |
Deep-sea trenches | High-pressure, deep-sea conditions | High yield in deep-sea conditions | RPS | Extreme pressure increases EPS production | [24] |
Extreme-temperature environments | Extreme heat (50–60 °C) | Thermal resistance above 60 °C | unknown | Higher temperature improves polymer resilience | [25] |
Desert regions, UV-resistant habitats | Desiccation, high UV stress | Biofilm-forming EPS, desert adaptation | RPS | UV exposure increases EPS secretion | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radchenkova, N.; Yaşar Yıldız, S. Advanced Optimization of Bioprocess Parameters for Exopolysaccharides Synthesis in Extremophiles. Processes 2025, 13, 822. https://doi.org/10.3390/pr13030822
Radchenkova N, Yaşar Yıldız S. Advanced Optimization of Bioprocess Parameters for Exopolysaccharides Synthesis in Extremophiles. Processes. 2025; 13(3):822. https://doi.org/10.3390/pr13030822
Chicago/Turabian StyleRadchenkova, Nadja, and Songül Yaşar Yıldız. 2025. "Advanced Optimization of Bioprocess Parameters for Exopolysaccharides Synthesis in Extremophiles" Processes 13, no. 3: 822. https://doi.org/10.3390/pr13030822
APA StyleRadchenkova, N., & Yaşar Yıldız, S. (2025). Advanced Optimization of Bioprocess Parameters for Exopolysaccharides Synthesis in Extremophiles. Processes, 13(3), 822. https://doi.org/10.3390/pr13030822