Cell Response to Oxidative Stress in Antarctic Filamentous Fungi
Abstract
:1. Introduction
2. Biodiversity of Filamentous Fungi in Antarctica
3. Growing Temperature Requirements of Antarctic Fungi
4. ROS and Oxidative Stress
4.1. ROS: Origin, Sources, Damages
4.2. The “Beneficial” Role of ROS
5. Oxidative Stress and Antioxidant Defence
5.1. Oxidative Stress and Its Physiological Role
5.2. Antioxidants and Antioxidant Defence
5.2.1. Enzymatic Antioxidants
- The first type encompasses the typical or monofunctional catalases, which consist of four identical subunits. Each subunit contains either heme b or heme d, both of which are prosthetic groups that incorporate iron within their active sites. The molecular weight of each subunit ranges from 55 to 84 kDa. This category of CATs is the most prevalent in the natural world and demonstrates catalytic activity across a broad spectrum of pH levels. The heme group situated in the active site is positioned deep within the tetrameric structure. Monofunctional catalase enzymes operate through a two-step mechanism to facilitate the breakdown of H2O2. Initially, a single molecule of H2O2 is oxidized by the enzyme, resulting in the formation of ferryl porphyrin, referred to as compound I [Reaction 4]. Subsequently, in the second phase, compound I further oxidizes another molecule of H2O2, yielding molecular oxygen and water as products [Reaction 5].
- The second category of enzymes, known as catalase-peroxidases, demonstrates a bifunctional nature, possessing both catalase and peroxidase activities. However, their activity levels are significantly lower, by two to three orders of magnitude, compared to conventional catalases. These enzymes typically exist as dimers or tetramers, with each subunit having an approximate molecular mass of 80 kDa, and they contain heme, which serves as a prosthetic group with iron. Catalase-peroxidases have been identified in a variety of organisms, including bacteria, archaea, fungi, and even more complex eukaryotes. The catalytic mechanism they employ mirrors that of conventional CATs, comprising the same two distinct stages.
- The third category encompasses manganese-containing CATs. In contrast to the previous two categories, these catalases lack heme as a prosthetic group and instead utilize manganese ions at their active sites. Mn-CATs are structured as hexamers, with each subunit exhibiting a molecular mass ranging from 28 to 35 kDa, and they contain two manganese ions within their active center. They operate through a two-step mechanism that is similar to that of heme-containing enzymes [Reactions 6 and 7]. During the first phase, H2O2 acts as the oxidizing agent, while in the subsequent phase, it serves as the reducing agent.
5.2.2. Non-Enzymatic Antioxidants
6. Low Temperature-Induced Oxidative Stress in Antarctic Fungi
7. Cold Stress Response of Antarctic Fungi and Adaptation
7.1. Morphological Modification Caused by Cold Stress
7.2. Physiological Modification Caused by Cold Stress
7.3. Metabolic Adaptation Response
7.4. Cold-Active Enzymes
8. Antioxidant Defence in Antarctic Fungi
8.1. Enzymatic Antioxidant Defense
8.2. Non-Enzymatic Antioxidants
8.3. The Role of Cold Shock Proteins (CSPs)
9. Genetic Basis of Cell Response to Cold Stress
10. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yaakoub, H.; Mina, S.; Calenda, A.; Bouchara, J.P.; Papon, N. Oxidative stress response pathways in fungi. Cell. Mol. Life Sci. 2022, 79, 333. [Google Scholar] [CrossRef]
- Kochkina, G.; Ivanushkina, N.; Ozerskaya, S.; Chigineva, N.; Vasilenko, O.; Firsov, S.; Spirina, E.; Gilichinsky, D. Ancient fungi in Antarctic permafrost environments FEMS Microb. Ecol. 2012, 82, 501–509. [Google Scholar] [CrossRef]
- Gostinčar, C.; Gunde-Cimerman, N. Understanding fungi in glacial and hypersaline environments. Annu. Rev. Microbiol. 2023, 77, 89–109. [Google Scholar] [CrossRef]
- Son, Y.; Min, J.; Shin, Y.; Park, W. Morphological and physiological adaptations of psychrophilic Pseudarthrobacter psychrotolerans YJ56 under temperature stress. Sci. Rep. 2023, 13, 14970. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Gómez, I.; Valdés-Muñoz, G.; Moreno-Perlin, T.; Mouriño-Pérez, R.R.; del Rayo Sánchez-Carbente, M.; Folch-Mallol, J.L.; Pérez-Llano, Y.; Gunde-Cimerman, N.; del C. Sánchez, N.; Batista-García, R.A. Haloadaptative Responses of Aspergillus sydowii to Extreme Water Deprivation: Morphology, Compatible Solutes, and Oxidative Stress at NaCl Saturation. J. Fungi 2020, 6, 316. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.H. Cold adaptation in Arctic and Antarctic fungi. New Phytol. 2001, 151, 341–353. Available online: http://www.jstor.org/stable/1353786 (accessed on 30 April 2025). [CrossRef]
- Branco, S.; Schauster, A.; Liao, H.L.; Ruytinx, J. Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi. New Phytol. 2022, 235, 2158–2175. [Google Scholar] [CrossRef]
- McCord, J.M. The Evolution of Free Radicals and Oxidative Stress. Am. J. Med. 2000, 108, 652–659. [Google Scholar] [CrossRef]
- Duarte, A.W.F.; dos Santos, J.A.; Vianna, M.V.; Vieira, J.M.F.; Mallagutti, V.H.; Inforsato, F.J.; Wentzel, L.C.P.; Lario, L.D.; Rodrigues, A.; Pagnocca, F.C.; et al. Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Crit. Rev. Biotechnol. 2018, 38, 600–619. [Google Scholar] [CrossRef]
- Gessler, N.N.; Averyanov, A.A.; Belozerskaya, T.A. Reactive Oxygen Species in Regulation of Fungal Development. Biochemistry 2007, 72, 1091–1109. [Google Scholar] [CrossRef]
- Abu Bakar, N.; Karsani, S.A.; Alias, S.A. Fungal survival under temperature stress: A proteomic perspective. PeerJ 2020, 15, e10423. [Google Scholar] [CrossRef] [PubMed]
- Bridge, P.D.; Spooner, B.M. Non-lichenized Antarctic fungi: Transient visitors or members of a cryptic ecosystem? Fungal Ecol. 2012, 5, 381–394. [Google Scholar] [CrossRef]
- Bommer, E.; Rousseau, M. Champignons in resultats du voyage du SY Belgica, expedition Antarctique Beige 1897–1899. Rapp. Sci. Botan. 1905, 4, 1–15. [Google Scholar]
- Brown, R.N.R. Antarctic botany: Its present state and future problems. Scottish Geogr. Mag. 1906, 22, 473–484. [Google Scholar] [CrossRef]
- Nikitin, D.A. Ecological Characteristics of Antarctic Fungi. Dokl. Biol. Sci. 2023, 508, 32–54. [Google Scholar] [CrossRef]
- Pugh, G.J.F.; Allosopp, D. Microfungi on Signy Island, South Orkney Islands. Br. Antarct. Surv. Bull. 1982, 57, 55–67. [Google Scholar] [CrossRef]
- Fletcher, L.D.; Kerry, E.J.; Weste, G.M. Microfungi of Mac Robertson and Enderby Lands, Antarctica. Polar. Biol. 1985, 4, 81–88. [Google Scholar] [CrossRef]
- Onofri, S.; Tosi, S. II contributo della micologia alla IV spedizione italiana in Antartide. Micol. Veget. Medit. 1989, 4, 57–62. [Google Scholar]
- Onofri, S.; Tosi, S. Arthrobotrys ferox sp. nov. a springtail-capturing hyphomycete from continental Antarctica. Mycotaxon 1992, 44, 445–451. Available online: http://hdl.handle.net/2067/30394 (accessed on 1 January 1992).
- Rosa, L.; Vaz, A.; Caligiorne, R.; Campolina, S.; Rosa, C. Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv. (Poaceae). Polar Biol. 2009, 32, 161–167. [Google Scholar] [CrossRef]
- Kochkina, G.A.; Ozerskaya, S.M.; Ivanushkina, N.E.; Chigineva, N.I.; Vasilenko, O.V.; Spirina, E.V.; Gilichinskii, D.A. Fungal diversity in the Antarctic active layer. Microbiology 2014, 83, 94–101. [Google Scholar] [CrossRef]
- Wynn-Williams, D.D. Aerobiology and colonization in Antarctica—The BIOTAS Programme. Grana 1991, 30, 380–393. [Google Scholar] [CrossRef]
- Möller, C.; Dreyfuss, M.M. Microfungi from antarctic lichens, mosses and vascular plants. Mycologia 1996, 88, 922–933. [Google Scholar] [CrossRef]
- Zucconi, L.; Pagano, S.; Fenice, M.; Selbmann, L.; Tosi, S.; Onofri, S. Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar Biol. 1996, 16, 53–61. [Google Scholar] [CrossRef]
- Ruisi, S.; Barreca, D.; Selbmann, L.; Zucconi, L.; Onofri, S. Fungi in Antarctica. Rev. Environ. Sci. Biotechnol. 2007, 6, 127–141. [Google Scholar] [CrossRef]
- Selbmann, L.; Onofri, S.; Coleine, C.; Buzzini, P.; Canini, F.; Zucconi, L. Effect of environmental parameters on biodiversity of the fungal component in lithic Antarctic communities. Extremophiles 2017, 21, 1069–1080. [Google Scholar] [CrossRef]
- Gomes, E.C.Q.; Figueredo, H.M.; de Oliveira, F.S.; Schaefer, C.E.G.R.; Michel, R.F.; Rosa, C.A.; Rosa, L.H. Fungi present in soils of Antarctica. In Fungi of Antarctica; Rosa, L.H., Ed.; Springer: Cham, Switzerland, 2019; pp. 43–67. ISBN 978-3-030-18366-0. [Google Scholar]
- Nikitin, D.A.; Marfenina, O.E.; Kudinova, A.G.; Lysak, L.V.; Mergelov, N.S.; Dolgikh, A.V.; Lupachev, A.V. Microbial Biomass and Biological Activity of Soils and Soil-Like Bodies in Coastal Oases of Antarctica. Eur. Soil Sci. 2017, 50, 1086–1097. [Google Scholar] [CrossRef]
- Connell, L.B.; Redman, R.; Craig, S.D.; Scorzetti, G.; Iszard, M.; Rodriguez, R. Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb. Ecol. 2008, 56, 448–459. [Google Scholar] [CrossRef]
- Paterson, R.A. The occurrence and distribution of some aquatic phycomycetes on Ross Island and the dry valleys of Victoria Land, Antarctica. Mycologia 1973, 65, 373–387. [Google Scholar] [CrossRef]
- Lawley, B.; Ripley, S.; Bridge, P.; Convey, P. Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl. Environ. Microbiol. 2004, 70, 5963–5972. [Google Scholar] [CrossRef]
- dos Santos, J.A.; Meyer, E.; Sette, L.D. Fungal Community in Antarctic Soil Along the Retreating Collins Glacier (Fildes Peninsula, King George Island). Microorganisms 2020, 8, 1145. [Google Scholar] [CrossRef] [PubMed]
- Frisvad, J.C. Fungi in cold ecosystems. In Psychrophiles: From Biodiversity to Biotechnology; Margesin, R., Schinner, F., Marx, J.C., Gerday, C., Eds.; Springer: Berlin, Germany, 2008; pp. 137–156. [Google Scholar]
- Hassan, N.; Rafiq, M.; Hayat, M.; Shah, A.A.; Hasan, F. Psychrophilic and psychrotrophic fungi: A comprehensive review. Rev. Environ. Sci. Bio/Tech. 2016, 15, 147–172. [Google Scholar] [CrossRef]
- Onofri, S.; Selbmann, L.; de Hoog, G.S.; Grube, M.; Barreca, D.; Ruisi, S.; Zucconi, L. Evolution and adaptation of fungi at boundaries of life. Adv. Space Res. 2007, 40, 1657–1664. [Google Scholar] [CrossRef]
- Marfenina, O.E.; Nikitin, D.A.; Ivanova, A.E. The Structure of Fungal Biomass and Diversity of Cultivated Micromycetes in Antarctic Soils (Progress and Russkaya Stations). Eurasian Soil Sci. 2016, 49, 934–941. [Google Scholar] [CrossRef]
- Tsuji, M. Survey on Fungi in Antarctica and High Arctic Regions, and Their Impact on Climate Change. Climate 2023, 11, 195. [Google Scholar] [CrossRef]
- Gocheva, Y.G.; Krumova, E.; Slokoska, L.S.; Gesheva, V.; Angelova, M. Isolation of filamentous fungi from Antarctica. Compt. Rend. Acad bulg. Sci. 2005, 58, 403–408. [Google Scholar]
- Kochkina, G.; Ivanushkina, N.; Lupachev, A.; Starodumov, I.; Vasilenko, O.; Ozerskaya, S. Diversity of mycelial fungi in natural and human-affected Antarctic soils. Polar Biol. 2019, 42. [Google Scholar] [CrossRef]
- Abrashev, R.; Krumova, E.; Petrova, P.; Eneva, R.; Kostadinova, N.; Miteva-Staleva, J.; Engibarov, S.; Stoyancheva, G.; Gocheva, Y.; Kolyovska, V.; et al. Distribution of a novel enzyme of sialidase family among native filamentous fungi. Fungal Biol. 2021, 125, 412–425. [Google Scholar] [CrossRef]
- Devoto, B.T.; Toscanini, M.A.; Hermida Alava, K.; Etchecopaz, A.N.; Pola, S.J.; Martorell, M.M.; Ansaldo, M.; Negrete, J.; Ruberto, L.; Mac Cormack, W.; et al. Exploring fungal diversity in Antarctic wildlife: Isolation and molecular identification of culturable fungi from penguins and pinnipeds. N. Z. Vet. J. 2022, 70, 263–272. [Google Scholar] [CrossRef]
- Zucconi, L.; Selbmann, L.; Buzzini, P.; Turchetti, B.; Guglielmin, M.; Frisvad, J.C.; Onofri, S. Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol. 2012, 35, 749–757. [Google Scholar] [CrossRef]
- Tosi, S.; Kostadinova, N.; Krumova, E.; Pashova, S.; Dishliiska, V.; Spassova, B.; Vassilev, S.; Angelova, M. Antioxidant enzyme activity of filamentous fungi isolated from Livingston Island, Maritime Antarctica. Polar Biol. 2010, 33, 1227–1237. [Google Scholar] [CrossRef]
- de Menezes, G.C.A.; Godinho, V.M.; Porto, B.A.; Goncalves, V.N.; Rosa, L.H. Antarctomyces pellizariae sp. nov., a new, endemic, blue, snow resident psychrophilic ascomycete fungus from Antarctica. Extremophiles 2017, 21, 259–269. [Google Scholar] [CrossRef]
- Gonçalves, V.N.; Vaz, A.B.; Rosa, C.A.; Rosa, L.H. Diversity and distribution of fungal communities in lakes of Antarctica, FEMS Microb. Ecol. 2012, 82, 459–471. [Google Scholar] [CrossRef]
- Fenice, M.; Selbmann, L.; Zucconi, L.; Onofri, S. Production of extracellular enzymes by Antarctic fungal strains. Polar Biol. 1997, 17, 275–280. [Google Scholar] [CrossRef]
- Kostadinova, N.; Krumova, E.; Tosi, S.; Pashova, S.; Angelova, M. Isolation and identification of filamentous fungi from Livingston Island, Antarctica. Biotechnol. Biotechnol. Equip. 2009, 23, 10. [Google Scholar] [CrossRef]
- Fenice, M. The psychrotolerant antarctic fungus Lecanicillium muscarium CCFEE 5003: A powerful producer of cold-tolerant chitinolytic enzymes. Mollecules 2016, 21, 447. [Google Scholar] [CrossRef]
- Figueredo, H.M.; Gonçalves, V.N.; Godinho, V.M.; Lopes, D.V.; Oliveira, F.S.; Rosa, L.H. Diversity and ecology of cultivable fungi isolated from the thermal soil gradients in Deception Island, Antarctica. Extremophiles 2020, 24, 219–225. [Google Scholar] [CrossRef]
- Tsuji, M. Cold-stress responses in the Antarctic basidiomycetous yeast Mrakia blollopis. R. Soc. Open Sci. 2016, 3, 160106. [Google Scholar] [CrossRef]
- Krumova, E.; Abrashev, R.; Dishliyska, V.; Stoyancheva, G.; Kostadinova, N.; Miteva-Staleva, J.; Spasova, B.; Angelova, M. Cold-active catalase from the psychrotolerant fungus Penicillium griseofulvum. J. Basic Microbiol. 2021, 61, 782–794. [Google Scholar] [CrossRef]
- Miteva-Staleva, J.G.; Krumova, E.T.; Vassilev, S.V.; Angelova, M.B. Cold-stress response during the stationary-growth phase of Antarctic and temperate-climate Penicillium strains. Microbiology 2017, 163, 1042–1051. [Google Scholar] [CrossRef]
- Koleva, Z.; Abrashev, R.; Angelova, M.; Stoyancheva, G.; Spassova, B.; Yovchevska, L.; Dishliyska, V.; Miteva-Staleva, J.; Krumova, E. A novel extracellular catalase produced by the Antarctic filamentous fungus Penicillium rubens III11-2. Fermentation 2024, 10, 58. [Google Scholar] [CrossRef]
- Gonçalves, V.N.; Campos, L.S.; Melo, I.S.; Pellizari, V.H.; Rosa, C.A.; Rosa, L.H. Penicillium solitum: A mesophilic, psychrotolerant fungus present in marine sediments from Antarctica. Polar Biol. 2013, 36, 1823–1831. [Google Scholar] [CrossRef]
- Gomes, E.C.Q.; Gonçalves, V.N.; da Costa, M.C.; de Freitas, G.J.C.; Santos, D.A.; Johann, S.; Oliveira, J.B.S.; da Paixão, T.A.; Convey, P.; Rosa, L.H. Pathogenicity of psychrotolerant strains of Antarctic Pseudogmynoascus fungi reveals potential opportunistic profiles. Microbe 2024, 5, 100186. [Google Scholar] [CrossRef]
- Singh, S.M.; Puja, G.; Bhat, D.J. Psychrophilic fungi from Schirmacher Oasis, East Antarctica. Curr. Sci. 2006, 90, 1388–1392. Available online: https://www.jstor.org/stable/24091989 (accessed on 25 May 2006).
- de Souza, L.M.D.; Lirio, J.M.; Coria, S.H.; Lopes, F.A.C.; Convey, P.; Carvalho-Silva, M.; de Oliveira, F.S.; Rosa, C.A.; Câmara, P.E.A.S.; Rosa, L.H. Diversity, distribution and ecology of fungal communities present in Antarctic Lake sediments uncovered by DNA metabarcoding. Sci. Rep. 2022, 12, 8407. [Google Scholar] [CrossRef] [PubMed]
- Halıcı, M.G.; Güllü, M.; Kahraman Yiğit, M.; Barták, M. Three new records of lichenised fungi for Antarctica. Polar Record. 2022, 58, e22. [Google Scholar] [CrossRef]
- Selbmann, L.; Stoppiello, G.A.; Onofri, S.; Stajich, J.E.; Coleine, C. Culture-Dependent and Amplicon Sequencing Approaches Reveal Diversity and Distribution of Black Fungi in Antarctic Cryptoendolithic Communities. J. Fungi 2021, 16, 213. [Google Scholar] [CrossRef]
- Varrella, S.; Barone, G.; Tangherlini, M.; Rastelli, E.; Dell’Anno, A.; Corinaldesi, C. Diversity, Ecological Role and Biotechnological Potential of Antarctic Marine Fungi. J. Fungi 2021, 7, 391. [Google Scholar] [CrossRef]
- Doytchinov, V.V.; Dimov, S.G. Microbial Community Composition of the Antarctic Ecosystems: Review of the Bacteria, Fungi, and Archaea Identified through an NGS-Based Metagenomics Approach. Life 2022, 12, 916. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Liu, F.; Liu, L.R.; Li, M.; Cai, L.; Liu, S.; Mao, J. Culturing the uncultured marine fungi in the omics age: Opportunities and challenges. Fungal Biol. Rev. 2024, 48, 100353. [Google Scholar] [CrossRef]
- Durán, P.; Barra, P.J.; Jorquera, M.A.; Viscardi, S.; Fernandez, C.; Paz, C.; Mora, M.L.; Bol, R. Occurrence of Soil Fungi in Antarctic Pristine Environments. Front. Bioeng. Biotechnol. 2019, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Li, L.; Che, Q.; Li, D.; Gu, Q.; Zhu, T. Richness and bioactivity of culturable soil fungi from the Fildes Peninsula, Antarctica. Extremophiles 2016, 20, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez-Enireb, E.; Cucalón, R.V.; Cárdenas, D.; Ordóñez, N.; Coello, S.; Elizalde, P.; Cárdenas, W.B. Antarctic fungi with antibiotic potential isolated from Fort William Point, Antarctica. Sci. Rep. 2022, 12, 21477. [Google Scholar] [CrossRef]
- Wierzchos, J.; De Los Ríos, A.; Sancho, L.G.; Ascaso, C. Viability of endolithic micro-organisms in rocks from the McMurdo Dry Valleys of Antarctica established by confocal and fluorescence microscopy. J. Microsc. 2004, 216, 57–61. [Google Scholar] [CrossRef]
- De los Ríos, A.; Sancho, L.G.; Grube, M.; Wierzchos, J.; Ascaso, C. Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques. New Phytol. 2005, 165, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ortega, S.; Garrido-Benavent, I.; De Los Ríos, A. Austrostigmidium, a new austral genus of lichenicolous fungi close to rock-inhabiting meristematic fungi in Teratosphaeriaceae. Lichenologist 2015, 47, 143–156. [Google Scholar] [CrossRef]
- Taylor, D.L.; Hollingsworth, T.N.; McFarland, J.W.; Lennon, N.J.; Nusbaum, C.; Ruess, R.W. A first comprehensive census of fungi in soil reveals both hyper diversity and fine-scale niche partitioning. Ecol. Monogr. 2014, 84, 3–20. [Google Scholar] [CrossRef]
- Rosa, L.H.; da Silva, T.H.; Ogaki, M.B.; Pinto, O.H.B.; Stech, M.; Convey, P.; Carvalho-Silva, M.; Rosam, C.A.; Câmara, P.E.A.S. DNA metabarcoding uncovers fungal diversity in soils of protected and non-protected areas on Deception Island, Antarctica. Sci. Rep. 2020, 10, 21986. [Google Scholar] [CrossRef]
- Rabelo, N.G.; Gonçalves, V.N.; Carvalho, M.A.; Scheffler, S.M.; Santiago, G.; Sucerquia, P.A.; Oliveira, F.S.; Campos, L.P.; Lopes, F.A.C.; Santos, K.C.R.; et al. Endolithic Fungal Diversity in Antarctic Oligocene Rock Samples Explored Using DNA Metabarcoding. Biology 2024, 13, 414. [Google Scholar] [CrossRef]
- Dziurzynski, M.; Gorecki, A.; Pawlowska, J.; Istel, L.; Decewicz, P.; Golec, P.; Styczynski, M.; Poszytek, K.; Rokowska, A.; Gorniak, D.; et al. Revealing the diversity of bacteria and fungi in the active layer of permafrost at Spitsbergen Island (Arctic)—Combining classical microbiology and metabarcoding for ecological and bioprospecting exploration. Sci. Total Environ. 2023, 856, 159072. [Google Scholar] [CrossRef]
- Tosi, S.; Begonã, C.; Gerdol, R.; Caretta, G. Fungi isolated from Antarctic mosses. Polar Biol. 2002, 25, 262–268. [Google Scholar] [CrossRef]
- Morita, R.Y. Psychrophilic bacteria. Bacteriol. Rev. 1975, 39, 144–167. [Google Scholar] [CrossRef]
- Selbmann, L.; de Hoog, G.S.; Mazzaglia, A.; Friedmann, E.I.; Onofri, S. Fungi at the edge of life: Cryptoendolithic black fungi from Antarctic desert. Stud. Mycol. 2005, 51, 1–32. [Google Scholar]
- Wang, M.; Tian, J.; Xiang, M.; Liu, X. Living strategy of cold-adapted fungi with reference to several representative species. Mycology 2017, 8, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Moyer, C.L.; Collins, R.E.; Morita, R.Y. Psychrophiles and psychrotrophs. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2017; MS code 02282. [Google Scholar]
- Onofri, S.; Pagano, S.; Zucconi, L.; Tosi, S. Friedmanniomyces endolithicus (Fungi, Hyphomycetes), anam.-gen. and sp. nov., from continental Antartica. Nova Hedwigia 1999, 68, 175–181. Available online: http://hdl.handle.net/11571/137768 (accessed on 26 May 1999). [CrossRef]
- Kita, D.M.; Giovanella, P.; Yoshinaga, T.T.; Pellizzer, E.P.; Sette, L.D. Antarctic fungi applied to textile dye bioremediation. An. Acad. Bras. Cienc. 2022, 94, e20210234. [Google Scholar] [CrossRef]
- Onofri, S.; Selbmann, L.; Zucconi, L.; Pagano, S. Antarctic microfungi as models for exobiology. Planet Space Sci. 2004, 52, 229–237. [Google Scholar] [CrossRef]
- Godinho, V.; Furbino, L.; Santiago, I.; Pellizzari, F.M.; Yokoya, N.S.; Pupo, D.; Alves, T.M.A.; Junior, P.A.S.; Romanha, A.J.; Zani, C.L.; et al. Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J. 2013, 7, 1434–1451. [Google Scholar] [CrossRef]
- Mi, Z.; Su, J.; Yu, L.; Zhang, T. Comparative mitochondrial genomics of Thelebolaceae in Antarctica: Insights into their extremophilic adaptations and evolutionary dynamics. IMA Fungus 2024, 15, 33. [Google Scholar] [CrossRef]
- Cavicchioli, R.; Siddiqui, K.S. Cold adapted enzymes. In Enzyme Technology; Pandey, A., Webb, C., Soccol, C.R., Larroche, C., Eds.; Asiatech Publishers, Inc.: New Delhi, India, 2004; pp. 615–638. [Google Scholar]
- Rosa, L.H.; Zani, C.L.; Cantrell, C.L.; Duke, S.O.; Dijck, P.V.; Desideri, A.; Rosa, C.A. Fungi in Antarctica: Diversity, ecology, effects of climate change and bioprospection for bioactive compounds. In Fungi of Antarctica: Diversity, Ecology and Biotechnological Applications; Rosa, L.H., Ed.; Springer: Berlin, Germany, 2019; pp. 1–17. [Google Scholar]
- Batista, T.M.; Hilario, H.O.; Mendes de Brito, G.A.; Moreira, R.G.; Furtado, C.; de Menezes, G.C.A.; Rosa, C.A.; Rosa, L.H.; Franco, G.R. Whole-genome sequencing of the endemic Antarctic fungus Antarctomyces pellizariae reveals an ice-binding protein, a scarce set of secondary metabolites gene clusters and provides insights on Thelebolales phylogeny. Genomics 2020, 112, 2915–2921. [Google Scholar] [CrossRef]
- Martorell, M.M.; Ruberto, L.A.M.; Fernández, P.M.; De Figueroa, L.I.C.; Mac Cormack, W.P. Biodiversity and enzymes bioprospection of Antarctic filamentous fungi. Antarct. Sci. 2018, 31, 3–12. [Google Scholar] [CrossRef]
- Gocheva, Y.G.; Krumova, E.T.; Slokoska, L.S.; Miteva, J.G.; Vassilev, S.V.; Angelova, M.B. Cell response of Antarctic and temperate strains of Penicillium spp. to different growth temperatures. Mycol. Res. 2006, 110, 1347–1354. [Google Scholar] [CrossRef] [PubMed]
- Kostadinova, N.; Tosi, S.; Spassova, B.; Angelova, M. Comparison of the oxidative stress response of two Antarctic fungi to different growth temperatures. Pol. Polar Res. 2017, 38, 393–408. [Google Scholar] [CrossRef]
- Wang, X.-W.; Zheng, R.-Y. Chaetomium acropullum sp. nov. (Chaetomiaceae, Ascomycota), a new psychrotolerant mesophilic species from China. Nova Hedwig. 2005, 80, 413–417. [Google Scholar] [CrossRef]
- Cavicchioli, R. Cold-adapted archaea. Nat. Rev. Microbiol. 2006, 4, 331–343. [Google Scholar] [CrossRef]
- Carreiro, M.M.; Koske, R.E. Room temperature isolations can bias against selection of low temperature microfungi in temperate forest soils. Mycologia 1992, 84, 886–900. [Google Scholar] [CrossRef]
- Halliwell, B. Antioxidants in human health and disease. Annu. Rev. Nutr. 1996, 16, 33–50. [Google Scholar] [CrossRef]
- Li, R.; Jia, Z.; Trush, M.A. Defining ROS in Biology and Medicine. React. Oxyg. Species 2016, 1, 9–21. [Google Scholar] [CrossRef]
- Rauf, A.; Khalil, A.A.; Awadallah, S.; Khan, S.A.; Abu-Izneid, T.; Kamran, M.; Hemeg, H.A.; Mubarak, M.S.; Khalid, A.; Wilairatana, P. Reactive oxygen species in biological systems: Pathways, associated diseases, and potential inhibitors—A review. Food Sci. Nutr. 2024, 12, 675–693. [Google Scholar] [CrossRef]
- Halliwell, B. Reactive oxygen species (ROS), oxygen radicals and antioxidants: Where are we now, where is the field going and where should we go? Biochem. Biophys. Res. Commun. 2022, 633, 17–19. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, A.J.P.O.; de Oliveira, J.C.P.L.; da Silva Pontes, L.V.; de Souza Júnior, J.F.; Gonçalves, T.A.F.; Dantas, S.H.; de Almeida Feitosa, M.S.; Silva, A.O.; de Medeiros, I.A. ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. Oxid. Med. Cell Longev. 2022, 19, 1225578. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 28, 4642. [Google Scholar] [CrossRef]
- Andres, C.M.C.; Perez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Perez-Lebena, E. Chemistry of hydrogen peroxide formation and eliminationin mammalian cells, and its role in various pathologies. Stresses 2022, 2, 256–274. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, U.; Das, D.; Banerjee, R.K. Reactive oxygen species: Oxidative damage and pathogenesis. Curr. Sci. 1999, 77, 658–666. Available online: https://www.jstor.org/stable/24102839 (accessed on 10 September 1999).
- Sadhukhan, P.; Sil, P.C. The regulation of intracellular redox homeostasis in cancer progression and its therapy. In Pathology; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 105–114. ISBN 9780128159729. [Google Scholar]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef] [PubMed]
- Ezraty, B.; Gennaris, A.; Barras, F.; Collet, J.F. Oxidative stress, protein damage and repair in bacteria. Nat. Rev. Microbiol. 2017, 15, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: New York, NY, USA, 2015; p. 696. [Google Scholar]
- Mittler, R. ROS Are Good. Trends Plant Sci. 2017, 22, 11–19. [Google Scholar] [CrossRef]
- Patel, R.; Rinker, L.; Peng, J.; Chilian, W.M. Reactive Oxygen Species: The Good and the Bad. In Reactive Oxygen Species (ROS) in Living Cells; Filip, C., Albu, E., Eds.; Intech Open: Rijeka, Croatia, 2017. [Google Scholar]
- Breitenbach, M.; Weber, M.; Rinnerthaler, M.; Karl, T.; Breitenbach-Koller, L. Oxidative stress in fungi: Its function in signal transduction, interaction with plant hosts, and lignocellulose degradation. Biomolecules 2015, 3, 318–342. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ji, D.; Chen, T.; Li, B.; Zhang, Z.; Qin, G.; Tian, S. Production, Signaling, and scavenging mechanisms of reactive oxygen species in fruit–pathogen interactions. Int. J. Mol. Sci. 2019, 20, 2994. [Google Scholar] [CrossRef]
- Oiki, S.; Nasuno, R.; Urayama, S.I.; Takagi, H.; Hagiwara, D. Intracellular production of reactive oxygen species and a DAF-FM-related compound in Aspergillus fumigatus in response to antifungal agent exposure. Sci. Rep. 2022, 12, 13516. [Google Scholar] [CrossRef]
- Bugg, T.D.; Ahmad, M.; Hardiman, E.M.; Rahmanpour, R. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 2011, 28, 1883–1896. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007, 35, 1147–1150. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Li, B.; Chen, T.; Tian, S. Reactive oxygen species: A generalist in regulating development and pathogenicity of phytopathogenic fungi. CSBJ 2020, 18, 3344–3349. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Cadenas, E. Oxidative stress: Damage to intact cells and organs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1985, 311, 617–631. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 2014, 224, 164–175. [Google Scholar] [CrossRef]
- Gomez-Contreras, P.C.; Kluz, P.N.; Hines, M.R.; Coleman, M.C. Intersections between mitochondrial metabolism and redox biology mediate posttraumatic osteoarthritis. Curr. Rheumatol. Rep. 2021, 23, 32. [Google Scholar] [CrossRef]
- Abdelazim, A.M.; Abomughaid, M.M. Oxidative stress: An overview of past research and future insights. All Life 2024, 17, 2316092. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef]
- Banerjee, S.; Ghosh, J.; Sil, P.C. Drug Metabolism and Oxidative Stress: Cellular mechanism and new therapeutic insights. Biochem. Anal. Biochem. 2016, 5, 255. [Google Scholar] [CrossRef]
- Halliwell, B. The definition and measurement of antioxidants in biological systems. Free Rad. Biol. Med. 1995, 18, 125–126. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.A.; Abdulkareem, S.D.; Abeer, A.M. Antioxidant Categories and Mode of Action. In Antioxidants; Shalaby, E., Ed.; IntechOpen: Rijeka, Croatia, 2019; pp. 3–18. [Google Scholar] [CrossRef]
- Zadrąg-Tęcza, R.; Maślanka, R.; Bednarska, S.; Kwolek-Mirek, M. Response Mechanisms to Oxidative Stress in Yeast and Filamentous Fungi. In Stress Response Mechanisms in Fungi; Skoneczny, M., Ed.; Springer Nature: Cham, Switzerland, 2018; pp. 1–34. [Google Scholar]
- Carocho, M.; Ferreira, I.C.F.R. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013, 51, 15–25. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 1995, 64, 97–112. [Google Scholar] [CrossRef]
- Rosa, A.C.; Corsi, D.; Cavi, N.; Bruni, N.; Dosio, F. Superoxide Dismutase Administration: A Review of Proposed Human Uses. Molecules 2021, 26, 1844. [Google Scholar] [CrossRef]
- McCord, J.M.; Fridovich, I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055. Available online: https://www.researchgate.net/publication/17780338 (accessed on 30 April 2025). [CrossRef]
- Yost, F.J.; Fridovich, I. An Iron-containing superoxide dismutase from Escherichia coli. J. Biol. Chem. 1973, 248, 4905–4908. [Google Scholar] [CrossRef]
- Fréalle, E.; Noël, C.; Viscogliosi, E.; Camus, D.; Dei-Cas, E.; Delhaes, L. Manganese superoxide dismutase in pathogenic fungi: An issue with pathophysiological and phylogenetic involvements. FEMS Immunol. Med. Microbiol. 2005, 45, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.C.; Maroney, M.J. Nickel Superoxide Dismutase. In Encyclopedia of Metalloproteins; Kretsinger, R.H., Uversky, V.N., Permyakov, E.A., Eds.; Springer: New York, NY, USA, 2013; pp. 1505–1515. [Google Scholar]
- Nakane, D.; Akiyama, Y.; Suzuki, S.; Miyazaki, R.; Akitsu, T. Improvement of the SOD activity of the Cu2+ complexes by hybridization with lysozyme and its hydrogen bond effect on the activity enhancement. Front. Chem. 2024, 11, 1330833. [Google Scholar] [CrossRef] [PubMed]
- Valenti, R.; Jabłońska, J.; Tawfik, D.S. Characterization of ancestral Fe/Mn superoxide dismutases indicates their cambialistic origin. Protein Sci. 2022, 31, 4423. [Google Scholar] [CrossRef] [PubMed]
- Belozerskaya, T.A.; Gessler, N.N. Reactive oxygen species and the strategy of antioxidant defense in fungi: A review. Appl. Biochem. Microbiol. 2007, 43, 506–515. Available online: https://api.semanticscholar.org/CorpusID:30908199 (accessed on 30 April 2025). [CrossRef]
- Jiménez, A.; Correa, S.; Sevilla, F. Identification of Superoxide Dismutase (SOD) Isozymes in Plant Tissues. Methods Mol. Biol. 2024, 2798, 205–212. [Google Scholar] [CrossRef]
- Okado-Matsumoto, A.; Fridovich, I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J. Biol. Chem. 2001, 276, 38388–38393. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant. Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Islam, M.N.; Rauf, A.; Fahad, F.I.; Emran, T.B.; Mitra, S.; Olatunde, A.; Shariati, M.A.; Rebezov, M.; Rengasamy, K.R.R.; Mubarak, M.S. Superoxide dismutase: An updated review on its health benefits and industrial applications. Crit. Rev. Food Sci. Nutr. 2021, 62, 7282–7300. [Google Scholar] [CrossRef]
- Zámocký, M.; Koller, F. Understanding the structure and function of catalases: Clues from molecular evolution and in vitro mutagenesis. Prog. Biophys. Mol. Biol. 1999, 72, 19–66. [Google Scholar] [CrossRef]
- Karakus, Y.Y. Typical catalases: Function and structure. In Glutathione System and Oxidative Stress in Health and Disease; Bagatini, M.D., Ed.; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar] [CrossRef]
- Pei, J.; Pan, X.; Wei, G.; Hua, Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front. Pharmacol. 2023, 14, 1147414. [Google Scholar] [CrossRef]
- Tumilaar, S.G.; Hardianto, A.; Dohi, H.; Kurnia, D. A comprehensive review of free radicals, oxidative stress, and antioxidants: Overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. J. Chem. 2024, 2024, 5594386. [Google Scholar] [CrossRef]
- Ho, H.Y.; Cheng, M.L.; Chiu, D. Glucose-6-phosphate dehydrogenase—From oxidative stress to cellular functions and degenerative diseases. Redox Rep. 2007, 12, 109–118. [Google Scholar] [CrossRef]
- Nóbrega-Pereira, S.; Fernandez-Marcos, P.J.; Brioche, T.; Gomez-Cabrera, M.C.; Salvodar-Pascual, A.; Flores, J.M.; Vina, J.; Serrano, M. G6PD protects from oxidative damage and improves healthspan in mice. Nat. Commun. 2016, 7, 10894. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Janmeda, P.; Docea, A.O.; Yeskaliyeva, B.; Razis, A.A.F.; Modu, B.; Calina, D.; Sharifi-Rad, J. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front. Chem. 2023, 11, 1158198. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G.; Atkinson, J. Vitamin E: Antioxidant and nothing more. Free Radic. Biol. Med. 2007, 43, 4–15. [Google Scholar] [CrossRef]
- Burton, G.W.; Ingold, K.U. β-Carotene: An unusual type of lipid antioxidant. Science 1984, 224, 569–573. [Google Scholar] [CrossRef]
- Bohn, T. Carotenoids and Markers of Oxidative Stress in Human Observational Studies and Intervention Trials: Implications for Chronic Diseases. Antioxidants 2019, 8, 179. [Google Scholar] [CrossRef]
- Chen, L.; Cao, H.; Huang, Q.; Xiao, J.; Teng, H. Absorption, metabolism and bioavailability of flavonoids: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 7730–7742. [Google Scholar] [CrossRef]
- Boutin, J.; Liberelle, M.; Yous, S.; Ferry, G.; Nepveu, F. Melatonin facts: Lack of evidence that melatonin is aradical scavenger in living systems. J. Pineal Res. 2024, 76, e12926. [Google Scholar] [CrossRef]
- Lee, S.Q.E.; Tan, T.S.; Kawamukai, M.; Chen, E.S. Cellular factories for coenzyme Q10 production. Microb. Cell Fact. 2017, 16, 39. [Google Scholar] [CrossRef]
- Chattopadhyay, M.K. Low temperature and oxidative stress. Curr. Sci. 2002, 83, 109. [Google Scholar]
- Abu Bakar, N.; Lau, C.B.Y.; ·Gonzalez-Aravena, M.; Smykla, J.; ·Krzewicka, B.; Karsani, S.A.; Alias, S.A. Geographical Diversity of Proteomic Responses to Cold Stress in the Fungal Genus Pseudogymnoascus. Microb. Ecol. 2024, 87, 11. [Google Scholar] [CrossRef] [PubMed]
- Tesei, D.; Marzban, G.; Zakharova, K.; Isola, D.; Selbmann, L.; Sterflinger, K. Alteration of protein patterns in black rock inhabiting fungi as a response to different temperatures. Fungal Biol. 2012, 116, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Men, J.L.; Chang, M.C.; Feng, C.P.; Yuan, L.G. iTRAQ-based quantitative proteome revealed metabolic changes of Flammulina velutipes mycelia in response to cold stress. J. Proteom. 2017, 156, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Luo, M.; Ji, X.; Lin, L.; Wei, Y.; Zhang, Q. Proteomic analysis of Mortierella isabellina M6-22 during cold stress. Arch. Microbiol. 2016, 198, 869–876. [Google Scholar] [CrossRef]
- Lee, B.H.; Lee, H.; Xiong, L.; Zhu, J.K. A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell 2002, 14, 1235–1251. [Google Scholar] [CrossRef]
- Suzuki, N.; Mittler, R. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant. 2006, 126, 45–51. [Google Scholar] [CrossRef]
- Zhang, L.; Onda, K.; Imai, R.; Fukuda, R.; Horiuchi, H.; Ohta, A. Growth temperature downshift induces antioxidant response in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 2003, 307, 308–314. [Google Scholar] [CrossRef]
- García-Ríos, E.; Ramos-Alonso, L.; Guillamón, J.M. Correlation between low temperature adaptation and oxidative stress in Saccharomyces cerevisiae. Front. Microbiol. 2016, 7, 1199. [Google Scholar] [CrossRef]
- Tian, F.; Lee, S.Y.; Woo, S.Y.; Choi, H.Y.; Heo, S.; Nah, G.; Chun, H.S. Transcriptomic responses of Aspergillus flavus to temperature and oxidative stresses during aflatoxin production. Sci. Rep. 2021, 11, 2803. [Google Scholar] [CrossRef]
- Kostadinova, N.; Krumova, E.; Stefanova, T.; Dishliyska, V.; Angelova, M. Transient cold shock induces oxidative stress events in Antarctic fungi. In Oxidative Stress/BWe Confirmook 3; Lushchak, V.I., Stoliar, O., Eds.; InTechOpen: Rijeka, Croatia, 2012; pp. 75–99. [Google Scholar]
- Dishliyska, V. Catalase from Antarctic Fungi: Role in Antioxidant Defense, Regulation and Properties. PhD Thesis, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria, 2024. [Google Scholar]
- Miteva-Staleva, J.G. Low Temperature Stress and Cell Aging in Antarctic Fungi. PhD Thesis, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria, 2017. [Google Scholar]
- Guo, R.; Liu, T.; Guo, C.; Chen, G.; Fan, J.; Zhang, Q. Carotenoid biosynthesis is associated with low-temperature adaptation in Rhodosporidium kratochvilovae. BMC Microbiol. 2022, 22, 319. [Google Scholar] [CrossRef]
- Dishliyska, V.; Stoyancheva, G.; Abrashev, R.; Miteva-Staleva, J.; Spasova, B.; Angelova, M.; Krumova, E. Catalase from the Antarctic Fungus Aspergillus fumigatus I-9–Biosynthesis and Gene Characterization. Indian J. Microbiol. 2023, 63, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, R.N.; Montiel, P.O.; Johnstone, K. Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the Maritime Antarctic. Mycologia 2000, 92, 222–229. [Google Scholar] [CrossRef]
- Villarreal, P.; Carrasco, M.; Barahona, S.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Antarctic yeasts: Analysis of their freeze-thaw tolerance and production of antifreeze proteins, fatty acids and ergosterol. BMC Microbiol. 2018, 18, 66. [Google Scholar] [CrossRef] [PubMed]
- Gocheva, Y.G.; Krumova, E.T.; Slokoska, L.S.; Miteva, J.G.; Vassilev, S.V.; Angelova, M.B. Temperature downshift induces antioxidant response in fungi isolated from Antarctica. Extremophiles 2009, 13, 273–281. [Google Scholar] [CrossRef]
- Krumova, E.T.; Koeva, E.K.; Stoitsova, S.R.; Paunova-Krasteva, T.S.; Stoyancheva, G.D.; Angelova, M.B. Cell response of Antarctic strain Penicillium griseofulvum against low temperature stress. Pol. Polar Res. 2022, 43, 125–143. [Google Scholar] [CrossRef]
- Gomez-Gutiérrez, S.V.; Sic-Hernandez, W.R.; Haridas, S.; LaButti, K.; Eichenberger, J.; Kaur, N.; Lipzen, A.; Barry, K.; Goodwin, S.B.; Gribskov, M.; et al. Comparative genomics of the extremophile Cryomyces antarcticus and other psychrophilic Dothideomycetes. Front. Fungal Biol. 2024, 5, 1418145. [Google Scholar] [CrossRef]
- Schade, B.; Jansen, G.; Whiteway, M.; Entian, K.D.; Thomas, D.Y. Cold adaptation in budding yeast. Mol. Biol. Cell 2004, 15, 5492–5502. [Google Scholar] [CrossRef]
- Suárez-Medina, M.D.; Sáez-Casado, M.I.; Martínez-Moya, T.; Rincón-Cervera, M.Á. The effect of low temperature storage on the lipid quality of fish, either alone or combined with alternative preservation technologies. Foods 2024, 13, 1097. [Google Scholar] [CrossRef]
- Yan, W.; Su, Z.; Zhou, G.; Lin, Y.; Ren, W.; Liao, J.; Zhu, C.; Wang, C.; Ren, D.; Wang, Y.; et al. Cold tolerance of postharvest fungal pathogens is regulated by the conserved high osmolarity glycerol (HOG) pathway. Postharvest Biol. Technol. 2025, 219, 113206. [Google Scholar] [CrossRef]
- Abrashev, R.; Krumova, E.; Petrova, P.; Dolashka, P.; Eneva, R.; Fenice, M.; Engibarov, S.; Stoyancheva, G.; Gocheva, Y.; Velkova, L.; et al. New Enzymes from the Sialidase Family in Filamentous Fungi. Monograph; Prees Product Lain Ltd.: Sofia, Bulgaria, 2024; p. 102. ISBN 978-619-7177-12-1. (In Bulgarian) [Google Scholar]
- Fabri, J.H.T.M.; de Sa, N.P.; Malavazi, I.; Del Poeta, M. The dynamics and role of sphingolipids in eukaryotic organisms upon thermal adaptation. Prog. Lipid Res. 2020, 80, 101063. [Google Scholar] [CrossRef]
- Shi, T.A.O.; Yu, Y.Y.; Dai, J.J.; Zhang, Y.T.; Hu, W.P.; Zheng, L.; Shi, D.Y. New polyketides from the Antarctic fungus Pseudogymnoascus sp. HSX2#-11. Mar. Drugs 2021, 19, 168. [Google Scholar] [CrossRef] [PubMed]
- Tendulkar, S.; Hattiholi, A.; Chavadar, M.; Dodamani, S. Psychrophiles: A journey of hope. J. Biosci. 2021, 46, 64. [Google Scholar] [CrossRef]
- Jodłowska, I.; Białkowska, A.M. Cold-Adapted Fungi: Goldmine of Biomolecules Applicable in Industry. Appl. Sci. 2024, 14, 11950. [Google Scholar] [CrossRef]
- Maggi, O.; Tosi, S.; Angelova, M.; Lagostina, E.; Fabbri, A.; Pecoraro, L.; Altobelli, E.; Picco, A.; Savino, E.; Branda, E.; et al. Adaptation of fungi, including yeasts, to cold environments. Plant Biosyst. 2013, 147, 247–258. [Google Scholar] [CrossRef]
- Su, Y.; Jiang, X.Z.; Wu, W.P.; Wang, M.M.; Hamid, M.I.; Xiang, M.C.; Liu, X.Z. Genomic, transcriptomic, and proteomic analysis provide insights into the cold adaptation mechanism of the obligate psychrophilic fungus Mrakia psychrophila. G3 2016, 6, 3603–3613. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, X.; Zhang, L.; Wu, Q.; Li, S.; Gou, J.; He, J.; Zhang, K.; Li, S.; Niu, X. Tryptophan-centered metabolic alterations coincides with lipid-mediated fungal response to cold stress. Heliyon 2023, 9, e13066. [Google Scholar] [CrossRef]
- Lushchak, V.I. Free radical oxidation of proteins and its relationship with the functional state of organisms. Biochemistry 2007, 72, 809–827. [Google Scholar] [CrossRef]
- Coleine, C.; Masonjones, S.; Sterflinger, K.; Onofri, S.; Selbmann, L.; Stajich, J.E. Peculiar genomic traits in the stress-adapted cryptoendolithic Antarctic fungus Friedmanniomyces endolithicus. Fungal Biol. 2020, 124, 458–467. [Google Scholar] [CrossRef]
- Thomas-Hall, S.R.; Turchetti, B.; Buzzini, P.; Branda, E.; Boekhout, T.; Theelen, B.; Watson, K. Cold-adapted yeasts from Antarctica and the Italian Alps—Description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 2010, 14, 47–59. [Google Scholar] [CrossRef]
- Kostadinova, N. Cell Response of Antarctic Fungi to Temperature Stress. PhD Thesis, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academic Publishing House “Prof. Marin Drinov”, Sofia, Bulgaria, 2013. [Google Scholar]
- Cassaro, A.; Pacelli, C.; Onofri, S. Survival, metabolic activity, and ultrastructural damage of Antarctic black fungus in perchlorates media. Front. Microbiol. 2022, 13, 992077. [Google Scholar] [CrossRef] [PubMed]
- Bartolo-Aguilar, Y.; Dendooven, L.; Chávez-Cabrera, C.; Flores-Cotera, L.B.; Hidalgo-Lara, M.E.; Villa-Tanaca, L.; Marsch, R. Autolysis of Pichia pastoris induced by cold. AMB 2017, 7, 95. [Google Scholar] [CrossRef] [PubMed]
- Misiak, M.; Goodall-Copestake, W.P.; Sparks, T.H.; Worland, M.R.; Boddy, L.; Magan, N.; Convey, P.; Hopkins, D.W.; Newsham, K.K. Inhibitory effects of climate change on the growth and extracellular enzyme activities of a widespread Antarctic soil fungus. Glob. Chang. Biol. 2020, 27, 1111–1125. [Google Scholar] [CrossRef]
- Gong, M.; Wang, Y.; Zhang, J.; Zhao, Y.; Wan, J.; Shang, J.; Yang, R.; Wu, Y.; Li, Y.; Tan, Q.; et al. Chilling stress triggers VvAgo1-mediated miRNA-like RNA biogenesis in Volvariella volvacea. Front. Microbiol. 2020, 11, 523593. [Google Scholar] [CrossRef]
- Zhao, X.; Song, X.; Li, Y.; Yu, C.; Zhao, Y.; Gong, M.; Shen, X.; Chen, M. Gene expression related to trehalose metabolism and its effect on Volvariella volvacea under low-temperature stress. Sci. Rep. 2018, 8, 11011. [Google Scholar] [CrossRef]
- Miteva-Staleva, J.; Krumova, E.; Spasova, B.; Angelova, M. Age-related changes in protease activity as a cold stress response by Penicillium strains from different temperature classes. Pol. Polar Res. 2023, 45, 67–79. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, N.; Ma, J.; Zhou, Y.; Wei, Q.; Tian, C.; Fang, Y.; Zhong, R.; Chen, G.; Zhang, S. Advances in cold-adapted enzymes derived from microorganisms. Front. Microbiol. 2023, 14, 1152847. [Google Scholar] [CrossRef] [PubMed]
- Fiedurek, J.; Gromada, A.; Słomka, A.; Korniłowicz-Kowalska, T.; Kurek, E.; Melke, J. Catalase activity in arctic microfungi grown at different temperatures. Acta Biol. Hung. 2003, 54, 105–112. [Google Scholar] [CrossRef]
- Chai, C.N.; Yam, H.C.; Rosli, N.; Azlan, A.; Azzam, G.; Halim, M.A.; Najimudin, N. Transcriptomic response of an Antarctic yeast Rhodotorula sp. USM-PSY62 to temperature changes. bioRxiv 2020. [Google Scholar] [CrossRef]
- Wang, W.; Tan, Q.; Wang, Q.; Wang, J.; Zhang, F.; Zheng, X.; Yun, J.; Zhang, W.; Zhao, F. Glutathione peroxidase gene regulates substrate development and prevents strain aging in Volvariella volvacea. Int. J. Biol. Macromol. 2025, 289, 138835. [Google Scholar] [CrossRef]
- Govarthanan, M.; Fuzisawa, S.; Hosogai, T.; Chang, Y.C. Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp. CHY-2 and characterization of its manganese peroxidase activity. RSC Adv. 2017, 7, 20716–20723. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Y.; Liu, D.; Proksch, P.; Yu, S.; Lin, W. Antioxidative phenolic compounds from a marine-derived fungus Aspergillus versicolor. Tetrahedron 2016, 72, 50–57. [Google Scholar] [CrossRef]
- Huang, J.N.; Zou, Q.; Chen, J.; Xu, S.; Luo, D.; Zhang, F.; Lu, Y. Phenols and diketopiperazines isolated from Antarctic-derived fungi, Penicillium citreonigrum SP-6. Phytochem. Lett. 2018, 27, 114–118. [Google Scholar] [CrossRef]
- Pacelli, C.; Cassaro, A.; Maturilli, A.; Timperio, A.M.; Gevi, F.; Cavalazzi, B.; Stefan, M.; Ghica, D.; Onofri, S. Multidisciplinary characterization of melanin pigments from the black fungus Cryomyces antarcticus. Appl. Microbiol. Biotechnol. 2020, 104, 6385–6395. [Google Scholar] [CrossRef]
- Flieger, K.; Knabe, N.; Toepel, J. Development of an Improved Carotenoid Extraction Method to Characterize the Carotenoid Composition under Oxidative Stress and Cold Temperature in the Rock Inhabiting Fungus Knufia petricola A95. J. Fungi 2018, 4, 124. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, S.B.; Biscaino, C.D.S.; Kreusch, M.G.; da Silva, A.F.; Duarte, R.T.D.; Robl, D. The hidden rainbow: The extensive biotechnological potential of Antarctic fungi pigments. Braz. J. Microbiol. 2023, 54, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Gostinčar, C.; Zalar, P.; Gunde-Cimerman, N. No need for speed: Slow development of fungi in extreme environments. Fungal Biol. Rev. 2022, 39, 1–14. [Google Scholar] [CrossRef]
- Novak Babič, M.; Zupančič, J.; Gunde-Cimerman, N.; de Hoog, S.; Zalar, P. Ecology of the human opportunistic black yeast Exophiala dermatitidis indicates preference for human-made habitats. Mycopathologia 2018, 183, 201–212. [Google Scholar] [CrossRef]
- Selbmann, L.; Onofri, S.; Zucconi, L.; Isola, D.; Rottigni, M.; Ghiglione, C.; Piazza, P.; Alvaro, M.C.; Schiaparelli, S. Distributional records of Antarctic fungi based on strains preserved in the Culture Collection of Fungi from Extreme Environments (CCFEE) Mycological Section associated with the Italian National Antarctic Museum (MNA). MycoKeys 2015, 10, 57–71. [Google Scholar] [CrossRef]
- Selbmann, L.; Zucconi, L.; Onofri, S.; Cecchini, C.; Isola, D.; Turchetti, B.; Buzzini, P. Taxonomic and phenotypic characterization of yeasts isolated from worldwide cold rock-associated habitats. Fungal Biol. 2014, 118, 61–71. [Google Scholar] [CrossRef]
- Francisco, C.S.; Ma, X.; Zwyssig, M.M.; McDonald, B.A.; Palma-Guerrero, J. Morphological changes in response to environmental stresses in the fungal plant pathogen Zymoseptoria tritici. Sci. Rep. 2019, 9, 9642. [Google Scholar] [CrossRef]
- Sato, M.; Hasegawa, K.; Shimada, S.; Osumi, M. Effects of pressure stress on the fission yeast Schizosaccharomyces pombe cold-sensitive mutant nda3. FEMS Microbiol. Lett. 1999, 176, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, K.; Araki, J.; Takano, M.; Sekiguchi, J. Characterization of Bacillus subtilis mutants resistant to cold shock-induced autolysis FEMS Microbiol. Lett. 1997, 150, 269–275. [Google Scholar] [CrossRef]
- Chang, T.; Zha, L.; Yu, C.; Chen, M.; Zhou, S.; Dong, Q.; Wu, Y.; Fan, S.; Zhao, Y. Expanding the understanding of Volvariella volvacea autolysis at 4 °C with transcriptomics and metabolomics. Sci. Hortic. 2024, 336, 113386. [Google Scholar] [CrossRef]
- Gonçalves, R.D.; Cupertino, F.B.; Freitas, F.Z.; Luchessi, A.D.; Bertolini, M.C. A genome-wide screen for Neurospora crassa transcription factors regulating glycogen metabolism. Mol. Cell Proteom. 2011, 10, M111.007963. [Google Scholar] [CrossRef] [PubMed]
- Parrou, J.L.; Teste, M.A.; François, J. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: Genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 1997, 143, 1891–1900. [Google Scholar] [CrossRef]
- Ribeiro, G.D.; de Holanda Paranhos, L.; Eleutherio, E.C.A. Trehalose promotes biological fitness of fungi. Fungal Biol. 2024, 128, 2381–2389. [Google Scholar] [CrossRef]
- França, M.B.; Panek, A.D.; Eleutherio, E.C.A. Oxidative stress and its effects during dehydration. CBPA 2007, 146, 621–631. [Google Scholar] [CrossRef]
- Aguilera, J.; Randez-Gil, F.; Prieto, J.A. Cold response in Saccharomyces cerevisiae: New functions for old mechanisms. FEMS Microbiol. Rev. 2007, 31, 327–341. [Google Scholar] [CrossRef]
- Xiong, L.; Li, Y.; Yu, H.; Wei, Y.; Li, H.; Ji, X. Whole genome analysis and cold adaptation strategies of Pseudomonas sivasensis W-6 isolated from the Napahai plateau wetland. Sci. Rep. 2023, 13, 14190. [Google Scholar] [CrossRef]
- Gancedo, C.; Flores, C.L. The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res. 2004, 4, 351–359. [Google Scholar] [CrossRef]
- Tesei, D.; Marzban, G.; Marchetti-Deschmann, M.; Tafer, H.; Arcalis, E.; Sterflinger, K. Proteome of tolerance fine-tuning in the human pathogen black yeast Exophiala dermatitidis. J. Proteom. 2015, 128, 39–57. [Google Scholar] [CrossRef]
- Kostadinova, N.; Vassilev, S.; Spasova, B.; Angelova, M. Cold stress in Antarctic fungi targets enzymes of the glycolytic pathway and tricarboxylic acid cycle. Biotechnol. Biotechnol. Equip. 2011, 25, 50–57. [Google Scholar] [CrossRef]
- Broberg, M.; Dubey, M.; Sun, M.H.; Ihrmark, K.; Schroers, H.J.; Li, S.D.; Jensen, D.F.; Brandström, D.M.; Karlsson, M. Out in the cold: Identification of genomic regions associated with cold tolerance in the biocontrol fungus Clonostachys rosea through genome-wide association mapping. Front. Microbiol 2018, 9, 2844. [Google Scholar] [CrossRef] [PubMed]
- Jules, M.; Beltran, G.; Francois, J.; Parrou, J.L. New insights into trehalose metabolism by Saccharomyces cerevisiae: NTH2 encodes a functional cytosolic trehalase, and deletion of TPS1 reveals Ath1p-dependent trehalose mobilization. Appl. Environ. Microbiol. 2008, 74, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Poveda, G.; Gil-Durán, C.; Vaca, I.; Levican, G.; Chavez, R. Cold-active pectinolytic activity produced by filamentous fungi associated with Antarctic marine sponges. Biol. Res. 2018, 51, 28. [Google Scholar] [CrossRef]
- Singh, P.; Hamid, B.; Ahmad Lone, M.; Ranjan, K.; Khan, A.; Chaurse, V. Evaluation of pectinase activity from the psychrophilic fungal strain Truncatella angustata-BPF5 for use in the wine industry. Endocyt. Cell Res. 2012, 22, 57–61. [Google Scholar]
- Abrashev, R.; Feller, G.; Kostadinova, N.; Krumova, E.; Alexieva, Z.; Gerginova, M.; Spasova, B.; Miteva-Staleva, J.; Vassilev, S.; Angelova, M. Production, purification, and characterization of a novel cold-active superoxide dismutase from the Antarctic strain Aspergillus glaucus 363. Fungal Biol. 2016, 120, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Dolashki, A.; Abrashev, R.; Kaynarov, D.; Krumova, E.; Velkova, L.; Eneva, R.; Engibarov, S.; Gocheva, Y.; Miteva-Staleva, J.; Dishliyska, V.; et al. Purification and characterization of a novel sialidase from Antarctic fungus Penicillium griseofulvum P29. Biochem. Biophis. Rep. 2024, 37, 101610. [Google Scholar] [CrossRef]
- Baeza, M.; Alcaíno, J.; Cifuentes, V.; Turchetti, B.; Buzzini, P. Cold-Active Enzymes from Cold-Adapted Yeasts. In Biotechnology of Yeasts and Filamentous Fungi; Sibirny, A., Ed.; Springer: Cham, Switzerland, 2017; pp. 297–334. [Google Scholar] [CrossRef]
- Taskin, M.; Ortucu, S.; Unver, Y.; Tasar, O.C.; Ozdemir, M.; Kaymak, H.C. Invertase production and molasses decolourization by cold-adapted filamentous fungus Cladosporium herbarum ER-25 in non-sterile molasses medium. Process Saf. Environ. Prot. 2016, 103, 136–143. [Google Scholar] [CrossRef]
- Santiago, M.; Ramírez-Sarmiento, C.A.; Zamora, R.A.; Parra, L.P. Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front. Microbiol. 2016, 7, 1408. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.T.; Fu, J.J.; Sun, Y.F.; Xu, Y.M.; Miao, Y.J.; Xu, Y.F.; Hu, T.M. Effect of arbuscular mycorrhizal fungi inoculation on cold stress-induced oxidative damage in leaves of Elymus nutans Griseb. S. Afr. J. Bot. 2016, 104, 21–29. [Google Scholar] [CrossRef]
- Liang, X.; Niu, Q.; Kong, J.; Zhao, X.; Zhang, B.; Li, L.; Jiao, C.; Gai, Y. Role of antioxidant molecules in the oxidative stress response networks in the tangerine pathotype of Alternaria alternata. Agronomy 2023, 13, 2735. [Google Scholar] [CrossRef]
- Vitale, G.A.; Coppola, D.; Palma Esposito, F.; Buonocore, C.; Ausuri, J.; Tortorella, E.; de Pascale, D. Antioxidant molecules from marine fungi: Methodologies and perspectives. Antioxidants 2020, 9, 1183. [Google Scholar] [CrossRef]
- Rosas, A.L.; Casadevall, A. Melanization affects susceptibility of Cryptococcus neoformans to heat and cold. FEMS Microbiol. Lett. 1997, 153, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Louet, C.; Blot, C.; Shelest, E.; Guerillot, P.; Salamov, A.; Zannini, F.; Pétrowski, J.; Grigoriev, I.V.; Frey, P.; Duplessis, S. Annotation survey and life cycle transcriptomics of transcription factors in rust fungi (Pucciniales) identify a possible role for cold shock proteins in dormancy exit. Fungal Genet. Biol. 2022, 161, 103698. [Google Scholar] [CrossRef]
- Fang, W.; St Leger, R.J. RNA binding proteins mediate the ability of a fungus to adapt to the cold. Environ. Microbiol. 2010, 12, 810–820. [Google Scholar] [CrossRef]
- Keto-Timonen, R.; Hietala, N.; Palonen, E.; Hakakorpi, A.; Lindström, M.; Korkeala, H. Cold shock proteins: A minireview with special emphasis on Csp-family of enteropathogenic Yersinia. Front. Microbiol. 2016, 7, 1151. [Google Scholar] [CrossRef] [PubMed]
- Zakharova, K.; Sterflinger, K.; Razzazi-Fazeli, E.; Nöbauer, K.; Marzban, G. Global proteomics of the extremophile black fungus Cryomyces antarcticus using 2D-electrophoresis. Nat. Sci. 2014, 6, 978–995. [Google Scholar] [CrossRef]
- Zakharova, K.; Tesei, D.; Marzban, G.; Dijksterhuis, J.; Wyatt, T.; Sterflinger, K. Microcolonial fungi on rocks: A life in constant drought? Mycopathologia 2012, 175, 537–547. [Google Scholar] [CrossRef]
- Sterflinger, K.; Lopandic, K.; Pandey, R.V.; Blasi, B.; Kriegner, A. Nothing special in the specialist? Draft genome sequence of Cryomyces antarcticus, the most extremophilic fungus from Antarctica. PLoS ONE 2014, 9, e109908. [Google Scholar] [CrossRef] [PubMed]
- Abu Bakar, N.; Lau, B.Y.C.; Smykla, J.; Karsani, S.A.; Alias, S.A. Protein homeostasis, regulation of energy production and activation of DNA damage-repair pathways are involved in the heat stress response of Pseudogymnoascus spp. Environ. Microbiol. 2022, 24, 1849–1864. [Google Scholar] [CrossRef]
- Stajich, J.E. Fungal genomes and insights into the evolution of the kingdom. Microbiol. Spectr. 2017, 5, 10–128. [Google Scholar] [CrossRef] [PubMed]
- Paiva, D.S.; Fernandes, L.; Portugal, A.; Trovão, J. First genome sequence of the microcolonial black fungus Saxispiralis lemnorum MUM 23.14: Insights into the unique genomic traits of the Aeminiaceae family. Microorganisms 2024, 12, 104. [Google Scholar] [CrossRef] [PubMed]
- Loftus, B.J.; Fung, E.; Roncaglia, P.; Rowley, D.; Amedeo, P.; Bruno, D.; Vamathevan, J.; Miranda, M.; Anderson, I.J.; Fraser, J.A.; et al. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 2005, 307, 1321–1324. [Google Scholar] [CrossRef]
- Janbon, G.; Ormerod, K.L.; Paulet, D.; Byrnes, E.J., 3rd; Yadav, V.; Chatterjee, G.; Mullapudi, N.; Hon, C.C.; Billmyre, R.B.; Brunel, F.; et al. Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLoS Genet. 2014, 10, e1004261. [Google Scholar] [CrossRef]
№ | Strain | Antarctic Samples | Origin | References |
---|---|---|---|---|
1. | Acremonium berkeleyanum | Soil | Russian Research Station | [39] |
2. | Alternaria alternata | Lichens | Livingston Island | [40] |
3. | A. arborescens | Seals nasal swab | Primavera Cape/Cierva Cove | [41] |
4. | A. alternata | Soil | McMurdo Dry Valleys | [42] |
5. | A. maritima | Soil | Livingston Island | [43] |
6. | Angustimassarina populi | Soil | Livingston Island | [43] |
7. | Antarctomyces pelizarie | Soil | Penguin Island and Robert Island | [44] |
8. | Antarctomyces psychrotrophicus | Water | Lakes in Admiralty Bay (King George Island) | [45] |
9. | Arthrobotrys ferox | Soil | Victoria Land | [19] |
10. | A. ferox | Moss | Edmonson Point | [46] |
11. | Aspergillus flavus | Soil | Russian Research Station | [39] |
12. | A. fumigatus 1-9 | Soil | Livingston Island | [40] |
13. | A. glaucus | Lichens | Livingston Island | [47] |
14. | A. sydowii | Soil | Livingston Island | [40] |
15. | A. tenneseensis | Seals nasal swab | Primavera Cape/Cierva Cove | [41] |
16. | A. versicolor (Vuill.) | Soil under moss | Lamplugh Island | [46] |
17. | Aureobasidium pullulans var. pullulans | Antarctic permafrost | McMurdo Dry Valleys | [42] |
18. | Cadophora malorum | Water | Lakes in Admiralty Bay (King George Island) | [45] |
19. | Cladosporium oxysporum | Lichens | Livingston Island | [43] |
20. | C. cladosporioides | Antarctic permafrost | McMurdo Dry Valleys | [42] |
21. | C. herbarum | Antarctic permafrost | McMurdo Dry Valleys | [42] |
22. | Coelomycetes Incertaesedis | Permafrost sediments | Banger Oasi | [2] |
23. | Cordyceps farinose | Seals nasal swab | Primavera Cape/Cierva Cove | [41] |
24. | C. bassiana | Antarctic permafrost | McMurdo Dry Valleys | [42] |
25. | Cryptococcus victoriae | Soil | Rip Point, Nelson Island | [27] |
26. | Dendryphiella salina | Moss and soil under moss | Lake Carezza | [46] |
27. | Dioszegia hungarica | Snow samples | Trinity Peninsula | [44] |
28. | Epicoccum nigrum | Lichens | Livingston Island | [40] |
29. | E. nigrum | Lichens | Livingston Island | [43] |
30. | Lecanicillium muscarium | Moss | Victoria Land | [48] |
31. | L. muscarium | Permafrost sediments | Bellingshausen Station | [2] |
32. | L. muscarium | Soil | Livingston Island | [43] |
33. | Microdochium phragmitis | Water | Lakes in Admiralty Bay (King George Island) | [45] |
34. | Monodictys austriana | Soil | Livingston Island | [43] |
35. | Mortierella elongate | Soil | Progress station | [49] |
36. | Mrakia blollopsi | Soil | Syowa station | [50] |
37. | Mucor hiemalis | Soil | Livingston Island | [40] |
38. | Neomicrosphaeropsis italica | Snow samples | King George Island | [44] |
39. | Penicillium aurantiogriseum | Soil | Livingston Island | [43] |
40. | P. brevicompactum | Permafrost sediments | Bellingshausen Station | [2] |
41. | P. chrysogenum | Mosses | Livingston Island. | [40] |
42. | P. chrysogenum | Antarctic permafrost | McMurdo Dry Valleys | [42] |
43. | P. citrinum | Soil | Livingston Island | [43] |
44. | P. commune | Soil | Livingston Island | [40] |
45. | P. commune 161 | Soil | Livingston Island | [47] |
46. | P. dierckxii | Soil | Livingston Island | [43] |
47. | P. expansum | Permafrost sediments | Beacon Valley | [2] |
48. | P. expansum | Antarctic permafrost | McMurdo Dry Valleys | [42] |
49. | P. fimorum | Lichens | Livingston Island | [43] |
50. | P. glandicola | Snow sample | Trinity Peninsula | [44] |
51. | P. griseofulvum | Soil | Terra Nova Bay | [51] |
52. | P. olsonii p14 | Soil | Casey Station | [52] |
53. | P. palitans | Antarctic permafrost | McMurdo Dry Valleys | [42] |
54. | P. rubens III11-2 | Soil | Livingston Island | [53] |
55. | P. rubens | Soil | Livingston Island | [40] |
56. | P. solitum | Marine sediments | King George Island | [54] |
57. | P. tardochrysogenum | Snow samples | King George Island | [44] |
58. | P. waksmanii m12 | Soil | Terra Nova Bay | [52] |
59. | Phenoliferia glacialis | Snow samples | Trinity Peninsula | [44] |
60. | Phenoliferia psychrophenolica | Snow samples | King George Island | [44] |
61. | Phoma herbarum | Water | Lakes in Admiralty Bay (King George Island) | [45] |
62. | Pseudogymnoascus pannorum | Soil | Livingston Island | [40] |
63. | Pseudogymnoascus spp. | Lichen thalli and soils | South Shetland Islands | [55] |
64. | Talaromyces pinophilus | Soil | Livingston Island | [40] |
65. | Thelebolus microspores | Penguin sample | Potter Peninsula/Cove | [41] |
66. | T. microsporus | Water | Lakes in Admiralty Bay (King George Island) | [45] |
67. | Torulopsis psychrophila | Soil | Schirmacher Oasis | [56] |
68. | Trichoderma harzianum | Permafrost sediments | Bellingshausen Station | [2] |
Strain | Sources | Response | References |
---|---|---|---|
P. griseofulvum P29 | Terra Nova Bay | ROS generation | [164] |
P. chrysogenum P27 | Terra Nova Bay | ROS generation | [164] |
A. glaucus | Livingston island | ROS generation | [163] |
Penicillium sp. 161 | Livingston island | ROS generation | [163] |
Rhodosporidium kratochvilovae | Cold-adapted yeast | ROS generation | [166] |
P. waksmanii m12 P. olsonii p14 | Terra Nova Bay Casey Station | ROS generation | [165] |
A. fumigatus I-9 | Livingston island | Accumulation in trehalose and glycogen | [167] |
Geomyces pannorum | Signy Island | Changes in lipid composition | [168] |
Metschnikowia bicuspidata | King George Island | Changes in lipid profile | [169] |
Mrakia blollopis | King George Island | Changes in lipid composition | [169] |
P. olsonii p14 | Casey Station | Increase in carbonylated proteins | [52,87,170] |
P. waksmanii m12 | Terra Nova Bay | Increase in carbonylated proteins | [52,87,170] |
A. glaucus | Livingston island | Increase in carbonylated proteins | [163] |
Penicillium sp. 161 | Livingston island | Increase in carbonylated proteins | [163] |
A. fumigatus I-9 | Livingston island | Increase in carbonylated proteins, lipid peroxidation | [167] |
P. griseofulvum | Terra Nova Bay | Increase in carbonylated proteins, lipid peroxidation | [40,171] |
Cryomyces antarcticus | Not specified Antarctic site | Changes in DNA | [172] |
Wickerhamomyces anomalus | King George Island | Changes in lipid profile | [169] |
Goffeauzyma gastrica | King George Island | Changes in lipid profile | [169] |
Strain | Sources | Response | References |
---|---|---|---|
Morphological adaptation | |||
Cryomyces antarcticus | McMurdo Dry Valleys, Southern Victoria Land, | Meristematic growth | [75] |
Cryomyces minteri | Alatna Valley, Victoria Land | Meristematic growth | [75] |
Friedmanniomyces endolithicus | Victoria Land | Meristematic growth, Melanization | [185] |
Friedmanniomyces endolithicus | Northern Victoria Land | Meristematic growth | [75] |
Penicillium sp. 1-6-4 | Livingston island | Intercalary growth chlamydospores | [47] |
Friedmanniomyces endolithicus | Northern Victoria Land | Morphological changes | [155] |
Mrakia blollopis Mrakiella niccombsii | Vestfold Hills area of Davis Base, Antarctica | Morphological changes of cells, hyphae, colonies | [186] |
Penicillium commune 161 | Livingston Island | Ultrastructural changes | [187] |
Penicillium griseofulvum | Terra Nova Bay | Ultrastructural changes | [171] |
Cryomyces antarcticus | McMurdo Dry Valleys | Ultrastructural changes | [188] |
Physiological Changes | |||
Penicilliumgriseofulvum | Terra Nova Bay | Decrease in biomass content | [171] |
Penicillium olsonii p14 Penicillium waksmanii m12 | Casey Station Terra Nova Bay | Decrease in biomass content | [38,52,87,170] |
Pichia pastoris | Cold-adapted | Decrease in biomass content | [189] |
Pseudogymnoascus roseus | Mars Oasis, Alexander Island | Decrease in biomass content | [190] |
Volvariella volvacea | Cold-adapted | Decrease in biomass content | [191] |
Mortierella elongata | Signy Island | Trehalose accumulation | [168] |
Volvariella volvacea | Soil samples | Trehalose accumulation | [192] |
Penicillium olsonii p14 | Casey Station | Trehalose and glycogen accumulation | [52,87,170] |
Aspergillus fumigatus I-9 | Livingston Island | Trehalose and glycogen accumulation | [167] |
Aspergillus glaucus | Livingston Island | Trehalose and glycogen accumulation | [163] |
Humicola marvinii | Signy Island | Trehalose and glycogen accumulation | [168] |
Penicillium griseofulvum | Terra Nova Bay | Trehalose and glycogen accumulation | [40,171] |
Penicillium sp. 161 | Livingston Island | Trehalose and glycogen accumulation | [163] |
Penicillium waksmanii m12 | Terra Nova Bay | Trehalose and glycogen accumulation | [52,87,170] |
Metabolic Adaptation | |||
Aspergillus fumigatus I-9 | Livingston Island | Modification in enzyme profiles | [167] |
Friedmanniomyces endolithicus | Northern Victoria Land | Modification in protein profiles | [155] |
Pseudogymnoascus sp. (sp. 3) | Not specified Antarctic site | Modification in enzyme profiles | [154] |
Penicillium waksmanii m12 | Terra Nova Bay Casey Station | Re-routing of glycolysis into the PPP | [165] |
Penicillium olsonii p14 | Terra Nova Bay Casey Station | Re-routing of glycolysis into the PPP | [165] |
Penicillium waksmanii m12 | Terra Nova Bay Casey Station | Metabolite changes | [193] |
Penicillium olsonii p14 | Terra Nova Bay Casey Station | Metabolite changes | [193] |
Aspergillus glaucus | Livingston Island | Metabolite changes | [163] |
Penicillium sp. 161 | Livingston Island | Metabolite changes | [163] |
Pseudogymnoascus pannorum | Not specified Antarctic site | Metabolite changes | [76] |
Pseudogymnoascus sp. (strain SF-7351) | King George Island | Metabolite changes | [194] |
Pseudogymnoascus spp. strain | South Shetland Islands | Metabolite changes | [55] |
Mrakia psychrophila | Syowa station | Reduced metabolic activity | [50] |
Mrakia blollopis | Syowa station | Changes in carbon metabolism | [50] |
Penicillium olsonii p14 | Casey Station Terra Nova Bay | Changes in carbon metabolism | [165] |
Penicillium waksmanii m12 | Casey Station Terra Nova Bay | Changes in carbon metabolism | [165] |
Pseudogymnoascus sp. (sp.3) | Not specified Antarctic site | Decrease in phospholipid metabolism | [154] |
Activation of antioxidant enzyme defence | |||
Aspergillus glaucus | Livingston Island | SOD, CAT | [43,88,163] |
Penicilliumcommune | Livingston Island | SOD, CAT | [43,88,187] |
Cladosporium cladosporioides | Livingston Island | SOD, CAT | [43] |
Cladosporium herbarum | Livingston Island | SOD, CAT | [43] |
Cladosporium oxysporum | Livingston Island | SOD, CAT | [43] |
Epicoccum nigrum | Livingston Island | SOD, CAT | [43] |
Monodictys austrina | Livingston Island | SOD, CAT | [43] |
Penicillium aurantiogriseum | Livingston Island | SOD, CAT | [43] |
Penicilliumdierckxii | Livingston Island | SOD, CAT | [43] |
Penicillium italicum | Livingston Island | SOD, CAT | [43] |
Penicillium olsonii | Livingston Island | SOD, CAT | [43] |
Penicillium waksmanii | Livingston Island | SOD, CAT | [43] |
Pseudogymnoascus pannorum | Livingston Island | SOD, CAT | [43] |
Rhizopus sp. | Livingston Island | SOD, CAT | [43] |
Penicillium rubens III11-2 | Livingstone Island | CAT | [53] |
Penicillium olsonii p14 | Terra Nova Bay | SOD, CAT | [52] |
Penicillium waksmanii m12, | Terra Nova Bay | SOD, CAT | [52] |
Aspergillus fumigatus I-9 | CAT | [167] | |
Penicillium cyclopium | Spitsbergen | CAT | [195] |
Rhodotorula sp. USM-PSY62 | Casey Station | CAT | [196] |
Volvariella volvacea | Cold-adapted | GPx | [197] |
Penicillium sp. | Not specified Antarctic site | Mn-Peroxidase | [198] |
Molecules with antioxidant and scavenging properties | |||
Aspergillus versicolor | Deep-sea sediments | Phenolic compounds | [199] |
Penicillium citreonigrum SP-6 | Antarctic Great Wall Station | Phenolic compounds | [200] |
Cryomyces antarcticus | Victoria Land | Melanin | [201] |
Knufia petricola A95 | Cold adapted | Carotenoids | [202] |
Rhodosporidium kratochvilovae | Cold adapted | Carotenoids | [166] |
Penicillium citreonigrum SP-6 | Antarctic Great Wall Station | Diketopiperazine | [200] |
Geomyces pannorum | Terra Nova Bay | Phenolic compounds | [181] |
Goffeauzyma gastrica | King George Island | Antifreeze proteins | [169] |
Goffeauzyma gastrica | King George Island | Ergosterol | [169] |
Leucosporidium creatinivorum | King George Island | Ergosterol | [169] |
Vishniacozyma victoriae | King George Island | Ergosterol | [169] |
Exophiala xenobiotica | Galindez Island | Pigments | [203] |
Rhodotorula mucilaginosa | King George Island | Pigments | [203] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abrashev, R.; Miteva-Staleva, J.; Gocheva, Y.; Stoyancheva, G.; Dishliyska, V.; Spasova, B.; Krumova, E.; Angelova, M. Cell Response to Oxidative Stress in Antarctic Filamentous Fungi. Appl. Sci. 2025, 15, 5149. https://doi.org/10.3390/app15095149
Abrashev R, Miteva-Staleva J, Gocheva Y, Stoyancheva G, Dishliyska V, Spasova B, Krumova E, Angelova M. Cell Response to Oxidative Stress in Antarctic Filamentous Fungi. Applied Sciences. 2025; 15(9):5149. https://doi.org/10.3390/app15095149
Chicago/Turabian StyleAbrashev, Radoslav, Jeny Miteva-Staleva, Yana Gocheva, Galina Stoyancheva, Vladislava Dishliyska, Boryana Spasova, Ekaterina Krumova, and Maria Angelova. 2025. "Cell Response to Oxidative Stress in Antarctic Filamentous Fungi" Applied Sciences 15, no. 9: 5149. https://doi.org/10.3390/app15095149
APA StyleAbrashev, R., Miteva-Staleva, J., Gocheva, Y., Stoyancheva, G., Dishliyska, V., Spasova, B., Krumova, E., & Angelova, M. (2025). Cell Response to Oxidative Stress in Antarctic Filamentous Fungi. Applied Sciences, 15(9), 5149. https://doi.org/10.3390/app15095149