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Abstract: In recent years, significant progress has been achieved in developing the potential of
anaerobic membrane bioreactors (AnMBRs). The present paper presents a comprehensive review
of studies focused on biogas production via the treatment of municipal and domestic wastewater
with the use of such technology. The main aim of the current work was to evaluate the impact of
operating parameters on the biogas production yield. Moreover, the possibilities of applying various
fouling mitigation strategies have been discussed in detail. Analyses have been performed and
reported in the literature, which were conducted with the use of submerged and external AnMBRs
equipped with both polymeric and ceramic membranes. It has been shown that, so far, the impact
of the hydraulic retention time (HRT) on biogas yield is ambiguous. This finding indicates that
future studies on this issue are required. In addition, it was demonstrated that temperature has
a positive impact on process performance. However, as presented in the literature, investigations
have been carried out mainly under psychrophilic and mesophilic conditions. Hence, performing
further experimental studies at temperatures above 40 ◦C is highly recommended. Moreover, it has
been shown that in order to restore the initial permeate flux, a combination of several membrane
cleaning methods is often required. The findings presented in the current study may be particularly
important for the determination of operating conditions and suitable fouling mitigation strategies for
laboratory-scale and pilot-scale AnMBRs used for biogas production via the treatment of municipal
and domestic conditions.

Keywords: anaerobic digestion; anaerobic membrane bioreactor; biogas; energy carrier; fouling;
membrane cleaning; methane; wastewater treatment

1. Introduction

Nowadays, special research focus is being placed on the concept of the environmental
protection and sustainability development. In this context, the increasing interest in biogas
is related to the fact that it is an alternative to fossil fuels. In particular, biogas technology
may contribute to reducing both the waste generation and emission of greenhouse gases.
Therefore, in recent years, a continuous increase in biogas production has been noted all
over the world. Moreover, since in the energy sector of many countries biogas production
is a significant option, it is envisioned that its worldwide market size will increase from
USD 55.84 billion in 2022 to USD 78.8 billion by 2030 [1] (Figure 1).

Biogas primarily consists of methane (CH4, 50–75% by volume), carbon dioxide (CO2,
25–50% by volume), and minor amounts of other gases, such as nitrogen (N2), oxygen (O2),
hydrogen (H2), hydrogen sulfide (H2S) as well as water vapor (H2O)(g) [2–4]. It is a green
energy carrier characterized by a calorific value between 20 and 32 MJ/m3 [5] depending
on the CH4 content. However, it is important to note that to find various applications, the
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methane concentration in biogas should exceed 90% [4]. After upgrading and cleaning
with the use of commercially available technologies [6–9], biogas may be used for power
and heat generation, transportation, as well as thermal energy generation for industrial
applications. Moreover, methane-rich biogas can be used as a feedstock in material and
chemical production [10]. The final biogas applications depend not only on its composition
but also on the factors such as the upgrading process and national frameworks [11]. Worthy
of note, the largest share of biogas is produced in Europe [12] (Figure 2), where it is mainly
used for the generation of heat and electricity [6,13]. The biogas perspectives in Europe
were thoroughly discussed in the review paper [14].
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Biogas is produced via anaerobic digestion (AD) process including instantaneous and
continuous complex phases: hydrolysis, acidogenesis, acetogenesis, and methanogenesis
(Table 1) as a result of organic matter decomposition by various groups of synergistically
acting facultative or obligatory anaerobic microbial species [15–22]. The detailed character-
istics of the subsequent steps in AD have been presented in many previously published
studies [3,10,15,20,23–28]. Roughly speaking, in the first phase, organic matters, mainly
proteins, polysaccharides, and lipids, are hydrolyzed into simple components, such as
glucose (C6H12O6), amino, and fatty acids. This phase is relatively slow and is considered
a rate-limiting step in the AD process due to the complex floc structure of the sewage
sludge. Key bacteria involved in the hydrolytic phase include, for instance, Bacteriocides,
Clostridia, Bifidobacteria, Streptococci, and Enterobacteria. In the following stage, known as
the fermentation phase, amino acids, lipids, and glucose are degraded into methanogenic
compounds, such as hydrogen (H2), alcohols, carbon dioxide (CO2), carbon acids, and
ammonia. It should be pointed out that when pH is higher than 5, the production of
volatile fatty acid is favored. On the other hand, for pH lower than 5, ethanol production
(CH3CH2OH) is enhanced. During this phase, bacteria such as Streptococcus, Staphylococcus,
Escherichia, Bacillus, Sarcina, and Desulfovibrio are active. During the acetogenesis, volatile
fatty acids are converted into CO2, H2, and acetate. Importantly, it determines the biogas
production efficiency since the acetate ion reduction forms about 70% of CH4. Among
the involved bacteria are mainly Desulfovibrio, Syntrophobacter wolinii, and Syntrophomonas.
Finally, during methanogenesis, acetic acid is converted into methane and CO2. In addition,
more CH4 is produced via the reaction of CO2 with hydrogen gas and ethanol decarboxyla-
tion. Importantly, the CH4 production rate depends on both availability of substrate and
methane formers. At this stage, there are mainly the following bacteria: Methanosarcina and
Methanosaeta (acetophilic methanogenic) and Methanospirilum, Methanobacterium formicicum,
Methanoplanus, and Methanobrevi bacterium (hydrogenophilic methanogenic).

In recent years, there is a growing recognition that for biogas production, many types
of widely available wastewater can be used as feedstock. This is particularly important since
approximately 400 billion m3 of wastewater is generated worldwide every year [29–31].
Currently, the greatest attention is focused on municipal and domestic wastes which are
recognized as a considerable environmental, economic, and social problem around the
world [32–34]. Importantly, a comprehensive evaluation of the scientific literature allows
us to indicate that the process performance is strongly dependent on several other factors,
such as the reactor design, feed pretreatment process, concentration of volatile fatty acids,
carbon-to-nitrogen ratio (C/N), and pH as well as operating conditions: (i) temperature,
(ii) hydraulic retention time (HRT), (iii) solid retention time (SRT), and (iv) organic loading
rate (OLR) [16,18,20,23,24,35–40].

Biogas production from sludge in wastewater treatment plants (WWTPs) has been
implemented for many years [35]. Traditionally, it is realized by coupling the cattle manure
treatment and sewage sludge from WWTPs. Although, for this purpose, various types of
reactors can be used [25,37,40–42]; according to [13], the up-flow anaerobic sludge blanket
(UASB) reactor is the most popular system. In fact, the benefits of the AD process have been
frequently presented in the literature [10,13,20,43,44]. Briefly, there is general agreement
that it is an environmentally friendly technology that allows conserving natural resources.
However, conventional anaerobic technologies are characterized by several disadvantages
including process sensitivity, long start-up period, odor problems, and requirements of
post-treatment processes [45,46].
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Table 1. Subsequent steps in the anaerobic digestion process. Based on [3,10,15,20,23–28].

Process Description Stoichiometric Equation Equation

hydrolysis

- complex organic matters are broken into simple molecules, such as sugars i.e., glucose
(C6H12O6), amino acids, and fatty acids
- reaction catalyzed by acids
- phase relatively slow considered a rate-limiting step in the anaerobic digestion
- exemplary microorganisms: Bacteriocides, Clostridia, Bifidobacteria, Streptococci, Enterobacteria

nC6H10O5 + nH2O→ nC6H12O6 (1)

acidogenesis

- known as the fermentation stage
- compounds formed during the hydrolysis are degraded into hydrogen (H2), alcohols, carbon
dioxide (CO2), carbon acids, and ammonia
- for pH > 5 volatile fatty acid production is favored, meanwhile for pH < 5 ethanol
(CH3CH2OH) production is enhanced
- produced acetic acid (CH3COOH) and butyric acid (CH3CH2CH2COOH) are the preferred
precursors for CH4 production
- exemplary microorganisms: Streptococcus, Staphylococcus, Escherichia, Bacillus,
Sarcina, Desulfovibrio

C6H12O6 ↔ 2CH3CH2OH + 2CO2
C6H12O6 + 2H2 ↔ 2CH3CH2COOH + 2H2O

C6H12O6 → 3CH3COOH

(2)
(3)
(4)

acetogenesis

- conversion of acidogenesis products into CO2, H2, and CH3COOH
- phase reflecting the biogas production efficiency
- exemplary microorganisms: Desulfovibrio, Syntrophobacter wolinii, Syntrophomonas

CH3CH2COO− + 3H2O↔ CH3COO− + H+HCO3
− + 3H2

C6H12O6 + 2H2O↔ 2CH3COOH + 2CO2 + 4H2
CH3CH2OH + 2H2O↔ CH3COO− + 3H2 + H+

(5)
(6)
(7)

methanogenesis

- the most crucial stage in biogas production,
- production of CH4 from acetate by methanogens (nearly 70%) and via reaction of CO2 and H2
- formation of CH4 by decarboxylation of ethanol
- the CH4 production rate depends on both the availability of substrate and methane formers
- exemplary microorganisms: Methanobacterium formicicum, Methanobrevi bacterium

CH3COOH→ CH4 + CO2
CO2 + 4H2 → CH4 + 2H2O

2CH3CH2OH + CO2 → CH4 + 2CH3COOH

(8)
(9)

(10)
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Recent advances in chemical engineering have opened up the possibility of overcoming
the above-mentioned limitations by application of anaerobic membrane bioreactor (An-
MBR) technology. AnMBRs combine conventional anaerobic digestion with a membrane
separation unit that retains high molecular-mass substances and prevents the washout of
methane-forming microorganisms. For this purpose, mainly the low-pressure membrane
processes: microfiltration (MF) and ultrafiltration (UF) are applied. Consequently, as was
indicated in [47], the amount of biogas produced in AnMBRs is more significant than
that obtained via conventional processes of the wastewater treatment. The undeniable
advantages of AnMBRs technology have been presented in a significant number of re-
view papers [26,38,48–55]. According to the above-mentioned studies, the most important
benefits of the AnMBRs application are high biomass concentration and enhanced biogas
yield, effluent with excellent quality without suspended solids, small footprint, low sludge
production, and high treatment capacity. It should be pointed out that in our recently
published review article [48], it was demonstrated that the AnMBRs are energy-efficient
technology. Indeed, through detailed studies, it was concluded that the net energy de-
mand of submerged AnMBRs used for the treatment of sulfate-rich municipal wastewater
is significantly lower than that noted for WWTPs. Furthermore, results obtained in the
above-mentioned work indicated that the AnMBRs technology used for the treatment of
low-sulfate municipal wastewater has the potential to be a net energy producer. Due to the
above-presented advantages, the AnMBRs technology is a highly appreciated opportunity
for biogas production via municipal and domestic treatment.

The application of AnMBR technology for biogas production is frequently investigated
in scientific research. Indeed, ScienceDirect contains 5946 records related to the presented
subject which have been published between 2003 and 2022. Moreover, the performed
analysis demonstrated that the number of articles focused on biogas and AnMBRs increased
significantly, especially in the last decade (Figure 3). Undoubtedly, this finding confirms
the importance of the research topic presented in the current study.
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It is recognized that the large-scale implementation of AnMBR technology is a great
challenge mainly due to the fouling which is caused by the matter attached to the membrane
surface or trapped inside its pores. This issue is of critical importance since it leads to
a reduction in the system performance and thus, an increase in the operation cost. In
terms of the treatment of municipal and domestic wastewater, fouling is a very complex
phenomenon. It is due to the fact that the above-mentioned types of wastewater contain a



Appl. Sci. 2023, 13, 6466 6 of 22

huge number of various compounds, such as organic matters, nutrients, heavy metals, and
organic micropollutants [56–58]. Moreover, the wastewater composition may vary with
the seasons and location [59–61] which additionally hinders the estimation of the process
performance and efficiency. Worthy of note, anaerobic sludge may produce granules
leading to more severe membrane contamination [50]. A more detailed overview on the
membranes fouling in the AnMBRs can be found for example in [54,62–66].

It has been recognized that the successful long-term performance of AnMBRs depends
on the effectiveness of membrane cleaning. Indeed, it is a key procedure that aims to
maintain the membrane performance and separation properties as well as to prevent
contamination of the installation with microorganisms. In AnMBRs technology, the fouling
mitigation strategy is of crucial importance since it accounts for more than 70% of the
energy consumption [67]. In brief, the methods of membrane cleaning are categorized
into three groups: chemical, physical, and physio-chemical. It should be emphasized
that physical cleaning is adopted to remove reversible fouling while chemical cleaning to
remove irreversible fouling [26,68,69].

To the best of the authors’ knowledge, the review articles focused on biogas perfor-
mance in AnMBRs applied for the treatment of municipal and domestic wastewater are
very limited. Consequently, the impact of the process parameters on biogas yield has been
poorly described so far. The present paper is a continuation and complement of our recently
published study [48] wherein it was clearly documented that the AnMBRs are an energy-
efficient technology. Accordingly, the current work aimed at comprehensively evaluating
and discussing the impact of the process parameters, such as temperature and hydraulic
retention time, on biogas production yield in AnMBRs via the treatment of municipal and
domestic wastewater. Analysis reported so far in the literature have been conducted with
the use of submerged and external AnMBRs equipped with both polymeric and ceramic
membranes. Moreover, the possibilities of applying various fouling mitigation strategies
have been discussed in detail.

2. Biogas Production in AnMBRs
2.1. AnMBR Configurations and Operating Conditions

Our systematic literature review indicated that investigations on biogas production in
AnMBRs have been carried out at the pilot [70–82], semi-industrial/semi-pilot [83,84], and
laboratory (bench) scales [77,85–103] (Table 1).

Two AnMBRs configurations were used: external (side-stream) and submerged
(Figure 4). In the case of the external system, the membrane filtration unit was separated
from a biological reactor, while in the submerged installation, the membrane was sub-
merged inside the reactor (or inside an external tank). Most of the above-mentioned works
have been performed with the use of submerged AnMBRs. Undoubtedly, this is related
to the fact that this configuration has a significantly lower energy requirement [104–106],
which is crucial for industrial implementations of the technology.

Moreover, an analysis of the collected data showed that polymeric membranes, such as
polyvinylidene fluoride (PVDF), polyethersulfone (PES), polypropylene (PP), polyethylene
(PE), and polyethylene terephthalate (PET), were the most commonly used. Only a few
papers [87,89,92,102,103] have investigated the suitability of ceramic membranes. This can
be attributed to the fact that the application of ceramic membranes leads to an increase in
the cost of AnMBR technology. Indeed, although a decrease in the cost of ceramic mem-
branes over the last 20 years has been noted [107], their fabrication is complex and they
are more expensive than polymeric ones [108–111]. However, ceramic membranes have
several significant advantages, including high porosity and hydrophilicity, excellent sepa-
ration properties, and high thermal, mechanical, and chemical stability [112–118]. Hence,
additional experimental investigations are needed to determine the process performance in
AnMBRs equipped with ceramic membranes.
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Generally, the digestion process can be performed at psychrophilic (<25 ◦C), mesophilic
(30–40 ◦C), or thermophilic (50–60 ◦C) conditions. The studies performed in the literature
have been carried out under temperatures in the range from 10 ◦C [76] to 37 ◦C [81,84];
nevertheless, mesophilic temperatures are the most frequently applied.

Worthy of note, in the analyzed studies, wide ranges of HRT and SRT were used.
Indeed, the values of HRT, defined as a ratio of the reactor volume to the influent flow
rate in time, ranged from 2.2 h [71] to 47 days [84]. In turn, SRT, which indicates the
average time of the activated-sludge solids in the AnMBR, was between 20 days [72,80]
and 1000 days [99].

The optimum pH for the methanogenesis process is between 6.8 and 7.4 [119–122].
In most of the investigations, the feed pH was kept in the above-mentioned range. For
this purpose, feed neutralization with the use of chemicals such as sodium bicarbonate
(NaHCO3) [77,86,102,103] and sodium hydroxide (NaOH) [98] solutions was carried out.

The process performance is described by the biogas (methane) yield, which is defined
as the ratio of the total volume of biogas (methane) produced (Vgas) to the chemical oxygen
demand (COD) removed (difference between the COD fed (CODf) from the reactor and the
COD of the permeate (CODp)) according to the following equation:

biogas (methane) yield =
Vgas

CODf −CODp
(11)

The theoretical biogas and methane yields at standard temperature and pressure
conditions are equal to 0.5 L/g COD and 0.35 L/g COD, respectively [123].

2.2. Process Yield
2.2.1. Impact of HRT

The key factor affecting the process of biogas production is HRT. It is a well-accepted
fact that microorganisms occurring in the feed that convert organic substrates into biogas
require sufficient retention time. In addition, performing wastewater treatment in AnMBRs
under a short HRT may significantly affect the microbial community, which is important for
the performance of the anaerobic process [97,124]. Importantly, HRT should also be selected
according to the expected quality of the effluent and the costs of reactor maintenance [77].
Roughly speaking, a small-volume bioreactor is related to a short HRT and, consequently,
to lower capital costs [125].

The literature reports related to the impact of the HRT on the biogas yield in the
AnMBRs used for the treatment of municipal and domestic wastewater are ambiguous in
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terms of results. In studies [70,79,85,91,96,99] it has been demonstrated that biogas produc-
tion increased with the decrease in HRT. More specifically, Chen et al. [91] investigated
biogas production in a laboratory-scale submerged AnMBR inoculated with anaerobically
digested sludge from the WWTP. The above-mentioned authors noted the average values
of the biogas production rate as equal to 0.14 L/L/day; 0.28 L/L/day; 0.42 L/L/day;
0.56 L/L/day; and 0.89 L/L/day at HRT equal to 48 h; 24 h; 16 h; 12 h; and 8 h, respectively.
Moreover, it has been demonstrated that the CH4 content in biogas increased from 70% to
about 80% with HRT decreasing from 48 h to 12–8 h. Huang et al. [85] studied the effect
of HRT and SRT on the treatment performance and membrane fouling in a submerged
AnMBR used for the treatment of low-strength wastewater. In the above-mentioned study,
the authors applied the HRT in the range from 8 h to 12 h. The highest value of the CH4
yield equal to 0.25 ± 0.041 L/g COD was obtained for an HRT of 8 h. On the other hand,
the lowest value, equal to 0.138 ± 0.031 L/g COD, was noted for an HRT of 12 h. The
authors pointed out that this finding can be attributed to the fact that at shorter HRT, the
biomass concentration in AnMBR is higher, which resulted in a higher methane production.
These results are in good agreement with the results of [79], wherein a large pilot-scale
submerged AnMBR was used. The system was firstly operated under an HRT equal to
48 h and, subsequently, HRT was gradually decreased to 24 h; 12 h; 8 h; and 6 h. For
an HRT of 24 h, the biogas yield was equal to 0.16 L/g COD, while for HRT between
12 h and 6 h, it was equal to 0.25 L/g COD. In turn, investigations performed with the
use of the external AnMBR were presented by Wei et al. [99]. Wastewater treatment was
studied for the HRT of 6 h and 12 h. For an HRT of 6 h, the CH4 yield was in the range
from 0.175 ± 0.006 L/g COD to 0.386 ± 0.035 L/g COD; meanwhile, for the HRT of 12 h,
values between 0.129 ± 0.004 L/g COD to 0.359 ± 0.010 L/g COD were noted. Overall,
the above-presented results indicate that in the initial period of the wastewater treatment
process, the bioconversion rate and CH4 yield are higher. Subsequently, due to substrate
loss and increases in metabolite concentrations, the process efficiency decreases and more
by-products are formed. As a result, the average value of gas production expressed as [L/g
COD] decreases with an increase in the retention time.

Interestingly, the study presented by Ji et al. [70] does not support the above-discussed
findings. The above-mentioned authors investigated the treatment of municipal wastewater
in pilot-scale submerged AnMBRs at a low temperature (15 ◦C). It was shown that extending
the HRT had a positive effect on the biogas yield. Indeed, at an HRT of 24 h, the biogas
yield was equal to 0.28 L/g COD, while at an HRT of 16 h and 12 h, it was equal to 0.26 L/g
COD, and 0.17 L/g COD, respectively.

On the other hand, the above-discussed results are not in line with those presented
in [77,96,100] wherein it was found that HRT does not have an impact on the biogas
production in AnMBRs. Ho and Sung [100] used a laboratory-scale AnMBR equipped with
a tubular polytetrafluoroethylene (PTFE) microfiltration membrane. They demonstrated
that the obtained methane yield was equal to 0.21–0.22 L/g COD, regardless of the applied
values of HRT (12–6 h). In turn, in [96], two AnMBRs with MF and UF membranes for the
treatment of municipal wastewater were used. The process was conducted under a wide
range of HRT values, from 24 h to 12 h. It was demonstrated that in an AnMBR equipped
with the MF membrane, under the HRT of 24 h; 12 h; 14.4 h; and 12 h, the methane yield
was equal to 0.15 ± 0.02 L/g COD; 0.15 ± 0.02 L/g COD; 0.18 ± 0.03 L/g COD; and
0.19 ± 0.02 L/g COD, respectively. In turn, with regards to the AnMBR system with a UF
membrane, under the HRT of 24 h; 14.4 h; and 12 h, the methane yield was 0.16 ± 0.04,
0.20 ± 0.03 L/g COD; and 0.18 ± 0.02 L/g COD, respectively.

As demonstrated above, defining the impact of HRT on the biogas production
in AnMBRs applied for municipal and domestic wastewater is not straightforward.
Therefore, in the current study, we performed an analysis data collected from the lit-
erature [70–75,77,78,83–85,87,89,90,92,95,96] (Figure 5). It can be seen that, generally,
the highest methane yield values have been obtained for the shortest HRT. However,
the most suitable value of HRT in AnMBRs technology applied for biogas production
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depends on other operational factors, including temperature. Based on the literature
review and findings presented above, it can be concluded that further experimental
studies on the impact of HRT on the biogas yield in AnMBRs are highly warranted.
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It is important to point out that HRT may also have a significant impact on the
membrane fouling mechanism. For instance, in [91], it was documented that performing
wastewater treatment in a laboratory-scale AnMBR under HRT for longer than 12 h leads
to membrane pore blocking. On the other hand, for HRT less than 8 h, the main reason for
the decline of permeate flux was the formation of a cake layer on the membrane surface.
These findings can be explained by the fact that, generally, shortened HRT results in an
enhanced accumulation of particulates and colloidal matter in a feed.

2.2.2. Impact of Temperature

It is apparent that temperature plays a key role in biogas production in AnMBR tech-
nology. Indeed, it mainly affects the structure and composition of the microbial community,
the hermodynamic equilibrium of biochemical conversion, and the stoichiometry of the
final products [126,127]. More precisely, the process temperature allows the thermody-
namically feasible reactions and microorganisms able to grow [128]. In general, municipal
wastewater has a temperature below 20 ◦C, which limits the hydrolysis process and the
dissolution of complex organic constituents (Table 1) [125]. It should be pointed out that the
microbial community is sensitive to temperature fluctuations, which may lead to changes
in the rate of maximum specific growth and substrate utilization [129]. Moreover, the
decreasing temperature may result in a decrease in both the production rate of volatile
fatty acids and ammonia concentration [40]. Furthermore, the temperature has a significant
impact on the hydrogen partial pressure in a rector; hence, it affects the kinetics of the
syntrophic metabolism [130].

Due to the aforementioned reasons, it is of crucial importance to investigate the impact
of temperature on the biogas yield in AnMBR technology. From a technological point of
view, the important fact is that temperature may have an impact on methane distribution
between the gas and liquid phases. Indeed, a decrease in temperature leads to an increase
in the fraction of methane dissolved in a permeate [131,132]. Surprisingly, according to
the data presented in Table 2, it can be indicated that although many attempts have been
made to examine the biogas production in AnMBRs, the influence of temperature on
the process performance has only been reported in a limited number of studies for both
laboratory-scale [95] and pilot-scale [74,76,80] installations.



Appl. Sci. 2023, 13, 6466 10 of 22

Table 2. Studies on the biogas production in AnMBRs applied for the treatment of municipal and domestic wastewater: Literature review.

AnMBR Membrane Characteristics Process Conditions Biogas or Methane
Production Yield

[L/g COD]
Ref.Scale Configuration Volume (L) Type Pore size

(µm) Material Configuration Area (m2) Temperature
(◦C)

HRT
(h) or (d)

SRT
(d) pH

pilot submerged 20 MF 0.4 PVDF hollow fiber NI 15 6–24 h 20.7–515.7 d NI 0.17–0.28; 0.12–0.23 [70]
pilot submerged 25 MF 0.2 NI hollow fiber 5.4 35 2.2 h NI NI 0.12 [71]
pilot submerged 160 UF 0.045 NI hollow fiber 0.93 18 ± 2 7.0–17.1 h 20 d NI 0.18; 0.23 [72]
pilot submerged 326 UF 0.045 NI hollow fiber 0.93 18 9.8–20.3 h NI NI 0.14 ± 0.01–0.26 ± 0.01 [73]
pilot submerged 350 UF 0.038 PES flat sheet 3.5 20–35 0.8 d NI NI 0.23; 0.27 [74]
pilot submerged 350 UF 0.038 PES flat sheet 3.5 20 ± 1 0.74–1.10 d NI NI 0.29 [75]
pilot submerged 496 UF 0.045 NI hollow fiber 1.86 10–28 8–10 h NI 8.2 ± 0.3 0.09–0.14 [76]
pilot submerged 550 UF 0.04 PVDF hollow fiber 5.4 23 ± 1 8.5 h 40–100 d 6.7–6.8 0.115 ± 0.021–0.072 ± 14 [77]
pilot submerged 1300 UF 0.05 NI hollow fiber 30 33.3 ± 0.2 6–21 h 70 d 6.72 ± 0.08 0.069 ± 0.022 [78]
pilot submerged 5000 MF 0.4 PVDF hollow fiber 72 25.3 ± 0.9–26.5

± 0.8 6–48 h 29.0–123.5 d 6.69 ± 0.11–6.80
± 0.26 0.16–0.27 [79]

pilot submerged 5000 MF 0.4 PVDF hollow fiber 72 15–25 8 h 20–100 d NI 0.205–0.244 [80]
pilot external 50 UF NI 1 NI cross-flow 1 37 7 d NI 7.31–8.37 0.46 [81]
pilot external 2100 UF 0.03 NI hollow fiber 31.999 27 ± 1 24.4 ± 0.4 h 140 ± 3 d NI 0.108 ± 0.018 [82]
semi-

industrial submerged 2100 UF 0.05 NI hollow fiber 30 33 15 h 70 d NI 0.333 [83]
semi-pilot submerged 94 MF 0.4 PVDF flat sheet 0.14 37 ± 1 47 d NI NI 0.28; 0.29 [84]

bench submerged 5 MF 0.45 PES plate and frame 0.118 25–30 8–12 h 30 d; 60 d and
infinite 7.0 ± 0.5 0.124 ± 0.012–0.219 ± 0.027 [85]

bench submerged 5 MF 0.45 PES plate and frame 0.118 25–30 10 h 30–90 d 7.0 ± 0.5 NI 2 [86]
bench submerged 8 UF 0.04 PVDF hollow fiber 0.07 23 ± 1 12.5 h 40 d 6.7–6.8 0.072 ± 13 [77]
bench submerged 24 UF 0.1 ceramic NI 0.2 30–35 12 h NI NI 0.185 ± 0.08; 0.222 ± 0.12 [87]

laboratory submerged 3 MF 40 NI rectangular 0.0108 35 ± 1 14 h NI NI 0.24 [88]
laboratory submerged 3.6 MF and UF 0.08–0.30 ceramic NI NI 25–30 7.5 h 60 d NI 0.1 ± 0.02 [89]
laboratory submerged 4 MF 0.2 PP hollow fiber 0.06 35 ± 1 12–48 h NI NI 0.15–0.35 [90]
laboratory submerged 6 MF 0.2 PE flat sheet 0.116 25 ± 1 8–48 h infinite 6.8–7.5 NI 3 [91]

laboratory submerged 6 MF 0.1 ceramic flat sheet 0.045 30 ± 3 17 h 30 d 7.80 ± 0.21; 7.84
± 0.11 0.064 ± 0.02; 0.070 ± 0.03 [92]

laboratory submerged 6 MF 0.2 PET flat sheet 0.116 25 ± 1 12 and 24 h NI 6.9–7.3 NI 4 [93]
laboratory submerged 6 MF 0.2 PET flat sheet 0.116 25 ± 1 12 h NI NI NI 5 [94]

laboratory submerged 20 MF 0.4 PVDF hollow fiber NI 15–25 6 h 20.7–93.9 d 7.0–7.3 0.06 ± 0.01–0.17 ± 0.01;
0.09 ± 0.02–0.22 ± 0.02 [95]

laboratory submerged 20 MF 0.4 NI NI 0.146 25 12–24 h infinite 6.9 ± 0.1 0.15 ± 0.02–0.19 ± 0.02;
0.20 ± 0.03–0.24 ± 0.02; [96]

laboratory submerged 20 MF 0.05 NI NI 0.27 25 12–24 h infinite 6.9 ± 0.1 0.16 ± 0.04–0.20 ± 0.03;
0.21 ± 0.05–0.26 ± 0.04 [96]

laboratory submerged 20 MF 0.4 NI NI NI 25.0 ± 0.2 4–24 h NI NI NI 6 [97]
laboratory submerged 20 UF 0.05 NI NI NI 25.0 ± 0.2 10–24 h NI NI NI 7 [97]
laboratory submerged 80 UF NI 1 PVDF flat sheet 0.6 30 ± 3 10 h NI 7.0 ± 0.2 0.24 [98]
laboratory external 2 UF 0.03 PVDF hollow fiber 0.031 35 ± 1 6 h; 12 h 1000 d 7.0 ± 0.1 0.129 ± 0.004–0.396 ± 0.033 [99]
laboratory external 4 MF 1 PTFE tubular 0.090– 0.012 25 ± 1 6–12 h NI 7.3–7.9 0.21–0.22 [100]
laboratory external 5.5 UF 0.05 PVDF flat sheet 0.02 NI 2.4 ± 0.6–3.6 ±

1.1 d NI 7.6 ± 0.3–8.4 ±
0.2 0.214 ± 0.079–0.322 ± 0.060 [101]

laboratory external 30 MF 0.1 ceramic NI 0.09 35 ± 1 5 d 140 d 7.0 0.4–0.6 [102]
laboratory external 30 MF 0.1 ceramic NI 0.09 35 ± 1 4 d 180 d 7 0.2 [103]

1 100 kDa cut-off, 2 methane yield: 0.19± 0.05–0.50± 0.16 L/d, 3 biogas production rate: 0.14–0.89 L/L/d, 4 biogas production rate: 1.13–2.55 L/d, 5 biogas production rate: 2.25–4.25 L/d,
6 biogas production rate: 0.06–0.1 L/L, 7 biogas production rate: 0.076–0.093 L/L, NI—no information, PE—polyethylene, PES—polyethersulfone, PET—polyethylene terephthalate,
PVDF—polyvinylidene fluoride, PP—polypropylene, PTFE—polytetrafluoroethylene, HRT—hydraulic retention time, SRT—sludge retention time.
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Ji et al. [95] investigated the application of a laboratory-scale submerged anaerobic
membrane bioreactor for the treatment of municipal wastewater under constant HRT equal
to 6 h and temperatures of 15 ◦C; 20 ◦C; and 25 ◦C. For this purpose, a PVDF microfiltration
membrane was used. In the above-mentioned study, it was demonstrated that temperature
has a remarkable effect on biogas production. Indeed, for 20 ◦C and 25 ◦C, the obtained
biogas yield was equal to 0.18 L/g COD and 0.22 L/g COD, respectively. In turn, for
a temperature of 15 ◦C, the value of 0.09 ± 0.02 L/g COD was obtained. These results
demonstrated that at low operation temperatures, the activity of anaerobic microorganisms
is significantly lower. The same range of temperature values was applied by Rong et al. [80]
wherein a pilot-scale AnMBR system equipped with a PVDF microfiltration membrane was
used. Likewise, it was shown that temperature is a key factor affecting methane production.
More specifically, for temperatures of 25 ◦C; 20 ◦C; and 15 ◦C the recorded values of
the methane yield were equal to 0.244 L/g COD, 0.234 L/g COD and 0.205 L/g COD,
respectively. In turn, Peña et al. [76] have demonstrated that in a pilot-scale submerged
AnMBR used for municipal wastewater treatment, decreasing the temperature below 15 ◦C
resulted in negligible biogas production. What becomes apparent from the discussed
studies is that, generally, increasing temperature leads to an increase in the biogas and
methane yield.

Analysis of data collected from the literature (Figure 5) shows the slight impact of
the temperature on the average methane yield. It can be observed that the highest process
performance (methane yield: 0.312 L/g COD and 0.333 L/g COD) was obtained under the
highest values of temperature (33 ◦C and 35 ◦C) applied. This finding can be attributed to
the fact that increasing temperature allows for an increase in the reactivity and kinetics of
the biological and chemical processes of biogas production. On the other hand, it has to be
emphasized that since heating the reactors requires energy, it leads to an increase in the
AnMBRs technology cost.

Based on the findings presented above, it can be indicated that there is a lack of feasibility
studies on biogas production in AnMBRs via the treatment of municipal and domestic
wastewater under thermophilic conditions. Although mesophilic conditions are more stable,
thermophilic ones demonstrate several benefits, such as earlier organic material degradation
and thus shorter hydraulic retention times and greater efficiency [16,39]. Hence, it would be
meaningful to investigate biogas production in AnMBRs under thermophilic conditions.

3. Fouling Mitigation Strategies

It is a well-accepted fact that the membrane fouling phenomenon can be controlled
by various methods. Table 3 shows literature reports on fouling mitigation strategies
in submerged and external AnMBRs applied for biogas production via the treatment
of municipal and domestic wastewater. Overall, the strategies can be categorized into
the following methods: (i) physical cleaning, such as biogas sparging, manual cleaning,
relaxation, and ultrasonication as well as (ii) physio-chemical cleaning, including chemically
enhanced backwashing, and (iii) chemical cleaning. It is fundamental to note that in most of
the studies, a combination of several methods of membrane cleaning has been applied. This
can be explained by the fact that some compounds of wastewater form irreversible fouling,
the removal of which requires various cleaning methods, including chemical cleaning.
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Table 3. Fouling mitigation strategies in AnMBRs technology applied for the treatment of municipal and domestic wastewater: Literature review.

AnMBR Membrane Characteristics Fouling Mitigation Strategy

Ref.Scale Configuration Type Material Configuration Biogas
Sparging

Manual
Cleaning Relaxation Ultrasonic

(Chemically
Enhanced)

Backwashing

Chemical
Cleaning/
Soaking

Used Agents

pilot submerged UF NI hollow fiber + − + − + + NaClO [72]
pilot submerged UF NI hollow fiber + − + − + − - [73]
pilot submerged UF PES flat sheet + − + − + − - [74]
pilot submerged UF PES flat sheet − − + − + − - [75]
pilot submerged UF NI hollow fiber − − − − + + NaClO [76]
pilot submerged UF NI hollow fiber + − + − − − - [78]
pilot submerged MF PVDF hollow fiber + − + − + − NaClO and citric acid [79]
pilot submerged MF PVDF hollow fiber + − − − + + NaClO and citric acid [80]

pilot external UF NI 1 cross-flow − − − − − + NaOH, NaHSO4,
citric acid, EDTA [81]

pilot external UF NI hollow fiber − − + − + − - [82]
semi-
pilot submerged MF PVDF flat sheet − − − − + − - [84]

bench submerged MF PES plate and frame − − − − − + NaClO [85]
bench submerged UF ceramic NI + − + − + − - [87]

laboratory submerged MF NI rectangular + − − + − − - [88]
laboratory submerged MF, UF ceramic NI − + − − + − - [89]
laboratory submerged MF PP hollow fiber − + − − − + NaOH and HNO3 [90]
laboratory submerged MF PE flat sheet − − − − − + NaClO and citric acid [91]
laboratory submerged MF ceramic flat sheet − + − − − + NaClO and citric acid [92]
laboratory submerged MF PVDF hollow fiber − − − − + − NaClO [95]
laboratory submerged MF NI NI − + − − + + NaClO and citric acid [96]
laboratory external MF PTFE tubular − − − − − + NaClO [100]
laboratory external UF PVDF flat sheet − + − − − + NaClO [101]
laboratory external MF ceramic NI − − − − − + NaOH [102]

1 100 kDa cut-off, EDTA—ethylene diamine tetraacetic acid, NI—no information, PE—polyethylene, PES—polyethersulfone, PVDF—polyvinylidene fluoride, PP—polypropylene,
PTFE—polytetrafluoroethylene.
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3.1. Physical Cleaning

In AnMBRtechnology used for biogas production, the physical cleaning of membranes
is carried out via biogas sparging, manual membrane cleaning (sponge sweeping), relax-
ation, and ultrasound. Biogas sparging has been used to control the membrane fouling
in submerged AnMBRs [21,72–74,78–80,87,88]. Gas bubbles may affect the properties of
the cake layer formed on a membrane surface. Finally, this strategy may result in the
detachment of the cake layer and reduce its thickness and compactness [29], leading to
back transport of foulants to the feed. In the literature, a wide range of gas velocities have
been applied (Table 4). For instance, Gouveia et al. [73] applied continuous biogas sparging
with a superficial velocity between 8 m/h and 16 m/h at the bottom of hollow-fiber UF
membranes mounted in a pilot-scale AnMBR. In turn, Martinez-Sosa et al. [74] employed
gas sparging to minimize particle deposition on the surface of a polyethersulfone (PES)
ultrafiltration membrane during the whole operation of a pilot-scale AnMBR. For this
purpose, the gas velocity of 62 m/h was applied. In a subsequent paper, Gimenez et al. [78]
applied a constant biogas sparging intensity of 0.23 Nm3/m2h to ensure suitable shear con-
ditions over the surface of an industrial hollow-fiber UF membrane. It should be pointed
out that this strategy is energy-consuming [80]; however, it facilitates the mass transfer
of CH4 to a reactor headspace, which may ensure a reduction of its losses in the liquid
phase [133].

Table 4. Biogas velocity applied in AnMBR technology.

AnMBR Membrane Characteristics Biogas velocity
(m/h) or (L/min) Ref.Scale Configuration Type Material Configuration

pilot submerged UF NI hollow fiber 40–60 m/h [72]
pilot submerged UF NI hollow fiber 9–16 m/h [73]
pilot submerged UF NI hollow fiber 62 m/h [74]
pilot submerged UF NI hollow fiber NI 1 [78]
pilot submerged MF PVDF hollow fiber 0.75 m/h [79]

laboratory submerged MF NI rectangular 1 L/min [88]
1 biogas sparging intensity: 0.23 Nm3/m2h, NI—no information, PVDF—polyvinylidene.

Manual cleaning is a well-known method of recovering membrane permeability,
usually performed ex situ [68]. Several studies [89,90,92,96,101] have employed this strategy
for the fouling control in AnMBRs used for biogas production. An interesting protocol for
MF membrane cleaning was proposed by Ji et al. [96]. In the above-mentioned study, the
membrane was gently scrubbed with a sponge before backwashing and soaking. Likewise,
in another study [92], before soaking the ceramic MF membrane in chemical agents, it was
manually cleaned by a sponge. In turn, in [101], before submerging the polyvinylidene
difluoride (PVDF) ultrafiltration membrane in a solution of NaClO, it was manually flushed
with distilled water.

Relaxation, known as the intermittent cessation of filtration [134–136], is a method of
membrane cleaning based on diffusive back foulant transport from a membrane surface
caused by a concentration gradient [68,137]. It has been used as an intermediate step among
other membrane cleaning methods in several studies [73–75,78,79,82,87]. Our literature
review indicated that in pilot-scale AnMBRs, the relaxation time is generally conducted for
5 s [72] to 60 s [79] (Table 5). For instance, in [74,75], in the operation mode of the AnMBs,
a 30 s pause was applied to relax the polyethersulfone (PES) ultrafiltration membranes. In
turn, Kong et al. [79] proposed 1 min for relaxing PVDF microfiltration membranes. On
the other hand, in [87], wherein a bench-scale AnMBR was used, the membrane relaxation
time was significantly longer (12 h). This can be explained by the fact that long-duration
membrane relaxation leads to a break in the operation of AnMBRs, leading to a reduction
in the economic viability of the technology.

Finally, although the use of ultrasound to restore membrane performance is a relatively
new strategy [138], it has already been applied in AnMBRs used for biogas production. This
method aims to dissolve and displace soluble and insoluble particles [139]. Hence, it is an
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effective method to eliminate the concentration polarization and cake layer formed on the
membrane [68]. Li et al. [88] found that ultrasonic effectively removed the cake layer from
fouled MF membranes used in a laboratory-scale submerged AnMBR. Importantly, this
method did not lead to membrane damage. It is worth mentioning that the most important
factors affecting the efficiency of this strategy are ultrasonic frequency, duration, and power
density [68].

Table 5. Membrane relaxation time applied in AnMBRs technology as a fouling mitigation strategy.

AnMBR Membrane Characteristics Time
(s) or (h) Ref.Scale Configuration Type Material Configuration

pilot submerged UF NI hollow fiber 5 s [72]
pilot submerged UF NI hollow fiber 10 s [73]
pilot submerged UF PES flat sheet 30 s [74]
pilot submerged UF PES flat sheet 30 s [75]
pilot submerged UF NI hollow fiber 50 s [78]
pilot submerged MF PVDF hollow fiber 60 s [79]
pilot external UF NI hollow fiber 50 s [82]

bench submerged UF ceramic NI 12 h [87]
NI-no information, PES-polyethersulfone, PVDF-polyvinylidene.

3.2. Physio-Chemical and Chemical Cleaning

Chemically enhanced backwashing is an essential process for the effective mitigation
of the fouling phenomenon in AnMBRs. This strategy has been performed in several
studies [21,74–76,79,80,82,84,87,89,95,96] wherein both submerged and external AnMBRs
have been applied. During backwashing, liquid flows from the permeate side to the
feed side, leading to the removal of the matter loosely attached to the membrane surface
and deposition inside its pores [140,141]. In most of the analyzed studies, the applied
backwashing was enhanced with the use of sodium hypochlorite (NaClO) and citric acid
(C6H8O7). Worthy of note, in industrial installations, backwashing is performed fully
automatically [137].

Chemical membrane cleaning, including soaking, has been successfully used as a
fouling mitigation strategy in numerous studies [29,72,76,80,81,85,90–92,100–102]. Our
literature review indicated that among the most commonly used chemical agents are alkalis
(sodium hydroxide, NaOH), oxidants (NaClO), chelates (ethylene diamine tetraacetic acid,
EDTA), as well as acids (citric acid and nitric acid, HNO3) (Figure 6). As mentioned by
Puspitasari et al. [142], the efficiency of the above-mentioned agents depends mainly on
the following factors: agent chemical properties, membrane characteristics, and cleaning
operating conditions. Furthermore, the choice of proper cleaning products requires knowl-
edge of the feed nature [143]. Importantly, in membrane technology, a blend of various
cleaning agents is often used.
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For instance, Huang et al. [85] applied the soaking of PES microfiltration membrane in
a NaClO solution overnight followed by thorough flushing with deionized water. NaClO
is the most used oxidant employed for membrane cleaning. It allows for the removal of
organic and biological foulants via oxidation and disinfection processes [68,69]. It may
degrade functional groups of natural organic matter (NOM) into ketonic, carbonyl, and
aldehyde groups, leading to their hydrolysis at high pH levels [144]. Moreover, NaClO
enhances the detachment of organic molecules from the membrane surface by increasing
their hydrophilicity [138]. In another study [101], a PVDF ultrafiltration membrane was
physically and chemically cleaned. The chemical cleaning included submerging the mem-
brane into the NaClO solution for 2 h. Regarding ceramic membranes, Song et al. [102]
demonstrated that the permeate flux can be successfully restored by the use of NaOH.
Worthy of note, in the above-mentioned study, the chemical cleaning was conducted un-
der a temperature of 70 ± 1 ◦C. Clearly, NaOH is a well-known chemical cleaning agent
which acts by both disintegrating large organic particles (e.g., colloids) into fine particles
and hydrolyzing organic matters into small molecules [145]. In addition, NaOH reacts
with fats and oils to form water-soluble soap micelles (saponification process) [139] and
can be successfully used to remove silicates and inorganic colloids [146]. In [147], it was
indicated that the combination of oxidants and alkaline agents removes organic foulants
with greater efficiency than oxidant agents alone. However, it should be pointed out that
chemical cleaning with the use of NaOH and NaClO solutions may lead to a loss of the
polymeric membranes’ integrity the shortening of their lifespan [110,148–150]. Hence, in
order to prevent membrane damage, chemical cleaning should be carried out at a suitable
frequency [151] with the use of suitable agents of an acceptable concentration.

It is well known that improving the membrane cleaning efficiency may be achieved
by sequentially combining alkaline or oxidant reagents with acids, such as citric and nitric
acids. This can be explained by the fact that acids are effective agents for the dissolution of
scale compounds and metal oxides via solubilization and chelating processes [138]. More-
over, HNO3 may also be used to clean organic and biological foulants by nitration [137].
This strategy of chemical cleaning has been well adopted in studies focused on the applica-
tions of AnMBRs for biogas production [79,80,90–92,96]. For instance, in [91], in order to
restore the MF performance, a chlorinated polyethylene (PE) membrane was first cleaned
with tap water and then was soaked in solutions of citric acid and NaClO solutions. Impor-
tantly, the above-mentioned agents are commonly used to neutralize residual alkalinity
after alkaline cleaning and to remove mineral deposits that have been formed during the
cleaning procedure [152].

4. Conclusions

The current study provides a comprehensive review of the performance of biogas
production in submerged and external AnMBRs equipped with polymeric and ceramic
membranes. Special attention has been paid to the impact of temperature and hydraulic
retention time on the biogas yield. Moreover, possible fouling mitigation strategies were
described in detail.

It was demonstrated that in recent years, significant progress has been made in research
focused on the AnMBR applications for biogas production. Indeed, the reliability and
stability of this technology have been qualified by investigations carried out with the use
of laboratory- and pilot-scale installations. The evidence from this study confirmed that
AnMBR technology can be successfully used for biogas production via municipal and
domestic wastewater treatment.

Importantly, the performed literature review indicated that it is not very straightfor-
ward to define the impact of HRT on biogas production in AnMBRs. Indeed, there has been
some disagreement concerning the effect of this parameter on the process performance.
However, data analysis presented in the current study demonstrated that, generally, the
highest values of the methane yield are obtained for the shortest hydraulic retention time.
In addition, increasing the temperature has a positive impact on the methane yield.
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In addition, the fouling mitigation strategies commonly applied in AnMBR technology
were presented and discussed. It was pointed out that, so far, a large number of protocols for
membrane cleaning have been presented in the literature. Furthermore, it has been shown
that in order to restore the initial permeate flux, a combination of several cleaning methods
is often required. This can be explained by the fact that some wastewater compounds
form irreversible fouling on the membrane surface and inside its pores, removing of which
requires specific conditions.

Finally, the findings presented in the current study may be particularly important for
the determination of operating conditions as well as suitable fouling mitigation strategies
for laboratory- and pilot-scale AnMBRs used for biogas production via the treatment
of municipal and domestic conditions. It should be pointed out that the present study
highlights further research efforts which are essentially required.

5. Challenges and Perspectives

Our thorough literature review allowed showed that future studies on biogas pro-
duction in AnMBRs via the treatment of municipal and domestic wastewater are required.
More precisely, so far, the vast majority of experimental studies have been carried out
with the use of polymeric membranes. Hence, due to the many unique advantages of
ceramic membranes, their application in AnMBR technology is a vital issue for future
research. Most importantly, the impact of operating conditions on biogas yield requires
further efforts and must be analyzed in more detail. The effect of hydraulic retention time
on the biogas production yield has not been thoroughly defined. In addition, as reported in
the literature, studies have been performed mainly under psychrophilic and mesophilic
conditions. Hence, an important issue to resolve for future studies is to determine the
biogas production yield in AnMBRs under thermophilic conditions.
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