Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (17,464)

Search Parameters:
Keywords = protein contents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2113 KB  
Article
Evaluating the Influence of Two Different Red Wines on the Physicochemical Properties, Volatile Compound Profiles, and Sensory Attributes of Wine-Soaked Pressed Cheeses
by Paulina Freire, Daniel Olmos, Miguel A. Pedroza, Jack Adamson, Reem Elkhalil, Madison Atwood, Justin P. Miller-Schulze and Carmen C. Licon
Foods 2025, 14(20), 3475; https://doi.org/10.3390/foods14203475 (registering DOI) - 12 Oct 2025
Abstract
This study evaluated the effects of wine-soaking on cow’s milk pressed cheese properties and developed a standardized cheesemaking procedure. Cheese was soaked in Cabernet Sauvignon and Alicante Bouschet red wines for two soaking periods of four days after the brining process. The physicochemical, [...] Read more.
This study evaluated the effects of wine-soaking on cow’s milk pressed cheese properties and developed a standardized cheesemaking procedure. Cheese was soaked in Cabernet Sauvignon and Alicante Bouschet red wines for two soaking periods of four days after the brining process. The physicochemical, microbiological, and volatile composition were evaluated, along with consumer sensory evaluation. After 60 days of ripening, wine-soaked cheeses had statistically lower salt and moisture levels, with higher protein and fat content than the unsoaked cheeses. Alicante Bouschet cheeses have a darker purple-red color than Cabernet Sauvignon. The microbiological analysis found no significant differences across treatments and samplings. The most representative volatile compounds in wine-soaked cheeses were esters and ketones. Principal Components Analysis on the volatile compounds showed a clear separation between the two wine-soaked cheeses and the control cheese. For example, Cabernet-soaked cheese had higher levels of phenylethyl alcohol and 2-phenylethyl acetate (floral aromas), while Alicante-soaked cheese was distinguished by nonanal (fruity and grassy aroma). Sensory results showed preferences for the overall liking, flavor, and rind color for the wine-soaked cheeses over the control. Consequently, a standardized recipe for wine-soaked pressed cheese was developed, along with specific parameters for the soaking process to ensure a well-received product. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

12 pages, 1751 KB  
Article
Platelet Polyphosphate Signals Through NFκB to Induce Myofibroblast Differentiation
by Patrick M. Suess, Chanel C. La, Sreeparna Vappala, Jayachandran N. Kizhakkedathu and James H. Morrissey
Biomolecules 2025, 15(10), 1441; https://doi.org/10.3390/biom15101441 (registering DOI) - 12 Oct 2025
Abstract
Myofibroblasts drive wound healing and fibrotic disease through generation of contractile force to promote wound closure and production of matrix proteins to generate scar tissue. Platelets secrete many pro-wound healing molecules, including cytokines and growth factors. We previously reported that inorganic polyphosphate, secreted [...] Read more.
Myofibroblasts drive wound healing and fibrotic disease through generation of contractile force to promote wound closure and production of matrix proteins to generate scar tissue. Platelets secrete many pro-wound healing molecules, including cytokines and growth factors. We previously reported that inorganic polyphosphate, secreted by activated platelets, is chemotactic for fibroblasts and induces a myofibroblast phenotype. Using NIH-3T3 cells and primary human fibroblasts, we examined the impact of inhibitors of cell-surface receptors and intracellular signaling molecules on polyphosphate-induced myofibroblast differentiation. We now report that polyphosphate-induced differentiation of fibroblasts to myofibroblasts occurs through a signaling pathway mediated by the receptor for advanced glycation end products (RAGE) and nuclear factor kappa B (NFκB) transcription factor. Inhibition of these signaling components ablated the effects of polyphosphate on fibroblasts. Platelet releasates also induced NFκB signaling and myofibroblast differentiation. Blocking the polyphosphate content of platelet releasates with a biocompatible polyP inhibitor rendered the releasates unable to induce myofibroblast differentiation. These results identify a cell-surface receptor and intracellular transcription factor utilized by platelet polyphosphate to promote wound healing through myofibroblast differentiation and may provide targets for promoting wound healing or altering the disease progression of fibrosis. Full article
(This article belongs to the Special Issue Polyphosphate (PolyP) in Health and Disease)
Show Figures

Figure 1

21 pages, 796 KB  
Article
Feeding with a NaCl-Supplemented Alfalfa-Based TMR Improves Nutrient Utilization, Rumen Fermentation, and Antioxidant Enzyme Activity in AOHU Sheep: A Nutritional Simulation of Saline–Alkaline Conditions
by Hunegnaw Abebe, Ruochen Yang, Guicong Wei, Xiaoran Feng and Yan Tu
Fermentation 2025, 11(10), 587; https://doi.org/10.3390/fermentation11100587 (registering DOI) - 12 Oct 2025
Abstract
Saline–alkaline soils are becoming prevalent across the globe, decreasing the availability of forage for animals and threatening sustainable animal production. This study evaluated the effects of a NaCl-supplemented alfalfa-based total mixed ration, simulating saline–alkaline soil conditions, on intake, the utilization of nutrients, antioxidant [...] Read more.
Saline–alkaline soils are becoming prevalent across the globe, decreasing the availability of forage for animals and threatening sustainable animal production. This study evaluated the effects of a NaCl-supplemented alfalfa-based total mixed ration, simulating saline–alkaline soil conditions, on intake, the utilization of nutrients, antioxidant levels, and rumen fermentation. A 60-day feeding trial with 24 AOHU lambs (Australian White × Hu) compared a control diet (0.43% NaCl) with the NaCl-supplemented group (1.71% NaCl). Digestibility trials were conducted in metabolic cages for the collection of total feces and urine. Blood samples were taken at 0, 30, and 60 days for serum analysis, and slaughter samples (liver, kidney, rumen tissue, and rumen fluid) were taken for physiological, biochemical, and histological evaluation. The NaCl alfalfa-based TMR markedly increased liver and kidney weights. The rumen muscle layer thickened in the NaCl group. The ruminal ammonia nitrogen (NH3-N), ruminal microbial crude protein (MCP) synthesis, and glucogenic/branched-chain VFAs increased, indicating enhanced proteolysis, microbial protein synthesis, and energetically efficient fermentation. Serum total protein and albumin also rose over time in the NaCl group, reflecting increased nitrogen retention, while superoxide dismutase and glutathione peroxidase activity rose considerably by day 60, reflecting increased antioxidant defense. Furthermore, nitrogen intake, digestibility, and retention were improved in the NaCl group along with augmented digestible and metabolizable energy (28.47 vs. 13.93 MJ/d and 24.68 vs. 11.58 MJ/d, respectively) and gross energy digestibility (78.13% vs. 67.10%). Although NaCl-based alfalfa TMR cannot fully emulate naturally salt-stressed forages, these results indicate that the NaCl alfalfa-based diets improved rumen fermentation, energy yields, and antioxidant enzyme activity without impairing electrolyte balance. These findings suggest that NaCl-supplemented alfalfa-based TMRs, with a salt content comparable to that of alfalfa hay grown under saline–alkaline conditions, could support environmentally sustainable meat production in salt-stressed regions. Full article
Show Figures

Figure 1

23 pages, 18619 KB  
Article
Comprehensive Identification and Expression Analysis of the SWEET Gene Family in Actinidia eriantha Reveals That Two AeSWEET11 Genes Function in Sucrose and Hexose Transport
by Xin Feng, Qingqing Huang, Minxia Gao, Ruilian Lai and Yiting Chen
Plants 2025, 14(20), 3140; https://doi.org/10.3390/plants14203140 (registering DOI) - 11 Oct 2025
Abstract
Sugars are key metabolites influencing the flavor and quality of kiwifruit, with their accumulation in fruit relying on sugar transporters. Recently identified sugar transporters known as SWEETs play significant roles in modulating plant growth, development, and fruit ripening. However, the characteristics of SWEET [...] Read more.
Sugars are key metabolites influencing the flavor and quality of kiwifruit, with their accumulation in fruit relying on sugar transporters. Recently identified sugar transporters known as SWEETs play significant roles in modulating plant growth, development, and fruit ripening. However, the characteristics of SWEET genes in Actinidia eriantha remain poorly understood. In this study, a total of 26 AeSWEET genes were identified across 17 chromosomes. These genes encoded proteins ranging from 198 to 305 amino acids in length and contained 5 to 7 transmembrane helices. Both interspecific and intraspecific phylogenetic trees categorized AeSWEET proteins into four distinct clades. The motif and domain structures were conserved within each clade, although variations were observed in exon-intron organizations. One tandem and fourteen segmental duplication events were identified as primary drivers of the AeSWEET family expansion. Comparative syntenic mapping showed a closer homology of the AeSWEET family with that of dicotyledons compared to monocotyledons. Promoter cis-element analysis indicated the potential responses of AeSWEET genes to five phytohormones and seven environmental stressors. Quantitative real-time PCR analysis revealed tissue-specific expression profiles of AeSWEET genes, with two AeSWEET11 genes (AeSWEET11a and AeSWEET11b) showing significantly higher expression levels in fruit tissues. Their expressions were positively correlated with sucrose, fructose, and glucose contents throughout fruit development and ripening. Transient transformation tests in tobacco leaves verified the predominant localization of AeSWEET11a and AeSWEET11b to the plasma membrane. Functional assays in yeast mutants revealed that AeSWEET11a and AeSWEET11b both possessed sucrose and hexose transport activities. These findings highlight the potential of targeting AeSWEET11a and AeSWEET11b to enhance sugar accumulation in the fruit of A. eriantha, thereby providing a foundation for improving the flavor profile of commercial cultivars. Full article
Show Figures

Figure 1

11 pages, 269 KB  
Article
Quality Characteristics of Baranjski Kulen (PGI) Fermented Sausage from Three Pork Production Chains
by Goran Kušec, Ivona Djurkin Kušec, Kristina Gvozdanović, Miodrag Komlenić, Marina Krvavica and Vladimir Margeta
Foods 2025, 14(20), 3473; https://doi.org/10.3390/foods14203473 (registering DOI) - 11 Oct 2025
Abstract
The aim of this study was to investigate the physicochemical traits, colour, and texture profile of fermented sausage, Baranjski kulen, produced from the meat of pigs originating from three pork chains. The first pork chain consisted of the Black Slavonian pig breed (PC1), [...] Read more.
The aim of this study was to investigate the physicochemical traits, colour, and texture profile of fermented sausage, Baranjski kulen, produced from the meat of pigs originating from three pork chains. The first pork chain consisted of the Black Slavonian pig breed (PC1), the second pork chain consisted of crossbred pigs from the Croatian breeding programme (Duroc × Large White) (PC2), and the third pork chain (PC3) referred to commercial hybrids (Pietrain × Duroc × Pietrain × Camborough 23). A total of 16 pigs (8 gilts and 8 castrates) from each chain were used, reared to 6–18 months of age, and slaughtered at 135–180 kg. Baranjski kulen from PC2 and PC3 had a higher protein content (up to 2% more) and lower fat content (4–5% less) compared to PC1. PC3 kulen showed greater colour intensity (higher a* values), while PC2 kulen had the highest hardness, cohesiveness, gumminess, and chewiness, indicating a firmer texture. In contrast, PC3 kulen had a softer and more tender texture. These findings underline the impact of production chain on product quality and can be used to optimise processing strategies and strengthen the market potential of Baranjski kulen. Full article
(This article belongs to the Special Issue Traditional Meat Products: Process, Quality, Safety, Nutrition)
19 pages, 867 KB  
Article
Green Oxidation of Starch Using Ozone: A Comparative Study on Rheological Properties
by Joanna Le Thanh-Blicharz, Jacek Lewandowicz, Roman Zielonka and Artur Szwengiel
Appl. Sci. 2025, 15(20), 10924; https://doi.org/10.3390/app152010924 (registering DOI) - 11 Oct 2025
Abstract
Pea starch, often obtained as a by-product of pea protein isolation, is increasingly available and economically attractive. Consequently, the industry is seeking new applications of pea starch, both in its native and modified forms. This paper highlights the topic of pea and potato [...] Read more.
Pea starch, often obtained as a by-product of pea protein isolation, is increasingly available and economically attractive. Consequently, the industry is seeking new applications of pea starch, both in its native and modified forms. This paper highlights the topic of pea and potato starch oxidation with ozone in aqueous suspension and evaluates the effect of process time, retention volume and solids content on pasting, texture, and flow behavior, benchmarking against a commercial hypochlorite-oxidized product. Moreover, obtained preparations were studied for their molecular mass distribution and hydrodynamic parameters. It was found that the oxidation of both potato and pea starch with ozone in an aqueous suspension is an effective method of obtaining this type of starch preparations. The extent of modification was dependent on all variables considered in the research. The depolymerization of both starch varieties progressed gradually, but the oxidation effects were more noticeable for potato starch compared to pea starch, which was found to be related to the gelling characteristic of those preparations. Full article
(This article belongs to the Special Issue Food Polysaccharides: Chemistry, Technology and Applications)
Show Figures

Figure 1

14 pages, 6559 KB  
Article
Application of Piper betle Leaf Extract as a Bioactive Additive in Eco-Friendly Antifouling Coatings
by Nguyen Duc Anh, Cao Nhat Linh, Le Thi My Hiep and Dong Van Kien
Surfaces 2025, 8(4), 72; https://doi.org/10.3390/surfaces8040072 (registering DOI) - 11 Oct 2025
Abstract
The present study aimed to evaluate the antifouling efficacy of Piper betle leaf extracts as a bioactive additive for eco-friendly antifouling coatings. The composition of P. betle extract was determined and analyzed. Phytochemical analysis revealed that the ethanol extract of P. betle contained [...] Read more.
The present study aimed to evaluate the antifouling efficacy of Piper betle leaf extracts as a bioactive additive for eco-friendly antifouling coatings. The composition of P. betle extract was determined and analyzed. Phytochemical analysis revealed that the ethanol extract of P. betle contained phenolics, tannins, proteins, carbohydrates, and flavonoids, with total phenolic content reaching 260.3 mg GAE/g dry weight and flavonoid content reaching 52.56 mg QE/g dry weight. The antibacterial test results showed that the ethanol extract of P. betle exhibited maximum antibacterial efficacy against E. coli, B. subtilis, S. aureus, and marine bacteria, with inhibition zone diameters of 28.7 ± 0.5, 27.0 ± 1.6, 22.1 ± 0.6, and 35.1 ± 0.5 mm, respectively. Based on the laboratory test results, the ethanol extract of P. betle was chosen to be added to coatings as an antifouling additive. The content of the extract was 0.5, 1.0, and 1.5 wt.%. A field test conducted in tropical seawater (at Nha Trang Bay) demonstrated that incorporating 1 wt.% of P. betle extract into an acrylic copolymer-based coating significantly enhanced its antifouling performance. After nine months of immersion in seawater, this sample maintained an antifouling efficiency of 74%. These findings highlight the potential of P. betle extract as a sustainable alternative to conventional antifouling agents in marine coatings. Full article
Show Figures

Figure 1

23 pages, 2884 KB  
Article
The Role of miR-144/Nrf2 Pathway in Muscle Oxidative Stress Induced by Oxidized Fish Oil in Megalobrama amblycephala, with an Emphasis on Protein Oxidation
by Jie Yang, Xiaochuan Zheng, Qunlan Zhou, Changyou Song, Hongyan Tian, Aimin Wang, Xiangfei Li, Bo Liu and Cunxin Sun
Antioxidants 2025, 14(10), 1223; https://doi.org/10.3390/antiox14101223 (registering DOI) - 11 Oct 2025
Abstract
This study investigated the role of miR-144 in mitigating oxidized fish oil (OFO)-induced muscle oxidative stress and quality deterioration in Megalobrama amblycephala. The feeding trial was conducted for 5 weeks, and four experimental diets were formulated, namely NC (fresh fish oil), OF [...] Read more.
This study investigated the role of miR-144 in mitigating oxidized fish oil (OFO)-induced muscle oxidative stress and quality deterioration in Megalobrama amblycephala. The feeding trial was conducted for 5 weeks, and four experimental diets were formulated, namely NC (fresh fish oil), OF (OFO), OF + ago (OFO and miR-144 agomir), and OF + anta (OFO and miR-144 antagomir). Histological results showed that OFO significantly reduced myofiber density (from 758.00 ± 13.69 to 636.57 ± 13.44 N/mm2) and decreased the percentage of myofibers with diameters > 50 μm (from 53.45% to 38.52%). OFO intake significantly increased the content of malondialdehyde (MDA), protein carbonyl (PC), advanced oxidation protein product (AOPP), and 3-nitrotyrosine (3-NT), and significantly decreased superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in muscle. OFO treatment significantly up-regulated the expression of inflammatory factors (NF-κB, TNF-α, HO-1, and IL-6), significantly down-regulated NQO1. Moreover, OFO reduced muscle differentiation and maturation by down-regulating the expression of MyoG, MYHC1, and protein synthesis genes (AKT3, TOR, and S6K1), and up-regulating the expression of protein hydrolysis genes (FoxO3a, MuRF1, HSP70, Beclin-1, P62, and ATG8). Moreover, miR-144 agomir exacerbated OFO-induced muscle damage by suppressing Nrf2, whereas miR-144 antagomir mitigated these effects. Silencing miR-144 re-activates Nrf2, alleviating oxidative damage, enhancing protein deposition, and improving muscle quality. These findings suggest that targeting the miR-144/Nrf2 axis could counteract OFO-induced muscle deterioration. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health—2nd Edition)
20 pages, 1386 KB  
Article
Effects of Dietary Crude Protein Level on Growth Performance, Carcass Traits, Meat Quality, and Fatty Acid Composition of Ningxiang Finishing Pigs
by Xianglin Zeng, Yan Tang, Wenzhi Liu, Zhaobin Wang, Pengfei Huang, Qiye Wang and Huansheng Yang
Animals 2025, 15(20), 2950; https://doi.org/10.3390/ani15202950 (registering DOI) - 11 Oct 2025
Abstract
This study investigated the effects of different crude protein (CP) levels on growth performance, carcass traits, meat quality, and fatty acid composition in Ningxiang finishing pigs. A total of 200 pigs (52.52 ± 0.41 kg) were assigned to five dietary treatments: high-protein (HP, [...] Read more.
This study investigated the effects of different crude protein (CP) levels on growth performance, carcass traits, meat quality, and fatty acid composition in Ningxiang finishing pigs. A total of 200 pigs (52.52 ± 0.41 kg) were assigned to five dietary treatments: high-protein (HP, 15.56%), moderate-high-protein (MHP, 13.99%), moderate-protein (MP, 12.94%), moderate-low-protein (MLP, 11.90%), and low-protein (LP, 10.31%). Feeding the MLP diet significantly improved average daily gain (ADG) compared to HP and LP diets (p < 0.05). Pigs fed the MP diet had higher lean meat percentage than those on the LP diet (p < 0.05), while both HP and MP diets reduced carcass fat percentage (p < 0.05). The LP diet significantly increased a*, pH45min, intramuscular fat (IMF), and C18:1n9c, while decreasing C23:0 and C20:3n6 in the longissimus dorsi muscle (p < 0.05). Liver metabolomics revealed that the LP diet inhibited nicotinate and nicotinamide metabolism (p < 0.05), accompanied by downregulation of genes related to the tryptophan–niacin metabolism and upregulation of genes involved with hepatic lipogenesis (p < 0.05). In muscle, the LP diet inhibited AMPK signaling via decreased p-AMPK expression, leading to increased IMF content (p < 0.05). In summary, the optimal growth performance of Ningxiang finishing pigs was achieved with a CP level of 11.90%. Additionally, the LP diet enhanced meat quality by modulating hepatic niacin metabolism and AMPK signaling. Full article
(This article belongs to the Section Pigs)
17 pages, 2034 KB  
Article
Fermentation Strategies to Improve Argentinian Kefir Quality: Impact of Double Fermentation on Physicochemical, Microbial, and Functional Properties
by Raúl Ricardo Gamba, Andrea Ibáñez, Sofía Sampaolesi, Pablo Mobili and Marina Alejandra Golowczyc
Fermentation 2025, 11(10), 584; https://doi.org/10.3390/fermentation11100584 (registering DOI) - 11 Oct 2025
Abstract
This present study investigated the microbial dynamics, physicochemical and functional properties, and sensory characteristics of kefir produced by two different approaches: traditional kefir obtained directly from grains and kefir manufactured through a double-fermentation process in cow milk. For the first fermentation, kefir grains [...] Read more.
This present study investigated the microbial dynamics, physicochemical and functional properties, and sensory characteristics of kefir produced by two different approaches: traditional kefir obtained directly from grains and kefir manufactured through a double-fermentation process in cow milk. For the first fermentation, kefir grains were inoculated in milk at different levels (1%, 3%, and 5% w/v) and incubated at 30 °C for 24 h. The lowest inoculation level promoted the greatest increase in grain biomass, whereas higher inoculation levels produced more pronounced pH decreases. All products maintained stable pH values during refrigerated storage at 4 °C for 15 days. Products derived from initial fermentations with 1% and 3% inoculum were subsequently used in a second fermentation step at two inoculation levels (1% and 10% v/v) to produce double-fermentation kefir products. These products exhibited higher counts of lactic acid bacteria and reduced yeast populations compared with traditional grain kefir. After 15 days of storage, all kefir samples maintained more than 108 CFU/mL of lactic acid bacteria, more than 107 CFU/mL of acetic acid bacteria, and around 105 CFU/mL of yeasts. Protein content was comparable among all kefir products and unfermented milk. The product obtained with 1% grains followed by 10% v/v inoculation showed enhanced biofilm formation that increased during storage and displayed the strongest antimicrobial activity, and was therefore selected for sensory evaluation, where it achieved favorable acceptance by regular kefir consumers. Full article
(This article belongs to the Special Issue Traditional and Innovative Fermented Dairy Products)
Show Figures

Graphical abstract

21 pages, 2645 KB  
Article
Comparative Evaluation of Cow and Goat Milk Samples Utilizing Non-Destructive Techniques and Chemometric Approaches
by Kyriaki Chatzimichail, Georgia Ladika, Paris Christodoulou, Vasileios Bartzis, Spyros J. Konteles, Andriana E. Lazou, Eftichia Kritsi, Dionisis Cavouras and Vassilia J. Sinanoglou
Appl. Sci. 2025, 15(20), 10883; https://doi.org/10.3390/app152010883 - 10 Oct 2025
Abstract
This study applied a multi-analytical methodology involving Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy, protein secondary structure determination, colorimetry, and texture analysis of milk images at a microscopic level to characterize 47 commercial cow and goat milk samples of different fat content [...] Read more.
This study applied a multi-analytical methodology involving Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy, protein secondary structure determination, colorimetry, and texture analysis of milk images at a microscopic level to characterize 47 commercial cow and goat milk samples of different fat content (whole and light). Colorimetric measurements showed that hue values were significantly higher in light than in whole milks, providing a rapid marker of fat level, while microscopic image analysis indicated that whole milks had more heterogeneous textures with larger fat globules, whereas light milks were more homogeneous. ATR-FTIR spectra revealed lipids, proteins, and carbohydrates as the main constituents; lipid-associated bands were more intense in whole milks, whereas carbohydrate-associated bands, particularly at 1026–1028 cm−1, were stronger in cow milk. Protein secondary structure analysis confirmed β-parallel sheet as the predominant motif, with cow milk showing higher random coil and α-helix proportions and goat milk enriched in β-turn structures. Chemometric modeling using PCA and PLS-DA achieved robust classification of samples by species and fat content, while Receiver Operation Characteristics (ROC) analysis validated markers of differentiation. The combination of the above methodologies enables effective classification of cow’s and goat’s milk, offering a thorough product description. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

12 pages, 1546 KB  
Article
Effect of Photoperiod Duration and LED Light Quality on the Metabolite Profiles of High-Mountain Microalgal Isolates
by William H. Suárez Quintana, Ramón O. García-Rico, Janet B. García-Martínez, Néstor A. Urbina-Suarez, Germán L. López-Barrera and Andrés F. Barajas-Solano
Phycology 2025, 5(4), 59; https://doi.org/10.3390/phycology5040059 - 10 Oct 2025
Abstract
High-mountain microalgae exhibit remarkable adaptability to extreme environments, making them promising candidates for sustainable biorefineries. We evaluated how photoperiod (12:12, 18:6, 24:0 h) and LED spectra (cool white, full spectrum, red–blue 4:1) affect growth and metabolite formation in Chlorella sp. UFPS019 and Scenedesmus [...] Read more.
High-mountain microalgae exhibit remarkable adaptability to extreme environments, making them promising candidates for sustainable biorefineries. We evaluated how photoperiod (12:12, 18:6, 24:0 h) and LED spectra (cool white, full spectrum, red–blue 4:1) affect growth and metabolite formation in Chlorella sp. UFPS019 and Scenedesmus sp. UFPS021. Biomass peaked in Chlorella under red–blue 18:6 (≈1.8 g L−1) and in Scenedesmus under red–blue 24:0 (≈1.7 g L−1), revealing species-specific responses. Carbohydrate fractions were maximized under red–blue 12:12 in both species, and continuous light (24:0) depressed carbohydrate content—most notably under full spectrum. Protein content was highest under red–blue 18:6 in Chlorella sp. and under red–blue 12:12–18:6 in Scenedesmus sp. Lipid fractions increased with light duration, peaking under red–blue 18:6–24:0 in Chlorella and under red–blue 18:6–24:0—with Cool White 24:0 also high—in Scenedesmus sp. Although extended illumination favored lipids, intermediate photoperiods (12:12–18:6) provided better productivity-to-energy trade-offs and broader metabolic profiles. These results show that tuning spectral composition and photoperiod to species-specific physiology enables the targeted, energy-aware production of proteins, carbohydrates, or lipids; red–blue at intermediate durations is a robust, energy-efficient regime, whereas longer exposures can be used strategically when lipid enrichment is prioritized. Full article
(This article belongs to the Special Issue Development of Algal Biotechnology)
Show Figures

Figure 1

24 pages, 10124 KB  
Article
Cold Exposure Induces Swine Brown Adipocytes to Display an Island-like Distribution with Atypical Characteristics
by Zhenhua Guo, Lei Lv, Hong Ma, Liang Wang, Bo Fu, Fang Wang, Shuo Yang, Di Liu and Dongjie Zhang
Int. J. Mol. Sci. 2025, 26(20), 9871; https://doi.org/10.3390/ijms26209871 (registering DOI) - 10 Oct 2025
Abstract
The original purpose of this study was to compare human and pig scRNA-seq data to determine why pigs do not have brown adipocytes. However, during the experiment, we identified brown adipocytes in pigs. Therefore, we aimed to confirm that these adipocytes were brown [...] Read more.
The original purpose of this study was to compare human and pig scRNA-seq data to determine why pigs do not have brown adipocytes. However, during the experiment, we identified brown adipocytes in pigs. Therefore, we aimed to confirm that these adipocytes were brown adipocytes via a comparative analysis using typical mouse brown adipose tissue sections. We found that swine brown adipocytes were distributed in an island-like pattern, with three typical characteristics: (1) numerous mitochondria and small lipid droplets, (2) a cellular volume smaller than that of white adipocytes, and (3) expression of specific marker genes (EBF2 and ATP2B4). The expression levels of the thermogenesis-related genes UCP2/3 were not significantly increased. Thus, we conducted ceRNA network analysis, revealing that high expression of the key microRNA miR-10383 increased the thermogenic efficiency of UCP3 in the cold exposure group. In addition, the epigenetic memory of UCP3 was disrupted. Chromatin accessibility and Whole-Transcriptome Sequencing of Groin Adiposesibility results revealed peaks in the promoter regions of the UCP2/3 genes. In our discussion of the study’s limitations, we explain how to repeat the experiment to significantly increase the UCP2/3 protein content. This study fills a research gap regarding brown fat in pigs and can provide a reference for future studies on fat metabolism. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 5397 KB  
Article
The Agronomic Traits Differences in Hericium erinaceus Cultivated with Different Straw Formulations by Replacing Wood with Straw
by Zhu Lu, Yang Yang, Shuang Hu, Yu-Kun Ma, Zi-Ming Ren, Yue Wang, Ying-Kun Yang, Shu-Juan Ji, Huan Wang and Xiao Huang
Horticulturae 2025, 11(10), 1220; https://doi.org/10.3390/horticulturae11101220 - 10 Oct 2025
Abstract
Hericium erinaceus, a rare edible–medicinal fungus, has attracted great attention in food and pharmaceutical fields due to its rich nutritional and bioactive components. However, its traditional cultivation relies heavily on wood chip substrates, causing resource unsustainability. The “wood-replacing-with-grass” technology can address this [...] Read more.
Hericium erinaceus, a rare edible–medicinal fungus, has attracted great attention in food and pharmaceutical fields due to its rich nutritional and bioactive components. However, its traditional cultivation relies heavily on wood chip substrates, causing resource unsustainability. The “wood-replacing-with-grass” technology can address this issue, contributing to ecological conservation and alleviating resource conflicts between edible fungus cultivation and forestry development. This study focused on straw substitution for wood chips, initially screening suitable straw types and optimal addition ratios from 7 straw varieties, and systematically investigating the agronomic trait variations in H. erinaceus under different substrate formulations via cultivation experiments. Results showed the following: (1) Rapeseed straw, soybean straw, and corn straw substituting 20%, 30%, and 40% of wood chips, respectively, promoted better mycelial growth of H. erinaceus. (2) All screened straw formulations enabled fruiting. With increased straw addition, the mycelial full colonization time shortened (up to 5 days shorter in 40% corn/soybean straw treatments). The 20% corn straw treatment showed significantly higher biological efficiency and average fresh weight than the control (CK); the 20% soybean straw treatment had no significant difference in biological efficiency but significantly higher average fresh weight than CK; and the 20% rapeseed straw treatment showed no significant differences in both indexes from CK. However, when straw addition exceeded 20%, fruiting body firmness, yield, and biological efficiency decreased progressively. (3) The 40% soybean straw treatment yielded fruiting bodies with the highest crude protein, manganese, and iron contents, while the 40% rapeseed straw treatment had the highest crude fat, potassium, phosphorus, calcium, zinc, and selenium contents. These findings provide a theoretical basis and practical reference for optimizing H. erinaceus cultivation substrate formulations, improving product quality, and promoting sustainable industrial development. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

36 pages, 2444 KB  
Review
The Photosynthetic Complexes of Thylakoid Membranes of Photoautotrophs and a Quartet of Their Polar Lipids
by Anatoly Zhukov and Vadim Volkov
Int. J. Mol. Sci. 2025, 26(20), 9869; https://doi.org/10.3390/ijms26209869 (registering DOI) - 10 Oct 2025
Abstract
The important function of polar lipids in the biochemical chains of photosynthesis, the outstanding biochemical process on our planet, has been mentioned in many publications. Over the last several years, apart from the known function of lipids in creating a matrix for photosynthetic [...] Read more.
The important function of polar lipids in the biochemical chains of photosynthesis, the outstanding biochemical process on our planet, has been mentioned in many publications. Over the last several years, apart from the known function of lipids in creating a matrix for photosynthetic complexes, most attention has been paid to the role of lipids in building up and functioning of the photosynthetic complexes. The lipid molecules are found inside the complexes of photosystem II (PSII), photosystem I (PSI), and cytochrome b6f (Cyt b6f) together with other cofactors that accompany proteins and chlorophyll molecules. Super complexes PSII-light-harvesting complex II (PSII-LHCII) and PSI-light-harvesting complex I (PSI-LHCI) also include lipid molecules; part of the lipid molecules is located at the borders between the separate monomers of the complexes. Our interest is in the exact localization of lipid molecules inside the monomers: what are the protein subunits with the lipid molecules in between and how do the lipids contact directly with the amino acids of the proteins? The photosystems include very few classes of all the polar lipids, three groups of glyceroglycolipids, and one group of glycerophospholipids make up the quartet of polar lipids. What are the reasons they have been selected for the role? There are no doubts that the polar heads and the fatty acids chains of these lipids are taking part in the processes of photosynthesis. However, what are the distinct roles for each of them? The advantages and disadvantages of the head groups of lipids from thylakoid membranes and those lipids that for various reasons could not take their place are discussed. Attention is focused on those bound fatty acids that predominate or are characteristic for each class of thylakoid lipids. Emphasis is also placed on the content of each of the four lipids in all photosynthetic complexes, as well as on contacts of head groups and acyl chains of lipids with specific proteins, transmembrane chains, and their amino acids. This article is devoted to the search for answers to the questions posed. Full article
Show Figures

Figure 1

Back to TopTop