Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (467)

Search Parameters:
Keywords = protein–peptide docking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6211 KiB  
Article
In Silico and In Vitro Potential Antifungal Insights of Insect-Derived Peptides in the Management of Candida sp. Infections
by Catarina Sousa, Alaka Sahoo, Shasank Sekhar Swain, Payal Gupta, Francisco Silva, Andreia S. Azevedo and Célia Fortuna Rodrigues
Int. J. Mol. Sci. 2025, 26(15), 7449; https://doi.org/10.3390/ijms26157449 - 1 Aug 2025
Viewed by 204
Abstract
The worldwide increase in antifungal resistance, particularly in Candida sp., requires the exploration of novel therapeutic agents. Natural compounds have been a rich source of antimicrobial molecules, where peptides constitute the class of the most bioactive components. Therefore, this study looks into the [...] Read more.
The worldwide increase in antifungal resistance, particularly in Candida sp., requires the exploration of novel therapeutic agents. Natural compounds have been a rich source of antimicrobial molecules, where peptides constitute the class of the most bioactive components. Therefore, this study looks into the target-specific binding efficacy of insect-derived antifungal peptides (n = 37) as possible alternatives to traditional antifungal treatments. Using computational methods, namely the HPEPDOCK and HDOCK platforms, molecular docking was performed to evaluate the interactions between selected key fungal targets, lanosterol 14-demethylase, or LDM (PDB ID: 5V5Z), secreted aspartic proteinase-5, or Sap-5 (PDB ID: 2QZX), N-myristoyl transferase, or NMT (PDB ID: 1NMT), and dihydrofolate reductase, or DHFR, of C. albicans. The three-dimensional peptide structure was modelled through the PEP-FOLD 3.5 tool. Further, we predicted the physicochemical properties of these peptides through the ProtParam and PEPTIDE 2.0 tools to assess their drug-likeness and potential for therapeutic applications. In silico results show that Blap-6 from Blaps rhynchopeter and Gomesin from Acanthoscurria gomesiana have the most antifungal potential against all four targeted proteins in Candida sp. Additionally, a molecular dynamics simulation study of LDM-Blap-6 was carried out at 100 nanoseconds. The overall predictions showed that both have strong binding abilities and are good candidates for drug development. In in vitro studies, Gomesin achieved complete biofilm eradication in three out of four Candida species, while Blap-6 showed moderate but consistent reduction across all species. C. tropicalis demonstrated relative resistance to complete eradication by both peptides. The present study provides evidence to support the antifungal activity of certain insect peptides, with potential to be used as alternative drugs or as a template for a new synthetic or modified peptide in pursuit of effective therapies against Candida spp. Full article
Show Figures

Figure 1

19 pages, 3653 KiB  
Article
A Novel Integrated Strategy for Discovering Absorbable Anticoagulant Bioactive Peptides: A Case Study on Leech Protein Hydrolysates
by Ke-Xin Fang, Xi Sun, Liang-Ke Chen, Kun Wang, Chao-Jie Yang, Shan-Shan Mei, Chu-Ying Huang and Yao-Jun Yang
Molecules 2025, 30(15), 3184; https://doi.org/10.3390/molecules30153184 - 30 Jul 2025
Viewed by 327
Abstract
Medicinal plants and animal-derived proteins represent valuable natural sources of bioactive components with pharmaceutical potential. Whilst some medicinal plants and animal-derived proteins also offer rich sources of anticoagulant bioactive peptides, their development faces multiple challenges: anticoagulant evaluation relies on single-parameter assays with limited [...] Read more.
Medicinal plants and animal-derived proteins represent valuable natural sources of bioactive components with pharmaceutical potential. Whilst some medicinal plants and animal-derived proteins also offer rich sources of anticoagulant bioactive peptides, their development faces multiple challenges: anticoagulant evaluation relies on single-parameter assays with limited reliability, native proteins demonstrate suboptimal activity without enzymatic treatment, and few researchers investigate bioavailable peptides. Our study establishes an innovative framework using the leech as a case study to overcome these barriers. A novel anticoagulant evaluation model was first established with the Critic-G1 weighting method. And we optimized the enzymatically hydrolyzed extracts with high activity using Box–Behnken response surface methodology. Subsequently, the everted gut sac model was implemented to simulate intestinal absorption and screen for absorbable peptide fractions. Furthermore, peptidomics was employed to identify the bioactive peptides. Lastly, we identified the bioactivity using anticoagulation assays. Results indicated that the optimal hydrolysis conditions were achieved with trypsin at 50.48 °C, an enzyme-to-substrate ratio of 6.78%, 7.51 h, and pH of 8.06. The peptide DLRWM was identified through integrated peptidomics and molecular docking approaches, with subsequent activity validation demonstrating its potent anticoagulant effects. This study has successfully identified a novel anticoagulant peptide (DLRWM) with confirmed intestinal absorption properties and provides a template for unlocking the pharmaceutical potential of medicinal animal proteins. Full article
Show Figures

Figure 1

41 pages, 7499 KiB  
Article
Development of a Broad-Spectrum Pan-Mpox Vaccine via Immunoinformatic Approaches
by Japigorn Puagsopa, Panuwid Jumpalee, Sittichoke Dechanun, Sukanya Choengchalad, Pana Lohasupthawee, Thanawat Sutjaritvorakul and Bunyarit Meksiriporn
Int. J. Mol. Sci. 2025, 26(15), 7210; https://doi.org/10.3390/ijms26157210 - 25 Jul 2025
Viewed by 903
Abstract
Monkeypox virus (MPXV) has caused 148,892 confirmed cases and 341 deaths from 137 countries worldwide, as reported by the World Health Organization (WHO), highlighting the urgent need for effective vaccines to prevent the spread of MPXV. Traditional vaccine development is low-throughput, expensive, time [...] Read more.
Monkeypox virus (MPXV) has caused 148,892 confirmed cases and 341 deaths from 137 countries worldwide, as reported by the World Health Organization (WHO), highlighting the urgent need for effective vaccines to prevent the spread of MPXV. Traditional vaccine development is low-throughput, expensive, time consuming, and susceptible to reversion to virulence. Alternatively, a reverse vaccinology approach offers a rapid, efficient, and safer alternative for MPXV vaccine design. Here, MPXV proteins associated with viral infection were analyzed for immunogenic epitopes to design multi-epitope vaccines based on B-cell, CD4+, and CD8+ epitopes. Epitopes were selected based on allergenicity, antigenicity, and toxicity parameters. The prioritized epitopes were then combined via peptide linkers and N-terminally fused to various protein adjuvants, including PADRE, beta-defensin 3, 50S ribosomal protein L7/12, RS-09, and the cholera toxin B subunit (CTB). All vaccine constructs were computationally validated for physicochemical properties, antigenicity, allergenicity, safety, solubility, and structural stability. The three-dimensional structure of the selected construct was also predicted. Moreover, molecular docking and molecular dynamics (MD) simulations between the vaccine and the TLR-4 immune receptor demonstrated a strong and stable interaction. The vaccine construct was codon-optimized for high expression in the E. coli and was finally cloned in silico into the pET21a (+) vector. Collectively, these results could represent innovative tools for vaccine formulation against MPXV and be transformative for other infectious diseases. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

26 pages, 5701 KiB  
Article
Design of a Multi-Epitope Vaccine Based on Fasciola gigantica Cathepsin B and Evaluation of Immunological Responses in Mice
by Supanan Chansap, Werachon Cheukamud, Thitikul Suthisintong, Pornanan Kueakhai and Narin Changklungmoa
Int. J. Mol. Sci. 2025, 26(14), 6971; https://doi.org/10.3390/ijms26146971 - 20 Jul 2025
Viewed by 404
Abstract
Fasciola gigantica (F. gigantica) is a vital parasite that causes fasciolosis. Liver fluke infections affect livestock animals, and the Fasciola species (Fasciola spp.) vaccine has been tested for many types of these diseases. Currently, computer-based vaccine design represents an attractive [...] Read more.
Fasciola gigantica (F. gigantica) is a vital parasite that causes fasciolosis. Liver fluke infections affect livestock animals, and the Fasciola species (Fasciola spp.) vaccine has been tested for many types of these diseases. Currently, computer-based vaccine design represents an attractive alternative for constructing vaccines. Thus, this study aimed to design the epitopes of linear B-cells (BCL) and helper T lymphocytes (HTL) using an immunoinformatic approach and to investigate in silico and the mice’s immune response. A non-conserved host region, overlapping F. gigantica cathepsin B proteins (FgCatB), and the highest conserved residue percentages were the criteria used to construct epitopes. The GPGPG linker was used to link epitopes in the multi-epitope Fasciola gigantica cathepsin B (MeFgCatB) peptide. The MeFgCatB peptide has high antigenicity, non-allergenicity, non-toxicity, good solubility, and a high-quality structure. The molecular docking between the MeFgCatB peptide and Toll-like receptor 2 (TLR-2) was evaluated. The IgM, IgG1, and IgG2 levels were elevated in silico. In mice, the MeFgCatB peptide was synthesized and administered as an injection. The MeFgCatB-specific IgG1 and IgG2a levels were elevated after week 2, showing a predominance of IgG1. The rFgCatB1, rFgCatB2, and rFgCatB3 were detected using the MeFgCatB peptide-immunized sera. The MeFgCatB peptide-immunized sera were detected at approximately 28–34 kDa in the whole body. In addition, the MeFgCatB immunized sera can positively signal at the caecal epithelium in the NEJ, 4WKJ, and adult stages. In summary, the MeFgCatB peptide is able to induce mixed Th1/Th2 immune responses with Th2 dominating and to detect the native protein of F. gigantica. The MeFgCatB peptide should help against F. gigantica in future experiments. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

14 pages, 3463 KiB  
Article
The Renin–Angiotensin System Modulates SARS-CoV-2 Entry via ACE2 Receptor
by Sophia Gagliardi, Tristan Hotchkin, Hasset Tibebe, Grace Hillmer, Dacia Marquez, Coco Izumi, Jason Chang, Alexander Diggs, Jiro Ezaki, Yuichiro J. Suzuki and Taisuke Izumi
Viruses 2025, 17(7), 1014; https://doi.org/10.3390/v17071014 - 19 Jul 2025
Viewed by 551
Abstract
The renin–angiotensin system (RAS) plays a central role in cardiovascular regulation and has gained prominence in the pathogenesis of Coronavirus Disease 2019 (COVID-19) due to the critical function of angiotensin-converting enzyme 2 (ACE2) as the entry receptor for severe acute respiratory syndrome coronavirus [...] Read more.
The renin–angiotensin system (RAS) plays a central role in cardiovascular regulation and has gained prominence in the pathogenesis of Coronavirus Disease 2019 (COVID-19) due to the critical function of angiotensin-converting enzyme 2 (ACE2) as the entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Angiotensin IV, but not angiotensin II, has recently been reported to enhance the binding between the viral spike protein and ACE2. To investigate the virological significance of this effect, we developed a single-round infection assay using SARS-CoV-2 viral-like particles expressing the spike protein. Our results demonstrate that while angiotensin II does not affect viral infectivity across concentrations ranging from 40 nM to 400 nM, angiotensin IV enhances viral entry at a low concentration but exhibits dose-dependent inhibition at higher concentrations. These findings highlight the unique dual role of angiotensin IV in modulating SARS-CoV-2 entry. In silico molecular docking simulations indicate that angiotensin IV was predicted to associate with the S1 domain near the receptor-binding domain in the open spike conformation. Given that reported plasma concentrations of angiotensin IV range widely from 17 pM to 81 nM, these levels may be sufficient to promote, rather than inhibit, SARS-CoV-2 infection. This study identifies a novel link between RAS-derived peptides and SARS-CoV-2 infectivity, offering new insights into COVID-19 pathophysiology and informing potential therapeutic strategies. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

19 pages, 3862 KiB  
Article
Characterization of Novel ACE-Inhibitory Peptides from Nemopilema nomurai Jellyfish Venom Hydrolysate: In Vitro and In Silico Approaches
by Ramachandran Loganathan Mohan Prakash, Deva Asirvatham Ravi, Du Hyeon Hwang, Changkeun Kang and Euikyung Kim
Mar. Drugs 2025, 23(7), 267; https://doi.org/10.3390/md23070267 - 26 Jun 2025
Viewed by 538
Abstract
The venom of Nemopilema nomurai jellyfish represents a promising source of bioactive compounds with potential pharmacological applications. In our previous work, we identified two novel angiotensin-converting enzyme (ACE)-inhibitory peptides—IVGRPLANG (896.48 Da) and IGDEPRHQYL (1227.65 Da)—isolated from N. nomurai venom hydrolysates via papain digestion. [...] Read more.
The venom of Nemopilema nomurai jellyfish represents a promising source of bioactive compounds with potential pharmacological applications. In our previous work, we identified two novel angiotensin-converting enzyme (ACE)-inhibitory peptides—IVGRPLANG (896.48 Da) and IGDEPRHQYL (1227.65 Da)—isolated from N. nomurai venom hydrolysates via papain digestion. In this study, we conducted a detailed biochemical and computational characterization of these peptides. The IC50 values were determined to be 23.81 µM for IVGRPLANG and 5.68 µM for IGDEPRHQYL. Kinetic analysis using Lineweaver–Burk plots revealed that both peptides act as competitive ACE inhibitors, with calculated inhibition constants (Ki) of 51.38 µM and 5.45 µM, respectively. To assess the structural stability of the ACE–peptide complexes, molecular dynamics simulations were performed. Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) analyses provided insights into complex stability, while interaction fraction analysis elucidated key bond types and residue–ligand contacts involved in binding. Furthermore, a network pharmacology approach was employed to predict therapeutic targets within the renin–angiotensin–aldosterone system (RAAS). Eleven target proteins were identified: IVGRPLANG was associated with REN, ACE, CTSB, CTSS, and AGTR2; IGDEPRHQYL was linked to REN, AGT, AGTR1, AGTR2, KNG1, and BDKR2. Molecular docking analyses using HADDOCK software (version 2.4) were conducted for all targets to evaluate binding affinities, providing further insight into the peptides’ therapeutic potential. Full article
(This article belongs to the Special Issue Jellyfish-Derived Compounds)
Show Figures

Figure 1

27 pages, 4439 KiB  
Article
Deciphering the 3D Structural Characterization of Gonadotropin-Releasing Hormone in Tenualosa ilisha Using Homology Modeling, Molecular Dynamics, and Docking Approaches
by Soumya Prasad Panda, Basanta Kumar Das, Ayushman Gadnayak, Saurav Kumar Nandy, Vikash Kumar, Smruti Priyambada Pradhan, Subhashree Subhasmita Raut, Ratul Chakrabarty, Arghya Kunui and Amiya Kumar Sahoo
Int. J. Mol. Sci. 2025, 26(13), 6098; https://doi.org/10.3390/ijms26136098 - 25 Jun 2025
Viewed by 444
Abstract
Gonadotropin-Releasing Hormone (GnRH) is a crucial neuropeptide that regulates reproductive functions in vertebrates. The study identifies and characterizes (GnRH) in the brain of Tenualosa ilisha, an iconic and lucrative Clupeiform fish from River Ganga, India. The current study aimed to analyze the [...] Read more.
Gonadotropin-Releasing Hormone (GnRH) is a crucial neuropeptide that regulates reproductive functions in vertebrates. The study identifies and characterizes (GnRH) in the brain of Tenualosa ilisha, an iconic and lucrative Clupeiform fish from River Ganga, India. The current study aimed to analyze the GnRH gene in T. ilisha using an in silico study. The GnRH gene of T. ilisha comprises a full-length nucleotide sequence of 605 base pairs with an open reading frame of 312 base pairs, which encodes 103 deduced amino acids (aa), respectively. It was found that leucine (L) is the most abundant amino acid in the GnRH protein. Additionally, the ligand interactions of the GnRH were analyzed using computational approaches. The structural validation showed an excellent stereochemical quality of the GnRH protein sequence, with over 88% of residues in Ramachandran plot-favored regions. The binding site prediction revealed 6 ligand-binding pockets, with the largest pocket containing 12 amino acids. After ADME screening, 16 drug-like compounds were docked to GnRH protein. Top five ligands N-Ac-(4-Cl-Phe)-Trp-Lys-AlaNH2, LHRH_LYS (6), Seabream_GnRH, Leuprolide, and LHRH_Des-tyr (5) had binding affinities ranging from −7.5 to −5.6 kcal/mol. The stable binding site was confirmed by 100 ns molecular dynamics simulations, with RMSD values below 10 Å and key residues retaining ligand contacts. The GnRH-protein resulted in the development of a suitable peptide sequence of T. ilisha, showing similarity with the similar anadromous American shad (Alosa sapidissima). This will certainly aid in future therapeutic and captive breeding advances, thereby fostering the culture and conservation of the wild species. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 4991 KiB  
Article
Antenna-Specific TabsOBP45 and TabsOBP46 Mediate Plant Volatile Recognition in Tuta absoluta (Lepidoptera: Gelechiidae)
by Qingyu Liu, Liuyang Wang, Panjing Liu, Lingrui Li, Jun Ning and Tao Zhang
Agronomy 2025, 15(7), 1539; https://doi.org/10.3390/agronomy15071539 - 25 Jun 2025
Viewed by 415
Abstract
The tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae), is a destructive pest of Solanaceae crops worldwide. Its olfactory system plays an important role in locating mating partners and recognizing host plants. Understanding its olfactory recognition mechanism, particularly the function of odorant-binding proteins (OBPs), [...] Read more.
The tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae), is a destructive pest of Solanaceae crops worldwide. Its olfactory system plays an important role in locating mating partners and recognizing host plants. Understanding its olfactory recognition mechanism, particularly the function of odorant-binding proteins (OBPs), may reveal potential targets for pest management. In this study, we characterized two antenna-specific OBPs, TabsOBP45 and TabsOBP46, which were identified from the T. absoluta genome. Sequence analysis revealed that both TabsOBPs belong to the classic OBP subfamily, which is characterized by the presence of six conserved cysteine residues and an N-terminal signal peptide. Both TabsOBPs showed predominant antennal expression in quantitative real-time PCR (qRT-PCR) assays, suggesting their key roles in olfactory perception. Fluorescence competitive binding assays with a total of 63 tested volatiles revealed that 13 compounds exhibited strong binding affinities (Ki < 22 µM) to TabsOBP45, with the highest binding affinity to β-ionone, β-caryophyllene, terpinolene, and cinnamaldehyde. Nine compounds showed strong binding affinities to TabsOBP46, with the strongest binding to 4-anisaldehyde, 4-methoxybenzaldehyde, cinnamaldehyde, and β-ionone. Molecular docking analysis revealed the key residues involved in β-ionone binding: TabsOBP45 interacted with ILE8, ALA9, PHE12, TRP37, ILE92, PHE94, THR115, and PHE118, while TabsOBP46 interacted with ILE8, PHE12, PHE36, TRP37, ILE92, LEU94, PHE118, and VAL134. These results provide new insights into the olfactory mechanism of T. absoluta and potential molecular targets for the development of olfactory-based pest control strategies. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

20 pages, 2285 KiB  
Article
Antioxidant Activity In Vitro and Protective Effects Against Lipopolysaccharide-Induced Oxidative Stress and Inflammation in RAW264.7 Cells of Ulva prolifera-Derived Bioactive Peptides Identified by Virtual Screening, Molecular Docking, and Dynamics Simulations
by Jiasi Liu, Zhiyong Li, Huiyue Gu and Songdong Shen
Foods 2025, 14(13), 2202; https://doi.org/10.3390/foods14132202 - 23 Jun 2025
Viewed by 489
Abstract
Large-scale blooms of Ulva prolifera severely impact coastal ecosystems and economic development. In addressing Ulva management, the development of high-value utilization approaches for this macroalga remains crucial. Compared to other marine algae, Ulva prolifera exhibits higher protein content with diverse amino acid profiles, [...] Read more.
Large-scale blooms of Ulva prolifera severely impact coastal ecosystems and economic development. In addressing Ulva management, the development of high-value utilization approaches for this macroalga remains crucial. Compared to other marine algae, Ulva prolifera exhibits higher protein content with diverse amino acid profiles, and existing studies demonstrate that hydrolyzed Ulva prolifera proteins can yield biologically active peptides with functional potential. Conventional methods for producing bioactive peptides are often cost-intensive. Here, we employed in silico enzymatic hydrolysis to generate small peptides from Ulva prolifera protein. Through computer screening, molecular docking with the Keap1 protein, and molecular dynamics simulations, we identified a potential antioxidant peptide, DWS (Asp-Trp-Ser). Molecular docking and dynamics simulations revealed that DWS forms stable complexes with Keap1 by establishing hydrogen bonds and Pi bonds with conserved amino acid residues (Leu557, Gly558, Ile559, Val604, Val606, and Arg415). In vitro antioxidant assays demonstrated that DWS exhibits potent DPPH and ABTS radical scavenging activities as well as reducing power. Cellular experiments showed that DWS effectively alleviates LPS-induced oxidative stress and inflammation in RAW264.7 macrophages. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

6 pages, 570 KiB  
Proceeding Paper
In Silico Evaluation of Diketopiperazine (DPK) Derivatives as Potential Inhibitors for G-Protein-Coupled Receptors (GPCRs)
by Sepideh Jafari and Joanna Bojarska
Med. Sci. Forum 2025, 34(1), 2; https://doi.org/10.3390/msf2025034002 - 19 Jun 2025
Viewed by 346
Abstract
G-protein-coupled receptors (GPCRs) are a group of various membrane proteins that mediate essential physiological processes by translating extracellular signals into intracellular responses. The β2-Adrenergic Receptor (β2-AR), a key GPCR, plays a critical role in smooth muscle relaxation, bronchodilation, and cardiovascular function, making it [...] Read more.
G-protein-coupled receptors (GPCRs) are a group of various membrane proteins that mediate essential physiological processes by translating extracellular signals into intracellular responses. The β2-Adrenergic Receptor (β2-AR), a key GPCR, plays a critical role in smooth muscle relaxation, bronchodilation, and cardiovascular function, making it an important therapeutic target for diseases such as asthma and hypertension. Diketopiperazines (DPKs), as cyclic peptides, have shown promise as scaffolds for inhibiting protein interactions and modulating receptor activity, offering a potential alternative to traditional small-molecule inhibitors with reduced side effects. In this study, five DPK derivatives were selected from the PubChem database and evaluated for their binding affinity to the 3D structure of β2-AR (PDB ID = 2RH1) through molecular docking studies using AutoDock 4.6 and MGLTools. The binding energy and hydrogen bond formation of each compound were evaluated to determine their interaction efficiency. Among the compounds, tryptophan-proline diketopiperazine (compound 3) exhibited the highest binding affinity with a binding energy of −5.89 kcal/mol. This enhanced interaction is attributed to the aromatic nature of tryptophan, which promotes strong π-π stacking interactions, and the rigidity of proline, which optimally fits within the receptor’s binding pocket. Hydrophobic interactions further stabilized the complex. These findings highlight compound 3 as a promising β2-AR modulator, providing valuable insights for the design of peptide-based inhibitors targeting β2-AR-related pathologies. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biomedicines)
Show Figures

Figure 1

16 pages, 2852 KiB  
Article
A Novel Hybrid Peptide VLP-Aβ Efficiently Regulates Immunity by Stimulating Myeloid Differentiation Protein and Activating the NF-κB Pathway
by Junyong Wang, Xuelian Zhao, Rijun Zhang, Jing Zhang, Yucui Tong, Zaheer Abbas, Dayong Si and Xubiao Wei
Int. J. Mol. Sci. 2025, 26(12), 5834; https://doi.org/10.3390/ijms26125834 - 18 Jun 2025
Viewed by 397
Abstract
Immunosuppression dramatically increases tissue and organ susceptibility to infection, injury, and even cancer. This poses a serious threat to human and animal health. In a previous study, we established a platform for high-throughput design and screening of multifunctional peptides. Using this platform, we [...] Read more.
Immunosuppression dramatically increases tissue and organ susceptibility to infection, injury, and even cancer. This poses a serious threat to human and animal health. In a previous study, we established a platform for high-throughput design and screening of multifunctional peptides. Using this platform, we successfully identified a novel hybrid peptide, VLP-Aβ (VA), which exhibits both immunomodulatory and antioxidant properties. This study aimed to evaluate the immunomodulatory activity of VA and investigate the underlying molecular mechanisms. In the cyclophosphamide (CTX)-induced immunodeficient mouse model, VA significantly alleviated CTX-induced weight loss. It also restored thymus and spleen indices, and increased serum immunoglobulins (IgA, IgM, IgG) and cytokines (TNF-α, IL-6, IL-1β) levels. VA also improved splenic lymphocyte proliferation, CD4+/CD8+ T cell ratios, and NK cell cytotoxicity. At the cellular level, western blot analysis showed that VA activated the TLR4-NF-κB pathway in RAW264.7 macrophages. Mechanistically, inhibition of the MD2 protein by L6H21 abolished VA’s immunomodulatory effects. This confirms MD2 as a critical mediator. Molecular docking and dynamics simulations revealed that VA binds stably to the hydrophobic pocket of MD2. These findings suggest that VA exerts immunomodulatory effects by stimulating MD2 and activating the TLR4-NF-κB pathway, which provides new ideas, techniques, and approaches for the development of novel peptide immunomodulators. Full article
(This article belongs to the Special Issue Targeted Therapy for Immune Diseases)
Show Figures

Figure 1

22 pages, 7438 KiB  
Article
Bacillibactin, a Potential Bacillus-Based Antibacterial Non-Ribosomal Peptide: In Silico Studies for Targeting Common Fish Pathogens
by Evgeniya Prazdnova, Anna Zaikina, Alexey Neurov, Maria Mazanko, Anuj Ranjan and Dmitry Rudoy
Int. J. Mol. Sci. 2025, 26(12), 5811; https://doi.org/10.3390/ijms26125811 - 17 Jun 2025
Viewed by 560
Abstract
Aquaculture is one of the fastest-growing sectors in food production. The widespread use of antibiotics in fish farming has been identified as a driver for the development of antibiotic resistance. One of the promising approaches to solving this problem is the use of [...] Read more.
Aquaculture is one of the fastest-growing sectors in food production. The widespread use of antibiotics in fish farming has been identified as a driver for the development of antibiotic resistance. One of the promising approaches to solving this problem is the use of probiotics. There are many promising aquaculture probiotics in the Bacillus genus, which produces non-ribosomal peptides (NRPs). NRPs are known as antimicrobial agents, although evidence is gradually accumulating that they may have other effects, especially at lower (subinhibitory) concentrations. The mechanisms of action of many NRPs remain unexplored, and molecular docking and molecular dynamics studies are invaluable tools for studying such mechanisms. The purpose of this study was to investigate the in silico inhibition of crucial bacterial targets by NRPs. Molecular docking analyses were conducted to assess the binding affinities of the NRPs of Bacillus for protein targets. Among the complexes evaluated, bacillibactin with glutamine synthetase, dihydrofolate reductase, and proaerolysin exhibited the lowest docking scores. Consequently, these complexes were selected for further investigation through molecular dynamics simulations. As a result, three additional potential mechanisms of action for bacillibactin were identified through in silico analyses, including the inhibition of glutamine synthetase, dihydrofolate reductase, and proaerolysin, which are critical bacterial enzymes and considered as the potential antibacterial targets. These findings were further supported by in vitro antagonism assays using bacillibactin-producing Bacillus velezensis strains MT55 and MT155, which demonstrated strong inhibitory activity against Pseudomonas aeruginosa and Aeromonas veronii. Full article
(This article belongs to the Special Issue Cheminformatics in Drug Discovery and Green Synthesis)
Show Figures

Figure 1

18 pages, 8394 KiB  
Article
Goat Whey Protein Hydrolysate Mitigates High-Fructose Corn Syrup-Induced Hepatic Steatosis in a Murine Model
by Chun-Hui Shao, Vipul Wayal and Chang-Chi Hsieh
Nutrients 2025, 17(12), 2011; https://doi.org/10.3390/nu17122011 - 16 Jun 2025
Viewed by 600
Abstract
Background/Objectives: Hepatic steatosis, characterized by abnormal fat accumulation in the liver, is a major health concern with limited effective treatments. Goat milk whey proteins have demonstrated various therapeutic benefits. This study aimed to evaluate the hepatoprotective effects of goat whey protein hydrolysate [...] Read more.
Background/Objectives: Hepatic steatosis, characterized by abnormal fat accumulation in the liver, is a major health concern with limited effective treatments. Goat milk whey proteins have demonstrated various therapeutic benefits. This study aimed to evaluate the hepatoprotective effects of goat whey protein hydrolysate (GWPH) on high-fructose corn syrup (HFCS)-induced hepatic steatosis in a murine model. Methods: The GWPH was prepared through enzymatic hydrolysis using Alcalase® and divided into fractions: GWPH03 (<3 kDa), GWPH0310 (3–10 kDa), GWPH1030 (10–30 kDa), and GWPH30 (>30 kDa). These fractions were administered to respective GWPH treatment groups at 200 mg/kg b.w/day via intragastric gavage for 8 weeks, with HFCS provided to all groups except the Naïve group. After dietary intervention, an oral glucose tolerance test (OGTT) was performed, and the mice were then sacrificed for further analysis. Results: Our results demonstrate that GWPH mitigates HFCS-induced hepatic steatosis, reduces body weight gain, improves glucose homeostasis, alleviates liver injury, and regulates hepatic lipid metabolism. Notably, GWPH treatment significantly suppressed hepatic fatty acid synthase (FASN) expressions, indicating reduced de novo lipogenesis (DNL). Molecular docking of the identified peptides from GWPH—particularly PFNVYNVV, which showed strong binding affinity for KHK—suggests that it has potential as a competitive inhibitor of fructose metabolism. Conclusions: Collectively, our findings suggest that GWPH and its derived peptides could be promising candidates for managing hepatic steatosis and related metabolic abnormalities. Full article
(This article belongs to the Section Carbohydrates)
Show Figures

Figure 1

21 pages, 2746 KiB  
Article
(Alkyl-ω-ol)triphenyltin(IV)-Loaded Mesoporous Silica as Biocompatible Potential Neuroprotectors: Evaluation of Inhibitory Activity Against Enzymes Associated with the Pathophysiology of Alzheimer’s Disease
by Kristina Milisavljević, Žiko Milanović, Jovana Matić, Marko Antonijević, Vladimir Simić, Miljan Milošević, Marijana Kosanić and Goran N. Kaluđerović
Nanomaterials 2025, 15(12), 914; https://doi.org/10.3390/nano15120914 - 12 Jun 2025
Viewed by 548
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by synaptic dysfunction and neuronal loss due to the accumulation of amyloid-β peptides and tau proteins. In the pursuit of novel neuroprotective strategies, organotin(IV) compounds have garnered attention due to their unique chemical and [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by synaptic dysfunction and neuronal loss due to the accumulation of amyloid-β peptides and tau proteins. In the pursuit of novel neuroprotective strategies, organotin(IV) compounds have garnered attention due to their unique chemical and biological properties. This study evaluates the inhibitory potential of two triphenyltin(IV) derivatives—(3-propan-1-ol)triphenyltin(IV) (Ph3SnL1) and (4-butan-1-ol)triphenyltin(IV) (Ph3SnL2)—in both free form and immobilized into mesoporous silica SBA-15~Cl, targeting acetylcholinesterase (AChE), a key enzyme involved in AD pathophysiology. The SBA-15~Cl|Ph3SnL2 nanostructures exhibited the most potent inhibitory activity against AChE (IC50 = 0.58 μM), significantly outperforming the standard drug galantamine. Molecular docking, molecular dynamics simulations, and MM/GBSA and MM/PBSA analyses confirmed the stability and selectivity of interactions with AChE, primarily driven by hydrophobic interactions. Compound transport was also simulated using a multi-scale 3D mouse brain model to evaluate brain tissue distribution and blood–brain barrier permeability. The results highlight the strong potential of SBA-15-loaded organotin(IV) compounds as biocompatible neuroprotective agents for novel treatments of neurodegenerative diseases. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Figure 1

34 pages, 7701 KiB  
Article
Docking Simulations of G-Protein Coupled Receptors Uncover Crossover Binding Patterns of Diverse Ligands to Angiotensin, Alpha-Adrenergic and Opioid Receptors: Implications for Cardiovascular Disease and Addiction
by Harry Ridgway, Graham J. Moore, Laura Kate Gadanec and John M. Matsoukas
Biomolecules 2025, 15(6), 855; https://doi.org/10.3390/biom15060855 - 11 Jun 2025
Viewed by 1664
Abstract
Recent bioassay studies have unexpectedly supported the high (computationally predicted) binding affinities of angiotensin receptor blockers (ARBs) at α-adrenergic receptors (αARs) in isolated smooth muscle. Computational predictions from ligand docking studies are consistent with very low concentrations of ARBs (e.g., sartans or bisartans) [...] Read more.
Recent bioassay studies have unexpectedly supported the high (computationally predicted) binding affinities of angiotensin receptor blockers (ARBs) at α-adrenergic receptors (αARs) in isolated smooth muscle. Computational predictions from ligand docking studies are consistent with very low concentrations of ARBs (e.g., sartans or bisartans) that partially reduce (20–50%) the contractile response to phenylephrine, suggesting that some ARBs may function as partial inverse agonists at αARs. Virtual ligand screening (docking) and molecular dynamics (MD) simulations were carried out to explore the binding affinities and stabilities of selected non-peptide ligands (e.g., ARBs and small-molecule opioids) for several G-protein coupled receptor (GPCR) types, including angiotensin II (AngII) type 1 receptor (AT1R), α1AR, α2AR, and μ-(µOR) and ժ-opioid receptors (ժOR). Results: All ligands docked preferentially to the binding pocket on the cell surface domain of the GPCR types investigated. Drug binding was characterized by weak interactions (hydrophobic, hydrogen bonding, pi-pi) and stronger ionic and salt-bridge interactions (cation-pi and cation-anion interactions). Ligands specific to each GPCR category showed considerable cross-binding with alternative GPCRs, with small-molecule medications appearing less selective than their peptide or ARB functional equivalents. ARBs that exhibit higher affinities for AT1R also demonstrate higher affinities for µORs and ժORs than opiate ligands, such as fentanyl and naltrexone. Moreover, ARBs had a higher affinity for αARs than either alpha agonists (epinephrine and phenylephrine) or inhibitors (prazosin and doxazosin). MD simulations of membrane-embedded ARB-GPCR complexes proved stable over nanosecond time scales and suggested that some ARBs may behave as agonists or antagonists depending on the GPCR type. Based on the results presented in this and related investigations, we propose that agonists bind to the resting A-site of GPCRs, while inverse agonists occupy the desensitizing D-site, which partial agonists like morphine and fentanyl share, contributing to addiction. ARBs block both AngII and alpha receptors, suggesting that they are more potent antihypertensive drugs than ACE inhibitors. ARBs have the potential to inhibit morphine tolerance and appear to disrupt receptor desensitization processes, potentially by competing at the D-site. Our results suggest the possible therapeutic potential of ARBs in treating methamphetamine and opiate addictions. Full article
Show Figures

Figure 1

Back to TopTop