Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (875)

Search Parameters:
Keywords = product recalls

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4141 KiB  
Article
Automated Quality Control of Candle Jars via Anomaly Detection Using OCSVM and CNN-Based Feature Extraction
by Azeddine Mjahad and Alfredo Rosado-Muñoz
Mathematics 2025, 13(15), 2507; https://doi.org/10.3390/math13152507 - 4 Aug 2025
Viewed by 160
Abstract
Automated quality control plays a critical role in modern industries, particularly in environments that handle large volumes of packaged products requiring fast, accurate, and consistent inspections. This work presents an anomaly detection system for candle jars commonly used in industrial and commercial applications, [...] Read more.
Automated quality control plays a critical role in modern industries, particularly in environments that handle large volumes of packaged products requiring fast, accurate, and consistent inspections. This work presents an anomaly detection system for candle jars commonly used in industrial and commercial applications, where obtaining labeled defective samples is challenging. Two anomaly detection strategies are explored: (1) a baseline model using convolutional neural networks (CNNs) as an end-to-end classifier and (2) a hybrid approach where features extracted by CNNs are fed into One-Class classification (OCC) algorithms, including One-Class SVM (OCSVM), One-Class Isolation Forest (OCIF), One-Class Local Outlier Factor (OCLOF), One-Class Elliptic Envelope (OCEE), One-Class Autoencoder (OCAutoencoder), and Support Vector Data Description (SVDD). Both strategies are trained primarily on non-defective samples, with only a limited number of anomalous examples used for evaluation. Experimental results show that both the pure CNN model and the hybrid methods achieve excellent classification performance. The end-to-end CNN reached 100% accuracy, precision, recall, F1-score, and AUC. The best-performing hybrid model CNN-based feature extraction followed by OCIF also achieved 100% across all evaluation metrics, confirming the effectiveness and robustness of the proposed approach. Other OCC algorithms consistently delivered strong results, with all metrics above 95%, indicating solid generalization from predominantly normal data. This approach demonstrates strong potential for quality inspection tasks in scenarios with scarce defective data. Its ability to generalize effectively from mostly normal samples makes it a practical and valuable solution for real-world industrial inspection systems. Future work will focus on optimizing real-time inference and exploring advanced feature extraction techniques to further enhance detection performance. Full article
Show Figures

Figure 1

23 pages, 511 KiB  
Article
Dietary Acrylamide Exposure and Its Correlation with Nutrition and Exercise Behaviours Among Turkish Adolescents
by Mehtap Metin Karaaslan and Burhan Basaran
Nutrients 2025, 17(15), 2534; https://doi.org/10.3390/nu17152534 - 1 Aug 2025
Viewed by 301
Abstract
Background/Objectives: Acrylamide is a probably carcinogenic to humans that naturally forms during the thermal processing of foods. An individual’s lifestyle—especially dietary habits and physical activity—may influence the severity of acrylamide’s adverse health effects. This study aimed to examine the relationship between adolescents’ dietary [...] Read more.
Background/Objectives: Acrylamide is a probably carcinogenic to humans that naturally forms during the thermal processing of foods. An individual’s lifestyle—especially dietary habits and physical activity—may influence the severity of acrylamide’s adverse health effects. This study aimed to examine the relationship between adolescents’ dietary and exercise behaviors and their dietary acrylamide exposure and associated health risks. Methods: This descriptive and cross-sectional study was conducted with 370 high school students in Türkiye. Data were collected using the Nutrition Exercise Behavior Scale (NEBS) and a retrospective 24-h dietary recall questionnaire. Acrylamide exposure was calculated based on food intake to estimate carcinogenic (CR) and non-corcinogenic (target hazard quotient: THQ) health risks and analyzed in relation to NEBS scores. Results: Findings indicated that while adolescents are beginning to adopt healthy eating and exercise habits, these behaviors are not yet consistent. Emotional eating and unhealthy food choices still occur. Higher acrylamide exposure and risk values were observed in boys and underweight individuals. This can be explained mainly by the fact that boys consume more of certain foods—especially bread, which contains relatively higher levels of acrylamide—than girls do, and that underweight individuals have lower body weights despite consuming similar amounts of food as other groups. Bread products emerged as the primary source of daily acrylamide intake. Positive correlations were found between NEBS total and subscale scores and acrylamide exposure and health risk values. Conclusions: The study demonstrates a significant association between adolescents’ health behaviors and acrylamide exposure. These results underscore potential public health concerns regarding acrylamide intake during adolescence and emphasize the need for targeted nutritional interventions to reduce risk and promote sustainable healthy behaviors. Full article
(This article belongs to the Section Nutrition Methodology & Assessment)
Show Figures

Figure 1

25 pages, 2515 KiB  
Article
Solar Agro Savior: Smart Agricultural Monitoring Using Drones and Deep Learning Techniques
by Manu Mundappat Ramachandran, Bisni Fahad Mon, Mohammad Hayajneh, Najah Abu Ali and Elarbi Badidi
Agriculture 2025, 15(15), 1656; https://doi.org/10.3390/agriculture15151656 - 1 Aug 2025
Viewed by 295
Abstract
The Solar Agro Savior (SAS) is an innovative solution that is assisted by drones for the sustainable utilization of water and plant disease observation in the agriculture sector. This system integrates an alerting mechanism for humidity, moisture, and temperature variations, which affect the [...] Read more.
The Solar Agro Savior (SAS) is an innovative solution that is assisted by drones for the sustainable utilization of water and plant disease observation in the agriculture sector. This system integrates an alerting mechanism for humidity, moisture, and temperature variations, which affect the plants’ health and optimization in water utilization, which enhances plant yield productivity. A significant feature of the system is the efficient monitoring system in a larger region through drones’ high-resolution cameras, which enables real-time, efficient response and alerting for environmental fluctuations to the authorities. The machine learning algorithm, particularly recurrent neural networks, which is a pioneer with agriculture and pest control, is incorporated for intelligent monitoring systems. The proposed system incorporates a specialized form of a recurrent neural network, Long Short-Term Memory (LSTM), which effectively addresses the vanishing gradient problem. It also utilizes an attention-based mechanism that enables the model to assign meaningful weights to the most important parts of the data sequence. This algorithm not only enhances water utilization efficiency but also boosts plant yield and strengthens pest control mechanisms. This system also provides sustainability through the re-utilization of water and the elimination of electric energy through solar panel systems for powering the inbuilt irrigation system. A comparative analysis of variant algorithms in the agriculture sector with a machine learning approach was also illustrated, and the proposed system yielded 99% yield accuracy, a 97.8% precision value, 98.4% recall, and a 98.4% F1 score value. By encompassing solar irrigation and artificial intelligence-driven analysis, the proposed algorithm, Solar Argo Savior, established a sustainable framework in the latest agricultural sectors and promoted sustainability to protect our environment and community. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

15 pages, 2158 KiB  
Article
A Data-Driven Approach for Internal Crack Prediction in Continuous Casting of HSLA Steels Using CTGAN and CatBoost
by Mengying Geng, Haonan Ma, Shuangli Liu, Zhuosuo Zhou, Lei Xing, Yibo Ai and Weidong Zhang
Materials 2025, 18(15), 3599; https://doi.org/10.3390/ma18153599 - 31 Jul 2025
Viewed by 198
Abstract
Internal crack defects in high-strength low-alloy (HSLA) steels during continuous casting pose significant challenges to downstream processing and product reliability. However, due to the inherent class imbalance in industrial defect datasets, conventional machine learning models often suffer from poor sensitivity to minority class [...] Read more.
Internal crack defects in high-strength low-alloy (HSLA) steels during continuous casting pose significant challenges to downstream processing and product reliability. However, due to the inherent class imbalance in industrial defect datasets, conventional machine learning models often suffer from poor sensitivity to minority class instances. This study proposes a predictive framework that integrates conditional tabular generative adversarial network (CTGAN) for synthetic minority sample generation and CatBoost for classification. A dataset of 733 process records was collected from a continuous caster, and 25 informative features were selected using mutual information. CTGAN was employed to augment the minority class (crack) samples, achieving a balanced training set. Feature distribution analysis and principal component visualization indicated that the synthetic data effectively preserved the statistical structure of the original minority class. Compared with the other machine learning methods, including KNN, SVM, and MLP, CatBoost achieved the highest metrics, with an accuracy of 0.9239, precision of 0.9041, recall of 0.9018, and F1-score of 0.9022. Results show that CTGAN-based augmentation improves classification performance across all models. These findings highlight the effectiveness of GAN-based augmentation for imbalanced industrial data and validate the CTGAN–CatBoost model as a robust solution for online defect prediction in steel manufacturing. Full article
(This article belongs to the Special Issue Latest Developments in Advanced Machining Technologies for Materials)
Show Figures

Figure 1

20 pages, 3518 KiB  
Article
YOLO-AWK: A Model for Injurious Bird Detection in Complex Farmland Environments
by Xiang Yang, Yongliang Cheng, Minggang Dong and Xiaolan Xie
Symmetry 2025, 17(8), 1210; https://doi.org/10.3390/sym17081210 - 30 Jul 2025
Viewed by 261
Abstract
Injurious birds pose a significant threat to food production and the agricultural economy. To address the challenges posed by their small size, irregular shape, and frequent occlusion in complex farmland environments, this paper proposes YOLO-AWK, an improved bird detection model based on YOLOv11n. [...] Read more.
Injurious birds pose a significant threat to food production and the agricultural economy. To address the challenges posed by their small size, irregular shape, and frequent occlusion in complex farmland environments, this paper proposes YOLO-AWK, an improved bird detection model based on YOLOv11n. Firstly, to improve the ability of the enhanced model to recognize bird targets in complex backgrounds, we introduce the in-scale feature interaction (AIFI) module to replace the original SPPF module. Secondly, to more accurately localize and identify bird targets of different shapes and sizes, we use WIoUv3 as a new loss function. Thirdly, to remove the noise interference and improve the extraction of bird residual features, we introduce the Kolmogorov–Arnold network (KAN) module. Finally, to improve the model’s detection accuracy for small bird targets, we add a small target detection head. The experimental results show that the detection performance of YOLO-AWK on the farmland bird dataset is significantly improved, and the final precision, recall, mAP@0.5, and mAP@0.5:0.95 reach 93.9%, 91.2%, 95.8%, and 75.3%, respectively, which outperforms the original model by 2.7, 2.3, 1.6, and 3.0 percentage points, respectively. These results demonstrate that the proposed method offers a reliable and efficient technical solution for farmland injurious bird monitoring. Full article
(This article belongs to the Special Issue Symmetry and Its Applications in Image Processing)
Show Figures

Figure 1

29 pages, 3125 KiB  
Article
Tomato Leaf Disease Identification Framework FCMNet Based on Multimodal Fusion
by Siming Deng, Jiale Zhu, Yang Hu, Mingfang He and Yonglin Xia
Plants 2025, 14(15), 2329; https://doi.org/10.3390/plants14152329 - 27 Jul 2025
Viewed by 465
Abstract
Precisely recognizing diseases in tomato leaves plays a crucial role in enhancing the health, productivity, and quality of tomato crops. However, disease identification methods that rely on single-mode information often face the problems of insufficient accuracy and weak generalization ability. Therefore, this paper [...] Read more.
Precisely recognizing diseases in tomato leaves plays a crucial role in enhancing the health, productivity, and quality of tomato crops. However, disease identification methods that rely on single-mode information often face the problems of insufficient accuracy and weak generalization ability. Therefore, this paper proposes a tomato leaf disease recognition framework FCMNet based on multimodal fusion, which combines tomato leaf disease image and text description to enhance the ability to capture disease characteristics. In this paper, the Fourier-guided Attention Mechanism (FGAM) is designed, which systematically embeds the Fourier frequency-domain information into the spatial-channel attention structure for the first time, enhances the stability and noise resistance of feature expression through spectral transform, and realizes more accurate lesion location by means of multi-scale fusion of local and global features. In order to realize the deep semantic interaction between image and text modality, a Cross Vision–Language Alignment module (CVLA) is further proposed. This module generates visual representations compatible with Bert embeddings by utilizing block segmentation and feature mapping techniques. Additionally, it incorporates a probability-based weighting mechanism to achieve enhanced multimodal fusion, significantly strengthening the model’s comprehension of semantic relationships across different modalities. Furthermore, to enhance both training efficiency and parameter optimization capabilities of the model, we introduce a Multi-strategy Improved Coati Optimization Algorithm (MSCOA). This algorithm integrates Good Point Set initialization with a Golden Sine search strategy, thereby boosting global exploration, accelerating convergence, and effectively preventing entrapment in local optima. Consequently, it exhibits robust adaptability and stable performance within high-dimensional search spaces. The experimental results show that the FCMNet model has increased the accuracy and precision by 2.61% and 2.85%, respectively, compared with the baseline model on the self-built dataset of tomato leaf diseases, and the recall and F1 score have increased by 3.03% and 3.06%, respectively, which is significantly superior to the existing methods. This research provides a new solution for the identification of tomato leaf diseases and has broad potential for agricultural applications. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

22 pages, 5154 KiB  
Article
BCS_YOLO: Research on Corn Leaf Disease and Pest Detection Based on YOLOv11n
by Shengnan Hao, Erjian Gao, Zhanlin Ji and Ivan Ganchev
Appl. Sci. 2025, 15(15), 8231; https://doi.org/10.3390/app15158231 - 24 Jul 2025
Viewed by 247
Abstract
Frequent corn leaf diseases and pests pose serious threats to agricultural production. Traditional manual detection methods suffer from significant limitations in both performance and efficiency. To address this, the present paper proposes a novel biotic condition screening (BCS) model for the detection of [...] Read more.
Frequent corn leaf diseases and pests pose serious threats to agricultural production. Traditional manual detection methods suffer from significant limitations in both performance and efficiency. To address this, the present paper proposes a novel biotic condition screening (BCS) model for the detection of corn leaf diseases and pests, called BCS_YOLO, based on the You Only Look Once version 11n (YOLOv11n). The proposed model enables accurate detection and classification of various corn leaf pathologies and pest infestations under challenging agricultural field conditions. It achieves this thanks to three key newly designed modules—a Self-Perception Coordinated Global Attention (SPCGA) module, a High/Low-Frequency Feature Enhancement (HLFFE) module, and a Local Attention Enhancement (LAE) module. The SPCGA module improves the model’s ability to perceive fine-grained targets by fusing multiple attention mechanisms. The HLFFE module adopts a frequency domain separation strategy to strengthen edge delineation and structural detail representation in affected areas. The LAE module effectively improves the model’s discrimination ability between targets and backgrounds through local importance calculation and intensity adjustment mechanisms. Conducted experiments show that BCS_YOLO achieves 78.4%, 73.7%, 76.0%, and 82.0% in precision, recall, F1 score, and mAP@50, respectively, representing corresponding improvements of 3.0%, 3.3%, 3.2%, and 4.6% compared to the baseline model (YOLOv11n), while also outperforming the mainstream object detection models. In summary, the proposed BCS_YOLO model provides a practical and scalable solution for efficient detection of corn leaf diseases and pests in complex smart-agriculture scenarios, demonstrating significant theoretical and application value. Full article
(This article belongs to the Special Issue Innovations in Artificial Neural Network Applications)
Show Figures

Figure 1

20 pages, 3978 KiB  
Article
Cotton-YOLO: A Lightweight Detection Model for Falled Cotton Impurities Based on Yolov8
by Jie Li, Zhoufan Zhong, Youran Han and Xinhou Wang
Symmetry 2025, 17(8), 1185; https://doi.org/10.3390/sym17081185 - 24 Jul 2025
Viewed by 258
Abstract
As an important pillar of the global economic system, the cotton industry faces critical challenges from non-fibrous impurities (e.g., leaves and debris) during processing, which severely degrade product quality, inflate costs, and reduce efficiency. Traditional detection methods suffer from insufficient accuracy and low [...] Read more.
As an important pillar of the global economic system, the cotton industry faces critical challenges from non-fibrous impurities (e.g., leaves and debris) during processing, which severely degrade product quality, inflate costs, and reduce efficiency. Traditional detection methods suffer from insufficient accuracy and low efficiency, failing to meet practical production needs. While deep learning models excel in general object detection, their massive parameter counts render them ill-suited for real-time industrial applications. To address these issues, this study proposes Cotton-YOLO, an optimized yolov8 model. By leveraging principles of symmetry in model design and system setup, the study integrates the CBAM attention module—with its inherent dual-path (channel-spatial) symmetry—to enhance feature capture for tiny impurities and mitigate insufficient focus on key areas. The C2f_DSConv module, exploiting functional equivalence via quantization and shift operations, reduces model complexity by 12% (to 2.71 million parameters) without sacrificing accuracy. Considering angle and shape variations in complex scenarios, the loss function is upgraded to Wise-IoU for more accurate boundary box regression. Experimental results show that Cotton-YOLO achieves 86.5% precision, 80.7% recall, 89.6% mAP50, 50.1% mAP50–95, and 50.51 fps detection speed, representing a 3.5% speed increase over the original yolov8. This work demonstrates the effective application of symmetry concepts (in algorithmic structure and performance balance) to create a model that balances lightweight design and high efficiency, providing a practical solution for industrial impurity detection and key technical support for automated cotton sorting systems. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

24 pages, 9379 KiB  
Article
Performance Evaluation of YOLOv11 and YOLOv12 Deep Learning Architectures for Automated Detection and Classification of Immature Macauba (Acrocomia aculeata) Fruits
by David Ribeiro, Dennis Tavares, Eduardo Tiradentes, Fabio Santos and Demostenes Rodriguez
Agriculture 2025, 15(15), 1571; https://doi.org/10.3390/agriculture15151571 - 22 Jul 2025
Viewed by 573
Abstract
The automated detection and classification of immature macauba (Acrocomia aculeata) fruits is critical for improving post-harvest processing and quality control. In this study, we present a comparative evaluation of two state-of-the-art YOLO architectures, YOLOv11x and YOLOv12x, trained on the newly constructed [...] Read more.
The automated detection and classification of immature macauba (Acrocomia aculeata) fruits is critical for improving post-harvest processing and quality control. In this study, we present a comparative evaluation of two state-of-the-art YOLO architectures, YOLOv11x and YOLOv12x, trained on the newly constructed VIC01 dataset comprising 1600 annotated images captured under both background-free and natural background conditions. Both models were implemented in PyTorch and trained until the convergence of box regression, classification, and distribution-focal losses. Under an IoU (intersection over union) threshold of 0.50, YOLOv11x and YOLOv12x achieved an identical mean average precision (mAP50) of 0.995 with perfect precision and recall or TPR (true positive rate). Averaged over IoU thresholds from 0.50 to 0.95, YOLOv11x demonstrated superior spatial localization performance (mAP50–95 = 0.973), while YOLOv12x exhibited robust performance in complex background scenarios, achieving a competitive mAP50–95. Inference throughput averaged 3.9 ms per image for YOLOv11x and 6.7 ms for YOLOv12x, highlighting a trade-off between speed and architectural complexity. Fused model representations revealed optimized layer fusion and reduced computational overhead (GFLOPs), facilitating efficient deployment. Confusion-matrix analyses confirmed YOLOv11x’s ability to reject background clutter more effectively than YOLOv12x, whereas precision–recall and F1-score curves indicated both models maintain near-perfect detection balance across thresholds. The public release of the VIC01 dataset and trained weights ensures reproducibility and supports future research. Our results underscore the importance of selecting architectures based on application-specific requirements, balancing detection accuracy, background discrimination, and computational constraints. Future work will extend this framework to additional maturation stages, sensor fusion modalities, and lightweight edge-deployment variants. By facilitating precise immature fruit identification, this work contributes to sustainable production and value addition in macauba processing. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

33 pages, 1578 KiB  
Article
Machine Learning-Based Prediction of Resilience in Green Agricultural Supply Chains: Influencing Factors Analysis and Model Construction
by Daqing Wu, Tianhao Li, Hangqi Cai and Shousong Cai
Systems 2025, 13(7), 615; https://doi.org/10.3390/systems13070615 - 21 Jul 2025
Viewed by 277
Abstract
Exploring the action mechanisms and enhancement pathways of the resilience of agricultural product green supply chains is conducive to strengthening the system’s risk resistance capacity and providing decision support for achieving the “dual carbon” goals. Based on theories such as dynamic capability theory [...] Read more.
Exploring the action mechanisms and enhancement pathways of the resilience of agricultural product green supply chains is conducive to strengthening the system’s risk resistance capacity and providing decision support for achieving the “dual carbon” goals. Based on theories such as dynamic capability theory and complex adaptive systems, this paper constructs a resilience framework covering the three stages of “steady-state maintenance–dynamic adjustment–continuous evolution” from both single and multiple perspectives. Combined with 768 units of multi-agent questionnaire data, it adopts Structural Equation Modeling (SEM) and fuzzy-set Qualitative Comparative Analysis (fsQCA) to analyze the influencing factors of resilience and reveal the nonlinear mechanisms of resilience formation. Secondly, by integrating configurational analysis with machine learning, it innovatively constructs a resilience level prediction model based on fsQCA-XGBoost. The research findings are as follows: (1) fsQCA identifies a total of four high-resilience pathways, verifying the core proposition of “multiple conjunctural causality” in complex adaptive system theory; (2) compared with single algorithms such as Random Forest, Decision Tree, AdaBoost, ExtraTrees, and XGBoost, the fsQCA-XGBoost prediction method proposed in this paper achieves an optimization of 66% and over 150% in recall rate and positive sample identification, respectively. It reduces false negative risk omission by 50% and improves the ability to capture high-risk samples by three times, which verifies the feasibility and applicability of the fsQCA-XGBoost prediction method in the field of resilience prediction for agricultural product green supply chains. This research provides a risk prevention and control paradigm with both theoretical explanatory power and practical operability for agricultural product green supply chains, and promotes collaborative realization of the “carbon reduction–supply stability–efficiency improvement” goals, transforming them from policy vision to operational reality. Full article
(This article belongs to the Topic Digital Technologies in Supply Chain Risk Management)
Show Figures

Figure 1

19 pages, 7168 KiB  
Article
MTD-YOLO: An Improved YOLOv8-Based Rice Pest Detection Model
by Feng Zhang, Chuanzhao Tian, Xuewen Li, Na Yang, Yanting Zhang and Qikai Gao
Electronics 2025, 14(14), 2912; https://doi.org/10.3390/electronics14142912 - 21 Jul 2025
Viewed by 326
Abstract
The impact of insect pests on the yield and quality of rice is extremely significant, and accurate detection of insect pests is of crucial significance to safeguard rice production. However, traditional manual inspection methods are inefficient and subjective, while existing machine learning-based approaches [...] Read more.
The impact of insect pests on the yield and quality of rice is extremely significant, and accurate detection of insect pests is of crucial significance to safeguard rice production. However, traditional manual inspection methods are inefficient and subjective, while existing machine learning-based approaches still suffer from limited generalization and suboptimal accuracy. To address these challenges, this study proposes an improved rice pest detection model, MTD-YOLO, based on the YOLOv8 framework. First, the original backbone is replaced with MobileNetV3, which leverages optimized depthwise separable convolutions and the Hard-Swish activation function through neural architecture search, effectively reducing parameters while maintaining multiscale feature extraction capabilities. Second, a Cross Stage Partial module with Triplet Attention (C2f-T) module incorporating Triplet Attention is introduced to enhance the model’s focus on infested regions via a channel-patial dual-attention mechanism. In addition, a Dynamic Head (DyHead) is introduced to adaptively focus on pest morphological features using the scale–space–task triple-attention mechanism. The experiments were conducted using two datasets, Rice Pest1 and Rice Pest2. On Rice Pest1, the model achieved a precision of 92.5%, recall of 90.1%, mAP@0.5 of 90.0%, and mAP@[0.5:0.95] of 67.8%. On Rice Pest2, these metrics improved to 95.6%, 92.8%, 96.6%, and 82.5%, respectively. The experimental results demonstrate the high accuracy and efficiency of the model in the rice pest detection task, providing strong support for practical applications. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

16 pages, 2914 KiB  
Article
Smart Dairy Farming: A Mobile Application for Milk Yield Classification Tasks
by Allan Hall-Solorio, Graciela Ramirez-Alonso, Alfonso Juventino Chay-Canul, Héctor A. Lee-Rangel, Einar Vargas-Bello-Pérez and David R. Lopez-Flores
Animals 2025, 15(14), 2146; https://doi.org/10.3390/ani15142146 - 21 Jul 2025
Viewed by 392
Abstract
This study analyzes the use of a lightweight image-based deep learning model to classify dairy cows into low-, medium-, and high-milk-yield categories by automatically detecting the udder region of the cow. The implemented model was based on the YOLOv11 architecture, which enables efficient [...] Read more.
This study analyzes the use of a lightweight image-based deep learning model to classify dairy cows into low-, medium-, and high-milk-yield categories by automatically detecting the udder region of the cow. The implemented model was based on the YOLOv11 architecture, which enables efficient object detection and classification with real-time performance. The model is trained on a public dataset of cow images labeled with 305-day milk yield records. Thresholds were established to define the three yield classes, and a balanced subset of labeled images was selected for training, validation, and testing purposes. To assess the robustness and consistency of the proposed approach, the model was trained 30 times following the same experimental protocol. The system achieves precision, recall, and mean Average Precision (mAP@50) of 0.408 ± 0.044, 0.739 ± 0.095, and 0.492 ± 0.031, respectively, across all classes. The highest precision (0.445 ± 0.055), recall (0.766 ± 0.107), and mAP@50 (0.558 ± 0.036) were observed in the low-yield class. Qualitative analysis revealed that misclassifications mainly occurred near class boundaries, emphasizing the importance of consistent image acquisition conditions. The resulting model was deployed in a mobile application designed to support field-level assessment by non-specialist users. These findings demonstrate the practical feasibility of applying vision-based models to support decision-making in dairy production systems, particularly in settings where traditional data collection methods are unavailable or impractical. Full article
Show Figures

Figure 1

26 pages, 8130 KiB  
Article
Research on Multi-Scale Vector Road-Matching Model Based on ISOD Descriptor
by Yu Yan, Ying Sun, Shaobo Wang, Yuefeng Lu, Yulong Hu and Miao Lu
ISPRS Int. J. Geo-Inf. 2025, 14(7), 280; https://doi.org/10.3390/ijgi14070280 - 20 Jul 2025
Viewed by 365
Abstract
In geographic information data processing, the matching of road data at different scales is crucial. Due to scale differences, road features can change, posing a challenge to multi-scale matching. Spatial relationship is the key to matching because it remains stable at different scales. [...] Read more.
In geographic information data processing, the matching of road data at different scales is crucial. Due to scale differences, road features can change, posing a challenge to multi-scale matching. Spatial relationship is the key to matching because it remains stable at different scales. In this paper, we propose an improved summation product of direction and distance (ISOD) descriptor, which combines features such as included angle chain and camber variance with similarity features such as length, direction, and Hausdorff distance to construct an integrated similarity metric model for multi-scale road matching. The experiments proved that the model achieved 94.75% and 93.34% precision and recall in 1:50,000 and 1:10,000 scale road data matching and 86.39% and 94.06% in 1:250,000 and 1:50,000 scale road data matching, respectively. This proves the effectiveness and practicality of the method. The ISOD descriptor and integrated similarity metric model in this paper provide an effective method for multi-scale road data matching, which helps the integration and fusion of geographic information data, and has an important application value in the fields of intelligent transport and urban planning. Full article
Show Figures

Figure 1

17 pages, 11353 KiB  
Article
YOLO-RGDD: A Novel Method for the Online Detection of Tomato Surface Defects
by Ziheng Liang, Tingting Zhu, Guang Teng, Yajun Zhang and Zhe Gu
Foods 2025, 14(14), 2513; https://doi.org/10.3390/foods14142513 - 17 Jul 2025
Viewed by 398
Abstract
With the advancement of automation in modern agriculture, the demand for intelligence in the post-picking sorting of fruits and vegetables is increasing. As a significant global agricultural product, the defect detection and sorting of tomato is essential to ensure quality and improve economic [...] Read more.
With the advancement of automation in modern agriculture, the demand for intelligence in the post-picking sorting of fruits and vegetables is increasing. As a significant global agricultural product, the defect detection and sorting of tomato is essential to ensure quality and improve economic value. However, the traditional detection method (manual screening) is inefficient and involves high labor intensity. Therefore, a defect detection model named YOLO-RGDD is proposed based on YOLOv12s to identify five types of tomato surface defects (scars, gaps, white spots, spoilage, and dents). Firstly, the original C3k2 module and A2C2f module of YOLOv12 were replaced with RFEM in the backbone network to enhance feature extraction for small targets without increasing computational complexity. Secondly, the Dysample–Slim-Neck of the YOLO-RGDD was developed to reduce the computational complexity and enhance the detection of minor defects. Finally, dynamic convolution was used to replace the conventional convolution in the detection head in order to reduce the model parameter count. The experimental results show that the average precision, recall, and F1-score of the proposed YOLO-RGDD model for tomato defect detection reach 88.5%, 85.7%, and 87.0%, respectively, surpassing advanced object recognition detection algorithms. Additionally, the computational complexity of the YOLO-RGDD is 16.1 GFLOPs, which is 24.8% lower than that of the original YOLOv12s model (21.4 GFLOPs), facilitating the model’s deployment in automated agricultural production. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

17 pages, 2115 KiB  
Article
Surface Defect Detection of Magnetic Tiles Based on YOLOv8-AHF
by Cheng Ma, Yurong Pan and Junfu Chen
Electronics 2025, 14(14), 2857; https://doi.org/10.3390/electronics14142857 - 17 Jul 2025
Viewed by 240
Abstract
Magnetic tiles are an important component of permanent magnet motors, and the quality of magnetic tiles directly affects the performance and service life of a motor. It is necessary to perform defect detection on magnetic tiles in industrial production and remove those with [...] Read more.
Magnetic tiles are an important component of permanent magnet motors, and the quality of magnetic tiles directly affects the performance and service life of a motor. It is necessary to perform defect detection on magnetic tiles in industrial production and remove those with defects. The YOLOv8-AHF algorithm is proposed to improve the ability of network feature information extraction and solve the problem of missed detection or poor detection results in surface defect detection due to the small volume of permanent magnet motor tiles, which reduces the deviation between the predicted box and the true box simultaneously. Firstly, a hybrid module of a combination of atrous convolution and depthwise separable convolution (ADConv) is introduced in the backbone of the model to capture global and local features in magnet tile detection images. In the neck section, a hybrid attention module (HAM) is introduced to focus on the regions of interest in the magnetic tile surface defect images, which improves the ability of information transmission and fusion. The Focal-Enhanced Intersection over Union loss function (Focal-EIoU) is optimized to effectively achieve localization. We conducted comparative experiments, ablation experiments, and corresponding generalization experiments on the magnetic tile surface defect dataset. The experimental results show that the evaluation metrics of YOLOv8-AHF surpass mainstream single-stage object detection algorithms. Compared to the You Only Look Once version 8 (YOLOv8) algorithm, the performance of the YOLOv8-AHF algorithm was improved by 5.9%, 4.1%, 5%, 5%, and 5.8% in terms of mAP@0.5, mAP@0.5:0.95, F1-Score, precision, and recall, respectively. This algorithm achieved significant performance improvement in the task of detecting surface defects on magnetic tiles. Full article
Show Figures

Figure 1

Back to TopTop