YOLO-RGDD: A Novel Method for the Online Detection of Tomato Surface Defects
Abstract
1. Introduction
2. Data Collection and Preprocessing
2.1. Data Collection
2.2. Data Preprocessing
3. Method
3.1. RFEM Module
3.2. Dynamic Up-Sampling
3.3. GSConv
3.4. Dynamic Detection Head
4. Results and Discussion
4.1. Software and Hardware Configuration
4.2. Evaluation Metrics
4.3. Comparison of Different Detection Algorithms
4.4. Ablation Experiment
4.5. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panno, S.; Davino, S.; Caruso, A.G.; Bertacca, S.; Crnogorac, A.; Mandić, A.; Noris, E.; Matić, S. A Review of the Most Common and Economically Important Diseases That Undermine the Cultivation of Tomato Crop in the Mediterranean Basin. Agronomy 2021, 11, 2188. [Google Scholar] [CrossRef]
- Wang, C.; Wei, Z.; Yan, C. A Review of Sorting Robots Based on Machine Vision Technology. Sci. Technol. Eng. 2022, 22, 893–902. [Google Scholar]
- Wang, X.; Xu, Y.; Zhou, J.; Chen, J. Recognition of red flower picking in complex environments based on improved YOLOv7. Trans. Chin. Soc. Agric. Eng. 2023, 39, 169–176. [Google Scholar]
- Zhang, L.; Wang, M.; Ding, Y.; Bu, X. MS-FRCNN: A Multi-Scale Faster RCNN Model for Small Target Forest Fire Detection. Forests 2023, 14, 616. [Google Scholar] [CrossRef]
- Zhao, Y.; Rao, Y.; Dong, S.; Zhang, J. A review of deep learning object detection methods. China J. Image Graph. 2020, 25, 629–654. [Google Scholar] [CrossRef]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. arXiv 2016, arXiv:1602.07261. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 11–18 December 2015; pp. 1440–1448. [Google Scholar] [CrossRef]
- Kopa, M. Measuring of second-order stochastic dominance portfolio efficiency. Int. Conf. Math. Methods Econ. Ind. Kybeenetika 2010, 46, 488–500. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 10781–10790. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Zhang, Y.; Sun, Y.; Wang, Z.; Jiang, Y. YOLOv7-RAR for Urban Vehicle Detection. Sensors 2023, 23, 1801. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Lv, P.; Zhao, M. Detection of Apple Leaf Diseases Based on LightYOLO-AppleLeafDx. Plants 2025, 14, 599. [Google Scholar] [CrossRef] [PubMed]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Gai, R.; Chen, N.; Yuan, H. A detection algorithm for cherry fruits based on the improved YOLO-v4 model. Neural Comput. Appl. 2023, 35, 13895–13906. [Google Scholar] [CrossRef]
- Wang, Y.; Ouyang, C.; Peng, H.; Deng, J.; Yang, L.; Chen, H.; Luo, Y.; Jiang, P. YOLO-ALW: An Enhanced High-Precision Model for Chili Maturity Detection. Sensors 2025, 25, 1405. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Su, L.; Tian, Y.; Chai, Y.; Hu, G.; Mu, W. A Robust YOLOv5 Model with SE Attention and BIFPN for Jishan Jujube Detection in Complex Agricultural Environments. Agriculture 2025, 15, 665. [Google Scholar] [CrossRef]
- Appe, S.N.; Arulselvi, G.; Balaji, G. CAM-YOLO: Tomato detection and classification based on improved YOLOv5 using a combined attention mechanism. PeerJ Comput. Sci. 2023, 9, e1463. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Li, S.; Song, Q.; Zhong, F.; Wei, X. Lightweight tomato real-time detection method based on improved YOLO and mobile deployment. Comput. Electron. Agric. 2023, 205, 107625. [Google Scholar] [CrossRef]
- Fan, S.; Liang, X.; Huang, W.; Zhang, V.J.; Pang, Q.; He, X.; Li, L.; Zhang, C. Real-time defects detection for apple sorting using NIR cameras with pruning-based YOLOV4 network. Comput. Electron. Agric. 2022, 193, 106715. [Google Scholar] [CrossRef]
- Chen, J.; Fu, H.; Lin, C.; Liu, X.; Wang, L.; Lin, Y. YOLOPears: A novel benchmark of YOLO object detectors for multi-class pear surface defect detection in quality grading systems. Front. Plant Sci. 2025, 16, 1483824. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Tan, Z.; Naruse, T.; Tanaka, M.; Ogawauchi, R.; Tasaki, R. Development of an AI-Based Detection System for Cherry Tomato Skin Splitting and Cracking. In Proceedings of the 2024 13th International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, Japan, 9–13 November 2024. [Google Scholar] [CrossRef]
- Tian, Y.; Ye, Q.; Doermann, D. YOLOv12: Attention-Centric Real-Time Object Detectors. arXiv 2025, arXiv:2502.12524. [Google Scholar]
- Khanam, R.; Hussain, M. YOLOv11: An Overview of the Key Architectural Enhancements. arXiv 2024, arXiv:2410.17725. [Google Scholar] [CrossRef]
- Yu, Z.; Huang, H.; Chen, W.; Su, Y.; Liu, Y.; Wang, X. YOLO-FaceV2: A scale and occlusion aware face detector. Pattern Recognit. 2024, 155, 110714. [Google Scholar] [CrossRef]
- Liu, W.; Lu, H.; Fu, H.; Cao, Z. Learning to Upsample by Learning to Sample. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2–6 October 2023; pp. 6004–6014. [Google Scholar]
- Li, H.; Li, J.; Wei, H.; Liu, Z.; Zhan, Z.; Ren, Q. Slim-neck by GSConv: A lightweight design for real-time detector architectures. J. Real-Time Image Process. 2024, 21, 62. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Guo, J.; Wu, E. ParameterNet: Parameters are All You Need for Large-Scale Visual Pretraining of Mobile Networks. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2024; pp. 15751–15761. [Google Scholar] [CrossRef]
- Tariq, M.; Ali, U.; Abbas, S.; Hassan, S.; Naqvi, R.A.; Khan, M.A.; Jeong, D. Corn leaf disease: Insightful diagnosis using VGG16 empowered by explainable AI. Front. Plant Sci. 2024, 15, 1402835. [Google Scholar] [CrossRef] [PubMed]
- Taji, K.; Sohail, A.; Shahzad, T.; Khan, B.S.; Khan, M.A.; Ouahada, K. An Ensemble Hybrid Framework: A Comparative Analysis of Metaheuristic Algorithms for Ensemble Hybrid CNN Features for Plants Disease Classification. IEEE. Access 2024, 12, 61886–61906. [Google Scholar] [CrossRef]
- Liu, G.; Nouaze, J.C.; Touko Mbouembe, P.L.; Kim, J.H. YOLO-Tomato: A Robust Algorithm for Tomato Detection Based on YOLOv3. Sensors 2020, 20, 2145. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; Hong, G.F.; Hsu, C.W.; Lin, C.Y.; Chen, S.J. Real-Time Caterpillar Detection and Tracking in Orchard Using YOLO-NAS Plus SORT. Agriculture 2025, 15, 771. [Google Scholar] [CrossRef]
- Shi, X.; Wu, X. Tomato Processing Defect Detection Using Deep Learning. In Proceedings of the 2nd World Conference on Mechanical Engineering and Intelligent Manufacturing, Shanghai, China, 22–24 November 2019; pp. 728–732. [Google Scholar] [CrossRef]
Image Size | Batch Size | Epochs | Optimizer | Learning Rate |
---|---|---|---|---|
640 | 32 | 600 | SGD | 0.01 |
mP (%) | mR (%) | F1 (%) | MR (%) | FPR (%) | FNR (%) | |
---|---|---|---|---|---|---|
IoU | 80.5 | 80.9 | 80.6 | 22.9 | 19.5 | 19.1 |
IoM | 83.4 | 83.7 | 83.5 | 18.5 | 16.6 | 16.3 |
Methods | mP (%) | mR (%) | F1 (%) | MR (%) | FPR (%) | FNR (%) | GFLOPs |
---|---|---|---|---|---|---|---|
Fast-RCNN | 79.0 | 75.4 | 77.0 | 25.0 | 21.0 | 24.6 | 121.4 |
SSD | 79.2 | 71.2 | 74.6 | 26.7 | 20.8 | 28.8 | 75.6 |
Efficientdet | 80.4 | 77.3 | 78.7 | 23.1 | 19.6 | 22.7 | 6.1 |
YOLOv5s | 85.7 | 80.6 | 82.9 | 19.6 | 14.3 | 19.4 | 24.2 |
YOLO-NAS | 79.2 | 82.6 | 80.8 | 22.8 | 20.8 | 17.4 | 12.5 |
YOLOv9s | 84.4 | 81.0 | 82.5 | 19.3 | 15.6 | 19.0 | 27.6 |
YOLOv11s | 85.0 | 81.1 | 82.8 | 18.9 | 15.0 | 18.9 | 21.7 |
YOLOv12s | 83.4 | 83.7 | 83.5 | 18.5 | 16.6 | 16.3 | 21.4 |
YOLO-RGDD | 88.5 | 85.7 | 87.0 | 15.0 | 11.5 | 14.3 | 16.1 |
YOLOv12s | DSN | RFEM | Dy_Detect | mP (%) | mR (%) | F1 (%) | GFLOPs | Parameters (M) |
---|---|---|---|---|---|---|---|---|
√ | 83.4 | 83.7 | 83.5 | 21.4 | 9.3 | |||
√ | √ | 86.1 | 85.0 | 85.5 | 21.0 | 9.4 | ||
√ | √ | 85.2 | 83.2 | 84.1 | 19.0 | 8.1 | ||
√ | √ | 84.6 | 83.5 | 83.9 | 19.4 | 8.9 | ||
√ | √ | √ | 86.7 | 86.9 | 86.7 | 23.4 | 9.6 | |
√ | √ | √ | 87.3 | 86.5 | 86.8 | 18.8 | 9.1 | |
√ | √ | √ | 86.2 | 84.3 | 84.8 | 16.7 | 8.0 | |
√ | √ | √ | √ | 88.5 | 85.7 | 87.0 | 16.1 | 7.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Zhu, T.; Teng, G.; Zhang, Y.; Gu, Z. YOLO-RGDD: A Novel Method for the Online Detection of Tomato Surface Defects. Foods 2025, 14, 2513. https://doi.org/10.3390/foods14142513
Liang Z, Zhu T, Teng G, Zhang Y, Gu Z. YOLO-RGDD: A Novel Method for the Online Detection of Tomato Surface Defects. Foods. 2025; 14(14):2513. https://doi.org/10.3390/foods14142513
Chicago/Turabian StyleLiang, Ziheng, Tingting Zhu, Guang Teng, Yajun Zhang, and Zhe Gu. 2025. "YOLO-RGDD: A Novel Method for the Online Detection of Tomato Surface Defects" Foods 14, no. 14: 2513. https://doi.org/10.3390/foods14142513
APA StyleLiang, Z., Zhu, T., Teng, G., Zhang, Y., & Gu, Z. (2025). YOLO-RGDD: A Novel Method for the Online Detection of Tomato Surface Defects. Foods, 14(14), 2513. https://doi.org/10.3390/foods14142513