Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,062)

Search Parameters:
Keywords = produce safety

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 2683 KiB  
Systematic Review
Physics-Informed Surrogate Modelling in Fire Safety Engineering: A Systematic Review
by Ramin Yarmohammadian, Florian Put and Ruben Van Coile
Appl. Sci. 2025, 15(15), 8740; https://doi.org/10.3390/app15158740 - 7 Aug 2025
Abstract
Surrogate modelling is increasingly used in engineering to improve computational efficiency in complex simulations. However, traditional data-driven surrogate models often face limitations in generalizability, physical consistency, and extrapolation—issues that are especially critical in safety-sensitive fields such as fire safety engineering (FSE). To address [...] Read more.
Surrogate modelling is increasingly used in engineering to improve computational efficiency in complex simulations. However, traditional data-driven surrogate models often face limitations in generalizability, physical consistency, and extrapolation—issues that are especially critical in safety-sensitive fields such as fire safety engineering (FSE). To address these concerns, physics-informed surrogate modelling (PISM) integrates physical laws into machine learning models, enhancing their accuracy, robustness, and interpretability. This systematic review synthesises existing applications of PISM in FSE, classifies the strategies used to embed physical knowledge, and outlines key research challenges. A comprehensive search was conducted across Google Scholar, ResearchGate, ScienceDirect, and arXiv up to May 2025, supported by backward and forward snowballing. Studies were screened against predefined criteria, and relevant data were analysed through narrative synthesis. A total of 100 studies were included, covering five core FSE domains: fire dynamics, wildfire behaviour, structural fire engineering, material response, and heat transfer. Four main strategies for embedding physics into machine learning were identified: feature engineering techniques (FETs), loss-constrained techniques (LCTs), architecture-constrained techniques (ACTs), and offline-constrained techniques (OCTs). While LCT and ACT offer strict enforcement of physical laws, hybrid approaches combining multiple strategies often produce better results. A stepwise framework is proposed to guide the development of PISM in FSE, aiming to balance computational efficiency with physical realism. Common challenges include handling nonlinear behaviour, improving data efficiency, quantifying uncertainty, and supporting multi-physics integration. Still, PISM shows strong potential to improve the reliability and transparency of machine learning in fire safety applications. Full article
Show Figures

Figure 1

19 pages, 1684 KiB  
Article
Effectiveness of Implementing Hospital Wastewater Treatment Systems as a Measure to Mitigate the Microbial and Antimicrobial Burden on the Environment
by Takashi Azuma, Miwa Katagiri, Takatoshi Yamamoto, Makoto Kuroda and Manabu Watanabe
Antibiotics 2025, 14(8), 807; https://doi.org/10.3390/antibiotics14080807 - 7 Aug 2025
Abstract
Background: The emergence and spread of antimicrobial-resistant bacteria (ARB) has become an urgent global concern as a silent pandemic. When taking measures to reduce the impact of antimicrobial resistance (AMR) on the environment, it is important to consider appropriate treatment of wastewater from [...] Read more.
Background: The emergence and spread of antimicrobial-resistant bacteria (ARB) has become an urgent global concern as a silent pandemic. When taking measures to reduce the impact of antimicrobial resistance (AMR) on the environment, it is important to consider appropriate treatment of wastewater from medical facilities. Methods: In this study, a continuous-flow wastewater treatment system using ozone and ultraviolet light, which has excellent inactivation effects, was implemented in a hospital in an urban area of Japan. Results: The results showed that 99% (2 log10) of Gram-negative rods and more than 99.99% (>99.99%) of ARB comprising ESBL-producing Enterobacterales were reduced by ozone treatment from the first day after treatment, and ultraviolet light-emitting diode (UV-LED) irradiation after ozone treatment; UV-LED irradiation after ozonation further inactivated the bacteria to below the detection limit. Inactivation effects were maintained throughout the treatment period in this study. Metagenomic analysis showed that the removal of these microorganisms at the DNA level tended to be gradual in ozone treatment; however, the treated water after ozone/UV-LED treatment showed a 2 log10 (>99%) removal rate at the end of the treatment. The residual antimicrobials in the effluent were benzylpenicillin, cefpodoxime, ciprofloxacin, levofloxacin, azithromycin, clarithromycin, doxycycline, minocycline, and vancomycin, which were removed by ozone treatment on day 1. In contrast, the removal of ampicillin and cefdinir ranged from 19% to 64% even when combined with UV-LED treatment. Conclusions: Our findings will help to reduce the discharge of ARB and antimicrobials into rivers and maintain the safety of aquatic environments. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Wastewater Treatment Plants)
Show Figures

Figure 1

18 pages, 3212 KiB  
Article
Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice
by Mon-Chien Lee, Ting-Yin Cheng, Ping-Jui Lin, Ting-Chun Lin, Chia-Hsuan Chou, Chao-Yuan Chen and Chi-Chang Huang
Nutrients 2025, 17(15), 2568; https://doi.org/10.3390/nu17152568 - 7 Aug 2025
Abstract
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate [...] Read more.
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate clearance of fatigue-associated by-products. Objective: This study aimed to determine whether live or heat-inactivated Lacticaseibacillus paracasei NB23 can enhance exercise endurance and attenuate fatigue biomarkers in a murine model. Methods: Forty male Institute of Cancer Research (ICR) mice were randomized into four groups (n = 10 each) receiving daily gavage for six weeks with vehicle, heat-killed NB23 (3 × 1010 cells/mouse/day), low-dose live NB23 (1 × 1010 CFU/mouse/day), or high-dose live NB23 (3 × 1010 CFU/mouse/day). Forelimb grip strength and weight-loaded swim-to-exhaustion tests assessed performance. Blood was collected post-exercise to measure serum lactate, ammonia, blood urea nitrogen (BUN), and creatine kinase (CK). Liver and muscle glycogen content was also quantified, and safety was confirmed by clinical-chemistry panels and histological examination. Results: NB23 treatment produced dose-dependent improvements in grip strength (p < 0.01) and swim endurance (p < 0.001). All NB23 groups exhibited significant reductions in post-exercise lactate (p < 0.0001), ammonia (p < 0.001), BUN (p < 0.001), and CK (p < 0.0001). Hepatic and muscle glycogen stores rose by 41–59% and 65–142%, respectively (p < 0.001). No changes in food or water intake, serum clinical-chemistry parameters, or tissue histology were observed. Conclusions: Our findings suggest that both live and heat-treated L. paracasei NB23 may contribute to improved endurance performance, increased energy reserves, and faster clearance of fatigue-related metabolites in our experimental model. However, these results should be interpreted cautiously given the exploratory nature and limitations of our study. Full article
Show Figures

Figure 1

12 pages, 2334 KiB  
Article
Quantitative Analysis of Small Particles Present in Surgical Smoke Generated During Breast Surgery
by Masatake Hara, Goshi Oda, Kumiko Hayashi, Mio Adachi, Yuichi Kumaki, Toshiyuki Ishiba, Emi Yamaga, Tomoyuki Fujioka, Tsuyoshi Nakagawa, Hiroki Mori and Tomoyuki Aruga
Medicina 2025, 61(8), 1422; https://doi.org/10.3390/medicina61081422 - 7 Aug 2025
Abstract
Background and Objectives: Surgical smoke generated by energy devices during surgery contains hazardous substances and poses health risks to staff in the operating room. Exposure to surgical smoke must be reduced to minimize the risk of health hazards. Many studies have evaluated [...] Read more.
Background and Objectives: Surgical smoke generated by energy devices during surgery contains hazardous substances and poses health risks to staff in the operating room. Exposure to surgical smoke must be reduced to minimize the risk of health hazards. Many studies have evaluated surgical smoke qualitatively, but few have performed quantitative assessment. The aim of this study was to quantify the number of particles generated during various breast surgery procedures. Materials and Methods: In this prospective, randomized study, breast surgeries performed at Tokyo Medical and Dental University Hospital (the present Institute of Science Tokyo Hospital) between December 2022 and August 2023 were randomly assigned to two groups: the electrosurgical device group and the electrosurgical device with smoke evacuator group. The number of particles generated by energy devices during surgery was measured using a particle counter. Results: Surgical smoke was generated in all procedures. The number of measured particles was significantly less in the electrosurgical device with smoke evacuator group than in the electrosurgical device group during all procedures (all p < 0.001). Conclusions: All breast surgery procedures produced a significant amount of surgical smoke, which was effectively reduced by using an electrosurgical device with a smoke evacuator. These findings support the routine use of smoke evacuators in breast surgery to reduce occupational exposure to hazardous particles. Implementation of such devices could improve operating room safety and may inform future guidelines and institutional policies regarding surgical smoke management. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

22 pages, 9750 KiB  
Article
SIK2 Drives Pulmonary Fibrosis by Enhancing Fibroblast Glycolysis and Activation
by Jianhan He, Ruihan Dong, Huihui Yue, Fengqin Zhang, Xinran Dou, Xuan Li, Hui Li and Huilan Zhang
Biomedicines 2025, 13(8), 1919; https://doi.org/10.3390/biomedicines13081919 - 6 Aug 2025
Abstract
Background: Pulmonary fibrosis (PF), the end-stage manifestation of interstitial lung disease, is defined by excessive extracellular matrix deposition and alveolar destruction. Activated fibroblasts, the primary matrix producers, rely heavily on dysregulated glucose metabolism for their activation. While Salt Inducible Kinase 2 (SIK2) regulates [...] Read more.
Background: Pulmonary fibrosis (PF), the end-stage manifestation of interstitial lung disease, is defined by excessive extracellular matrix deposition and alveolar destruction. Activated fibroblasts, the primary matrix producers, rely heavily on dysregulated glucose metabolism for their activation. While Salt Inducible Kinase 2 (SIK2) regulates glycolytic pathways in oncogenesis, its specific contributions to fibroblast activation and therapeutic potential in PF pathogenesis remain undefined. This study elucidates the functional role of SIK2 in PF and assesses its viability as a therapeutic target. Methods: SIK2 expression/localization in fibrosis was assessed by Western blot and immunofluorescence. Fibroblast-specific Sik2 KO mice evaluated effects on bleomycin-induced fibrosis. SIK2’s role in fibroblast activation and glucose metabolism impact (enzyme expression, metabolism assays, metabolites) were tested. SIK2 inhibitors were screened and evaluated therapeutically in fibrosis models. Results: It demonstrated significant SIK2 upregulation, specifically within activated fibroblasts of fibrotic lungs from both PF patients and murine models. Functional assays demonstrated that SIK2 is crucial for fibroblast activation, proliferation, and migration. Mechanistically, SIK2 enhances fibroblast glucose metabolism by increasing the expression of glycolysis-related enzymes. Additionally, this study demonstrated that the SIK2 inhibitor YKL06-061 effectively inhibited PF in both bleomycin and FITC-induced PF mouse models with the preliminary safety profile. Furthermore, we identified a novel therapeutic application for the clinically approved drug fostamatinib, demonstrating it inhibits fibroblast activation via SIK2 targeting and alleviates PF in mice. Conclusions: Our findings highlight SIK2 as a promising therapeutic target and provide compelling preclinical evidence for two distinct anti-fibrotic strategies with significant potential for future PF treatment. Full article
(This article belongs to the Special Issue New Insights in Respiratory Diseases)
Show Figures

Figure 1

20 pages, 1316 KiB  
Article
Immunocapture RT-qPCR Method for DWV-A Surveillance: Eliminating Hazardous Extraction for Screening Applications
by Krisztina Christmon, Eugene V. Ryabov, James Tauber and Jay D. Evans
Appl. Biosci. 2025, 4(3), 40; https://doi.org/10.3390/applbiosci4030040 - 6 Aug 2025
Abstract
Deformed wing virus (DWV) is a major contributor to honey bee colony losses, making effective monitoring essential for apiary management. Traditional DWV detection relies on hazardous RNA extraction followed by RT-qPCR, creating barriers for widespread surveillance. We developed an immunocapture RT-qPCR (IC-RT-PCR) method [...] Read more.
Deformed wing virus (DWV) is a major contributor to honey bee colony losses, making effective monitoring essential for apiary management. Traditional DWV detection relies on hazardous RNA extraction followed by RT-qPCR, creating barriers for widespread surveillance. We developed an immunocapture RT-qPCR (IC-RT-PCR) method for screening DWV-A infections by capturing intact virus particles from bee homogenates using immobilized antibodies. Validation demonstrated strong correlation with TRIzol®-based extraction (r = 0.821), with approximately 6 Ct reduced sensitivity, consistent with other published immunocapture methods. Performance was adequate for moderate–high viral loads, while TRIzol® showed superior detection for low-dose infections. Laboratory-produced reverse transcriptase showed equivalent performance to commercial enzymes, providing cost savings. IC-RT-PCR eliminates hazardous chemicals and offers a streamlined workflow for surveillance screening where the safety and cost benefits outweigh the sensitivity reduction. This method provides a practical alternative for large-scale DWV-A surveillance programs, while TRIzol® remains preferable for low-level detection and diagnostic confirmation. Full article
Show Figures

Figure 1

17 pages, 5201 KiB  
Article
Construction Scheme Effects on Deformation Controls for Open-Top UBITs Underpassing Existing Stations
by Yanming Yao, Junhong Zhou, Mansheng Tan, Mingjie Jia and Honggui Di
Buildings 2025, 15(15), 2762; https://doi.org/10.3390/buildings15152762 - 5 Aug 2025
Abstract
Urban rail transit networks’ rapid expansions have led to increasing intersections between existing and new lines, particularly in dense urban areas where new stations must underpass existing infrastructure at zero distance. Deformation controls during construction are critical for maintaining the operational safety of [...] Read more.
Urban rail transit networks’ rapid expansions have led to increasing intersections between existing and new lines, particularly in dense urban areas where new stations must underpass existing infrastructure at zero distance. Deformation controls during construction are critical for maintaining the operational safety of existing stations, especially in soft soil conditions where construction-induced settlement poses significant risks to structural integrity. This study systematically investigates the influence mechanisms of different construction schemes on base plate deformation when an open-top UBIT (underground bundle composite pipe integrated by transverse pre-stressing) underpasses existing stations. Through precise numerical simulation using PLAXIS 3D, the research comparatively analyzed the effects of 12 pipe jacking sequences, 3 pre-stress levels (1116 MPa, 1395 MPa, 1674 MPa), and 3 soil chamber excavation schemes, revealing the mechanisms between the deformation evolution and soil unloading effects. The continuous jacking strategy of adjacent pipes forms an efficient support structure, limiting maximum settlement to 5.2 mm. Medium pre-stress level (1395 MPa) produces a balanced deformation pattern that optimizes structural performance, while excavating side chambers before the central chamber effectively utilizes soil unloading effects, achieving controlled settlement distribution with maximum values of −7.2 mm. The optimal construction combination demonstrates effective deformation control, ensuring the operational safety of existing station structures. These findings enable safer and more efficient urban underpassing construction. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 1507 KiB  
Article
Determination of Fumonisins B1 and B2 in Food Matrices: Optimisation of a Liquid Chromatographic Method with Fluorescence Detection
by Óscar Cebadero-Domínguez, Santiago Ruiz-Moyano, Alberto Martín and Elisabet Martín-Tornero
Toxins 2025, 17(8), 391; https://doi.org/10.3390/toxins17080391 - 5 Aug 2025
Abstract
Fumonisins, primarily produced by Fusarium spp. and Aspergillus section nigri, are common contaminants in maize, cereal grains, and other processed and derived products, representing a significant risk to food safety and public health. This study presents the development and optimisation of a [...] Read more.
Fumonisins, primarily produced by Fusarium spp. and Aspergillus section nigri, are common contaminants in maize, cereal grains, and other processed and derived products, representing a significant risk to food safety and public health. This study presents the development and optimisation of a high-performance liquid chromatography method with fluorescence detection (HPLC-FLD) for the quantification of fumonisin B1 (FB1) and B2 (FB2) in various food matrices. In contrast with conventional protocols employing potassium phosphate buffers as the mobile phase, the proposed method utilises formic acid, offering enhanced compatibility with liquid chromatography systems. An automated online precolumn derivatisation with o-phthaldialdehyde (OPA) was optimised through experimental design and response surface methodology, enabling baseline separation of FB1 and FB2 derivatives in less than 20 min. The method demonstrated high sensitivity, with limits of detection of 0.006 µg mL−1 for FB1 and 0.012 µg mL−1 for FB2, and excellent repeatability (intraday RSD values of 0.85% and 0.83%, respectively). Several solid-phase extraction (SPE) strategies were evaluated to enhance sample clean-up using a variety of food samples, including dried figs, raisins, dates, corn, cornmeal, wheat flour, and rice. FumoniStar Inmunoaffinity columns were the only clean-up method that provided optimal recoveries (70–120%) across all tested food matrices. However, the MultiSep™ 211 column yielded good recoveries for both fumonisins in dried figs and raisins. Additionally, the C18 cartridge achieved acceptable recoveries for both fumonisins in dried figs and wheat flour. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

22 pages, 688 KiB  
Review
The Evolving Treatment Landscape for the Elderly Multiple Myeloma Patient: From Quad Regimens to T-Cell Engagers and CAR-T
by Matthew James Rees and Hang Quach
Cancers 2025, 17(15), 2579; https://doi.org/10.3390/cancers17152579 - 5 Aug 2025
Abstract
Multiple myeloma (MM) is predominantly a disease of the elderly. In recent years, a surge of highly effective plasma cell therapies has revolutionized the care of elderly multiple myeloma (MM) patients, for whom frailty and age-related competing causes of mortality determine management. Traditionally, [...] Read more.
Multiple myeloma (MM) is predominantly a disease of the elderly. In recent years, a surge of highly effective plasma cell therapies has revolutionized the care of elderly multiple myeloma (MM) patients, for whom frailty and age-related competing causes of mortality determine management. Traditionally, the treatment of newly diagnosed elderly patients has centered on doublet or triplet combinations composed of immunomodulators (IMIDs), proteasome inhibitors (PIs), anti-CD38 monoclonal antibodies (mAbs), and corticosteroids producing median progression-free survival (PFS) rates between 34 and 62 months. However, recently, a series of large phase III clinical trials examining quadruplet regimens of PIs, IMIDs, corticosteroids, and anti-CD38 mAbs have shown exceptional outcomes, with median PFS exceeding 60 months, albeit with higher rates of peripheral neuropathy (≥Grade 2: 27% vs. 10%) when PIs and IMIDs are combined, and infections (≥Grade 3: 40% vs. 29–41%) with the addition of anti-CD38mAbs. The development of T-cell redirecting therapies including T-cell engagers (TCEs) and CAR-T cells has further expanded the therapeutic arsenal. TCEs have shown exceptional activity in relapsed disease and are being explored in the newly diagnosed setting with promising early results. However, concerns remain regarding the logistical challenges of step-up dosing, which often necessitates inpatient admission, the infectious risks, and the financial burden associated with TCEs in elderly patients. CAR-T, the most potent commercially available therapy for MM, offers the potential of a ‘one and done’ approach. However, its application to elderly patients has been tempered by significant concerns of cytokine release syndrome, early and delayed neurological toxicity, and its overall tolerability in frail patients. Robust data in frail patients are still needed. How CAR-T and TCEs will be sequenced among the growing therapeutic armamentarium for elderly MM patients remains to be determined. This review explores the safety, efficacy, cost, and logistical barriers associated with the above treatments in elderly MM patients. Full article
Show Figures

Figure 1

27 pages, 6602 KiB  
Article
Extracellular Vesicle-Mediated Delivery of AntimiR-Conjugated Bio-Gold Nanoparticles for In Vivo Tumor Targeting
by Parastoo Pourali, Eva Neuhöferová, Behrooz Yahyaei, Milan Svoboda, Adéla Buchnarová and Veronika Benson
Pharmaceutics 2025, 17(8), 1015; https://doi.org/10.3390/pharmaceutics17081015 - 5 Aug 2025
Abstract
Background/Objectives: Extracellular vesicles (EVs) are involved in cell-to-cell communication and delivery of signaling molecules and represent an interesting approach in targeted therapy. This project focused on EV-mediated facilitation and cell-specific delivery of effector antimiR molecules carried by biologically produced gold nanoparticles (AuNPs). Methods: [...] Read more.
Background/Objectives: Extracellular vesicles (EVs) are involved in cell-to-cell communication and delivery of signaling molecules and represent an interesting approach in targeted therapy. This project focused on EV-mediated facilitation and cell-specific delivery of effector antimiR molecules carried by biologically produced gold nanoparticles (AuNPs). Methods: First, we loaded EVs derived from cancer cells 4T1 with AuNPs-antimiR. The AuNPs were also decorated with or without transferrin (Tf) molecules. We examined parental cell-specific delivery of the AuNPs-Tf-antimiR within monocultures as well as co-cultures in vitro. Subsequently, we used autologous EVs containing AuNPs-Tf-antimiR to target tumor cells in a xenograft tumor model in vivo. Efficacy of the antimir transfer was assessed by qPCR and apoptosis assessment. Results: In vitro, EVs loaded with AuNPs-antimiR were internalized only by the parental cells and the AuNPs-antimiR transfer was successful and effective only in EVs that were decorated with Tf. We achieved effective delivery of the antimiR molecule into cancer cells in vivo, which was proved by specific silencing of the target oncogenic miRNA as well as induction of cancer cells apoptosis. Conclusions: EVs represent an interesting and potent way for targeted cargo delivery and personalized medicine. On the other hand, there are various safety and efficacy challenges that remain to be addressed. Full article
(This article belongs to the Special Issue Cell-Mediated Delivery Systems)
Show Figures

Figure 1

18 pages, 903 KiB  
Article
Effect of Allyl-Isothiocyanate Release from Black Mustard (Brassica nigra) Seeds During Refrigerated Storage to Preserve Fresh Tench (Tinca tinca) Fillets
by María José Rodríguez Gómez, María Alejo Martínez, Raquel Manzano Durán, Daniel Martín-Vertedor and Patricia Calvo Magro
Fishes 2025, 10(8), 381; https://doi.org/10.3390/fishes10080381 - 5 Aug 2025
Viewed by 64
Abstract
The aim of this study was to prevent the development of microorganisms in the refrigerated storage of tench by releasing allyl isothiocyanate (AITC) produced by black mustard seeds. Tench reared in an aquaculture centre were sacrificed and the fillets were separated. Different amounts [...] Read more.
The aim of this study was to prevent the development of microorganisms in the refrigerated storage of tench by releasing allyl isothiocyanate (AITC) produced by black mustard seeds. Tench reared in an aquaculture centre were sacrificed and the fillets were separated. Different amounts of defatted mustard seed (300, 400 and 500 mg) were added to hermetic polypropylene trays. Microbiological, sensory, and gas chromatography with MS detection analysis were done. AITC release increased progressively until the third day of storage, significantly delaying the development of microorganisms in samples with higher mustard seed content. The tasting panel detected positive aromas at the beginning of the study, but these decreased and negative aromas appeared. The mustard seed treatment resulted in a higher positive aroma at the end of the storage, reducing rotting and ammonia odours. A total of 31 volatile compounds were detected and grouped into hydrocarbon, alcohol, benzenoid, isothiocyanate, ketone, acetate, aldehyde, and others. Butylated hydroxytoluene, an indicator of bacterial contamination, was the major aromatic compound found during storage. The release of AITC resulted in fewer organic compounds with negative aromas appearing during storage. PCA analysis allowed us to classify the assays during storage according to their volatile profiles, confirming the differences observed between treatments. Thus, adding mustard seed to fish packaging could be a viable alternative to extending the product’s shelf life and ensuring food safety. Full article
(This article belongs to the Section Processing and Comprehensive Utilization of Fishery Products)
Show Figures

Graphical abstract

42 pages, 1407 KiB  
Review
Antioxidants and Reactive Oxygen Species: Shaping Human Health and Disease Outcomes
by Charles F. Manful, Eric Fordjour, Dasinaa Subramaniam, Albert A. Sey, Lord Abbey and Raymond Thomas
Int. J. Mol. Sci. 2025, 26(15), 7520; https://doi.org/10.3390/ijms26157520 - 4 Aug 2025
Viewed by 264
Abstract
Reactive molecules, including oxygen and nitrogen species, serve dual roles in human physiology. While they function as essential signaling molecules under normal physiological conditions, they contribute to cellular dysfunction and damage when produced in excess by normal metabolism or in response to stressors. [...] Read more.
Reactive molecules, including oxygen and nitrogen species, serve dual roles in human physiology. While they function as essential signaling molecules under normal physiological conditions, they contribute to cellular dysfunction and damage when produced in excess by normal metabolism or in response to stressors. Oxidative/nitrosative stress is a pathological state, resulting from the overproduction of reactive species exceeding the antioxidant capacity of the body, which is implicated in several chronic human diseases. Antioxidant therapies aimed at restoring redox balance and preventing oxidative/nitrosative stress have demonstrated efficacy in preclinical models. However, their clinical applications have met with inconsistent success owing to efficacy, safety, and bioavailability concerns. This summative review analyzes the role of reactive species in human pathophysiology, the mechanisms of action of antioxidant protection, and the challenges that hinder their translation into effective clinical therapies in order to evaluate potential emerging strategies such as targeted delivery systems, precision medicine, and synergistic therapeutic approaches, among others, to overcome current limitations. By integrating recent advances, this review highlights the value of targeting reactive species in the prevention and management of chronic diseases. Full article
Show Figures

Figure 1

19 pages, 9727 KiB  
Article
Characterization of Spatial Variability in Rock Mass Mechanical Parameters for Slope Stability Assessment: A Comprehensive Case Study
by Xin Dong, Tianhong Yang, Yuan Gao, Feiyue Liu, Zirui Zhang, Peng Niu, Yang Liu and Yong Zhao
Appl. Sci. 2025, 15(15), 8609; https://doi.org/10.3390/app15158609 - 3 Aug 2025
Viewed by 152
Abstract
The spatial variability in rock mass mechanical parameters critically affects slope stability assessments. This study investigated the southern slope of the Bayan Obo open-pit mine. A representative elementary volume (REV) with a side length of 14 m was determined through discrete fracture network [...] Read more.
The spatial variability in rock mass mechanical parameters critically affects slope stability assessments. This study investigated the southern slope of the Bayan Obo open-pit mine. A representative elementary volume (REV) with a side length of 14 m was determined through discrete fracture network (DFN) simulations. Based on the rock quality designation (RQD) data from 40 boreholes, a three-dimensional spatial distribution model of the RQD was constructed using Ordinary Kriging interpolation. The RQD values were converted into geological strength index (GSI) values through an empirical correlation, and the generalized Hoek–Brown criterion was applied to develop a spatially heterogeneous equivalent mechanical parameter field. Numerical simulations were performed using FLAC3D, with the slope stability evaluated using the point safety factor (PSF) method. For comparison, three homogeneous benchmark models based on the 5th, 25th, and 50th percentiles produced profile-scale safety factors of 0.96–1.92 and failed to replicate the observed failure geometry. By contrast, the heterogeneous model yielded safety factors of approximately 1.03–1.08 and accurately reproduced the mapped sliding surface. These findings demonstrate that incorporating spatial heterogeneity significantly improves the accuracy of slope stability assessments, providing a robust theoretical basis for targeted monitoring and reinforcement design. Full article
Show Figures

Figure 1

26 pages, 1165 KiB  
Review
Maillard Reaction in Flour Product Processing: Mechanism, Impact on Quality, and Mitigation Strategies of Harmful Products
by Yajing Qi, Wenjun Wang, Tianxiang Yang, Wangmin Ding and Bin Xu
Foods 2025, 14(15), 2721; https://doi.org/10.3390/foods14152721 - 3 Aug 2025
Viewed by 325
Abstract
The Maillard reaction refers to the reaction between carbonyl compounds with reducing properties and amino-containing compounds that undergo condensation and polymerization to produce melanoidins. In flour product processing, the Maillard reaction is a critical chemical reaction influencing color, flavor, nutrition, and safety. A [...] Read more.
The Maillard reaction refers to the reaction between carbonyl compounds with reducing properties and amino-containing compounds that undergo condensation and polymerization to produce melanoidins. In flour product processing, the Maillard reaction is a critical chemical reaction influencing color, flavor, nutrition, and safety. A moderate Maillard reaction contributes to desirable color and flavor profiles in flour products, whereas an excessive reaction leads to amino acid loss and the formation of harmful substances, posing potential health risks. This review summarizes the substrate sources, reaction stages, influencing factors, impact on quality, and mitigation strategies of harmful products, aiming to provide a reference for regulating the Maillard reaction in flour product processing. Currently, most existing mitigation strategies focus on inhibiting harmful products, while research on the synergistic optimization of color and flavor remains insufficient. Future research should focus on elucidating the molecular mechanisms of reaction pathways, understanding multi-factor synergistic effects, and developing composite regulation technologies to balance the sensory quality and safety of flour products. Full article
Show Figures

Figure 1

43 pages, 1138 KiB  
Review
Emerging Trends in Active Packaging for Food: A Six-Year Review
by Mariana A. Andrade, Cássia H. Barbosa, Regiane Ribeiro-Santos, Sidney Tomé, Ana Luísa Fernando, Ana Sanches Silva and Fernanda Vilarinho
Foods 2025, 14(15), 2713; https://doi.org/10.3390/foods14152713 - 1 Aug 2025
Viewed by 147
Abstract
The development of active food packaging has evolved rapidly in recent years, offering innovative solutions to enhance food preservation and safety while addressing sustainability challenges. This review compiles and analyzes recent advancements (2019–2024) in release-type active packaging, focusing on essential oils, natural extracts, [...] Read more.
The development of active food packaging has evolved rapidly in recent years, offering innovative solutions to enhance food preservation and safety while addressing sustainability challenges. This review compiles and analyzes recent advancements (2019–2024) in release-type active packaging, focusing on essential oils, natural extracts, and phenolic compounds as active agents. Primarily plant-derived, these compounds exhibit significant antioxidant and antimicrobial activities, extending shelf life and enhancing food quality. Technological strategies such as encapsulation and polymer blending have been increasingly adopted to overcome challenges related to volatility, solubility, and sensory impact. Integrating bio-based polymers, including chitosan, starch, and polylactic acid, further supports the development of environmentally friendly packaging systems. This review also highlights trends in compound-specific research, release mechanisms, and commercial applications, including a detailed analysis of patents and case studies across various food matrices. These developments have already been translated into practical applications, such as antimicrobial sachets for meat and essential oil-based pads for fresh produce. Moreover, by promoting the valorization of agro-industrial by-products and the use of biodegradable materials, emission-type active packaging contributes to the principles of the circular economy. This comprehensive overview underscores the potential of natural bioactive compounds in advancing sustainable and functional food packaging technologies. Full article
Show Figures

Figure 1

Back to TopTop