Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (505)

Search Parameters:
Keywords = pro-oxidative therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 650 KiB  
Review
Not All Platelets Are Created Equal: A Review on Platelet Aging and Functional Quality in Regenerative Medicine
by Fábio Ramos Costa, Joseph Purita, Rubens Martins, Bruno Costa, Lucas Villasboas de Oliveira, Stephany Cares Huber, Gabriel Silva Santos, Luyddy Pires, Gabriel Azzini, André Kruel and José Fábio Lana
Cells 2025, 14(15), 1206; https://doi.org/10.3390/cells14151206 - 6 Aug 2025
Abstract
Platelet-rich plasma (PRP) is widely used in regenerative medicine, yet clinical outcomes remain inconsistent. While traditional strategies have focused on platelet concentration and activation methods, emerging evidence suggests that the biological age of platelets, especially platelet senescence, may be a critical but overlooked [...] Read more.
Platelet-rich plasma (PRP) is widely used in regenerative medicine, yet clinical outcomes remain inconsistent. While traditional strategies have focused on platelet concentration and activation methods, emerging evidence suggests that the biological age of platelets, especially platelet senescence, may be a critical but overlooked factor influencing therapeutic efficacy. Senescent platelets display reduced granule content, impaired responsiveness, and heightened pro-inflammatory behavior, all of which can compromise tissue repair and regeneration. This review explores the mechanisms underlying platelet aging, including oxidative stress, mitochondrial dysfunction, and systemic inflammation, and examines how these factors influence PRP performance across diverse clinical contexts. We discuss the functional consequences of platelet senescence, the impact of comorbidities and aging on PRP quality, and current tools to assess platelet functionality, such as HLA-I–based flow cytometry. In addition, we present strategies for pre-procedural optimization, advanced processing techniques, and adjunctive therapies aimed at enhancing platelet quality. Finally, we challenge the prevailing emphasis on high-volume blood collection, highlighting the limitations of quantity-focused protocols and advocating for a shift toward biologically precise, function-driven regenerative interventions. Recognizing and addressing platelet senescence is a key step toward unlocking the full therapeutic potential of PRP-based interventions. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

18 pages, 1812 KiB  
Review
Nanocarriers for Medical Ozone Delivery: A New Therapeutic Strategy
by Manuela Malatesta and Flavia Carton
Nanomaterials 2025, 15(15), 1188; https://doi.org/10.3390/nano15151188 - 3 Aug 2025
Viewed by 235
Abstract
Ozone (O3) occurs in nature as a chemical compound made of three oxygen atoms. It is an unstable, highly oxidative gas that rapidly decomposes into oxygen. The therapeutic use of O3 dates back to the beginning of the 20th century [...] Read more.
Ozone (O3) occurs in nature as a chemical compound made of three oxygen atoms. It is an unstable, highly oxidative gas that rapidly decomposes into oxygen. The therapeutic use of O3 dates back to the beginning of the 20th century and is currently based on the application of low doses, inducing a moderate oxidative stress that stimulates the antioxidant cellular defenses without causing cell damage. Low O3 doses also induce anti-inflammatory and regenerative effects, and their anticancer potential is under investigation. In addition, the oxidative properties of O3 make it an excellent antibacterial, antimycotic, and antiviral agent. Thanks to these properties, O3 is currently widely used in several medical fields. However, its chemical instability represents an application limit, and ozonated oil is the only stabilized form of medical O3. In recent years, novel O3 formulations have been proposed for their sustained and more efficient administration, based on nanotechnology. This review offers an overview of the nanocarriers designed for the delivery of medical O3, and of their therapeutic applications. The reviewed articles demonstrate that research is active and productive, though it is a rather new entry in the nanotechnological field. Liposomes, nanobubbles, nanoconstructed hydrogels, polymeric nanoparticles, and niosomes were designed to deliver O3 and have been proven to exert antiseptic, anticancer, and pro-regenerative effects when administered in vitro and in vivo. Improving the therapeutic administration of O3 through nanocarriers is a just-started challenge, and multiple prospects may be foreseen. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

33 pages, 2423 KiB  
Review
Chaperone-Mediated Responses and Mitochondrial–Endoplasmic Reticulum Coupling: Emerging Insight into Alzheimer’s Disease
by Manish Kumar Singh, Minghao Fu, Sunhee Han, Jyotsna S. Ranbhise, Wonchae Choe, Sung Soo Kim and Insug Kang
Cells 2025, 14(15), 1179; https://doi.org/10.3390/cells14151179 - 31 Jul 2025
Viewed by 474
Abstract
Alzheimer’s disease (AD) is increasingly recognized as a multifactorial disorder driven by a combination of disruptions in proteostasis and organelle communication. The 2020 Lancet commission reported that approximately 10 million people worldwide were affected by AD in the mid-20th century. AD is the [...] Read more.
Alzheimer’s disease (AD) is increasingly recognized as a multifactorial disorder driven by a combination of disruptions in proteostasis and organelle communication. The 2020 Lancet commission reported that approximately 10 million people worldwide were affected by AD in the mid-20th century. AD is the most prevalent cause of dementia. By early 2030, the global cost of dementia is projected to rise by USD 2 trillion per year, with up to 85% of that cost attributed to daily patient care. Several factors have been implicated in the progression of neurodegeneration, including increased oxidative stress, the accumulation of misfolded proteins, the formation of amyloid plaques and aggregates, the unfolded protein response (UPR), and mitochondrial–endoplasmic reticulum (ER) calcium homeostasis. However, the exact triggers that initiate these pathological processes remain unclear, in part because clinical symptoms often emerge gradually and subtly, complicating early diagnosis. Among the early hallmarks of neurodegeneration, elevated levels of reactive oxygen species (ROS) and the buildup of misfolded proteins are believed to play pivotal roles in disrupting proteostasis, leading to cognitive deficits and neuronal cell death. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles is a characteristic feature of AD. These features contribute to chronic neuroinflammation, which is marked by the release of pro-inflammatory cytokines and chemokines that exacerbate oxidative stress. Given these interconnected mechanisms, targeting stress-related signaling pathways, such as oxidative stress (ROS) generated in the mitochondria and ER, ER stress, UPR, and cytosolic chaperones, represents a promising strategy for therapeutic intervention. This review focuses on the relationship between stress chaperone responses and organelle function, particularly the interaction between mitochondria and the ER, in the development of new therapies for AD and related neurodegenerative disorders. Full article
Show Figures

Figure 1

55 pages, 6122 KiB  
Review
Isorhamnetin: Reviewing Recent Developments in Anticancer Mechanisms and Nanoformulation-Driven Delivery
by Juie Nahushkumar Rana, Kainat Gul and Sohail Mumtaz
Int. J. Mol. Sci. 2025, 26(15), 7381; https://doi.org/10.3390/ijms26157381 - 30 Jul 2025
Viewed by 219
Abstract
Natural compounds, particularly flavonoids, have emerged as promising anticancer agents due to their various biological activities and no or negligible toxicity towards healthy tissues. Among these, isorhamnetin, a methylated flavonoid, has gained significant attention for its potential to target multiple cancer hallmarks. This [...] Read more.
Natural compounds, particularly flavonoids, have emerged as promising anticancer agents due to their various biological activities and no or negligible toxicity towards healthy tissues. Among these, isorhamnetin, a methylated flavonoid, has gained significant attention for its potential to target multiple cancer hallmarks. This review comprehensively explores the mechanisms by which isorhamnetin exerts its anticancer effects, including cell cycle regulation, apoptosis, suppression of metastasis and angiogenesis, and modulation of oxidative stress and inflammation. Notably, isorhamnetin arrests cancer cell proliferation by regulating cyclins, and CDKs induce apoptosis via caspase activation and mitochondrial dysfunction. It inhibits metastatic progression by downregulating MMPs, VEGF, and epithelial–mesenchymal transition (EMT) markers. Furthermore, its antioxidant and anti-inflammatory properties mitigate reactive oxygen species (ROS) and pro-inflammatory cytokines, restricting cancer progression and modulating tumor microenvironments. Combining isorhamnetin with other treatments was also discussed to overcome multidrug resistance. Importantly, this review integrates the recent literature (2022–2024) and highlights isorhamnetin’s roles in modulating cancer-specific signaling pathways, immune evasion, tumor microenvironment dynamics, and combination therapies. We also discuss nanoformulation-based strategies that significantly enhance isorhamnetin’s delivery and bioavailability. This positions isorhamnetin as a promising adjunct in modern oncology, capable of improving therapeutic outcomes when used alone or in synergy with conventional treatments. The future perspectives and potential research directions were also summarized. By consolidating current knowledge and identifying critical research gaps, this review positions Isorhamnetin as a potent and versatile candidate in modern oncology, offering a pathway toward safer and more effective cancer treatment strategies. Full article
(This article belongs to the Special Issue The Role of Natural Compounds in Cancer and Inflammation, 2nd Edition)
Show Figures

Figure 1

39 pages, 1246 KiB  
Review
Gaultherin, a Natural Alternative to Aspirin: A Comprehensive Review of Molecular Mechanisms, Pharmacokinetics, Biocompatibility, Isolation Techniques, and Plant Sources
by Piotr Michel
Int. J. Mol. Sci. 2025, 26(15), 7280; https://doi.org/10.3390/ijms26157280 - 28 Jul 2025
Viewed by 354
Abstract
Gaultherin [methyl salicylate 2-O-β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside] is a natural salicylate found in some plant species belonging primarily to the Ericaceae and Rosaceae families. Biological studies conducted since the beginning of the 21st century have suggested the potential use of gaultherin in treating various [...] Read more.
Gaultherin [methyl salicylate 2-O-β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside] is a natural salicylate found in some plant species belonging primarily to the Ericaceae and Rosaceae families. Biological studies conducted since the beginning of the 21st century have suggested the potential use of gaultherin in treating various diseases related to inflammation and oxidative stress, including rheumatoid arthritis, sciatica, neuralgia, and muscular pain. The accumulated results indicated a targeted range of biological effects, particularly anti-inflammatory, antipyretic, and anti-rheumatic properties associated with reduced adverse outcomes. The molecular mechanisms involve the influence on several signalling pathways, including NF-κB, MAPK, and potentially AMPK, as well as the inhibition of critical pro-inflammatory enzymes, such as COX-2. This inhibition is achieved without affecting the COX-1 isoform, thereby preventing side effects such as bleeding ulcers or intracranial haemorrhage. This overview summarises the current knowledge about pharmacokinetics, molecular mechanisms, pharmacology, and biocompatibility of gaultherin. Additionally, four methods for isolating gaultherin from plant material and its distribution within the plant kingdom were the focal points of review and discussion. The paper also describes significant differences between synthetic aspirin and natural gaultherin in their biological potential and side effects, resulting from their different mechanisms of action. As a prodrug of salicylic acid, gaultherin releases salicylic acid gradually through enzymatic hydrolysis in the gastrointestinal tract. This controlled release minimises direct gastric irritation and accounts for its superior gastrointestinal safety profile compared to aspirin. Unlike aspirin, which irreversibly inhibits COX-1 and can lead to serious side effects with chronic use, gaultherin selectively inhibits COX-2 while sparing COX-1. These properties position gaultherin as a compelling natural alternative for patients requiring long-term anti-inflammatory therapy with reduced risk of gastrointestinal or bleeding complications. Full article
(This article belongs to the Special Issue The Role of Natural Products in Inflammation)
Show Figures

Figure 1

25 pages, 2588 KiB  
Article
Phytochemical Analysis and Therapeutic Potential of Tuberaria lignosa (Sweet) Samp. Aqueous Extract in Skin Injuries
by Manuel González-Vázquez, Ana Quílez Guerrero, Mónica Zuzarte, Lígia Salgueiro, Jorge Alves-Silva, María Luisa González-Rodríguez and Rocío De la Puerta
Plants 2025, 14(15), 2299; https://doi.org/10.3390/plants14152299 - 25 Jul 2025
Viewed by 344
Abstract
Tuberaria lignosa (Sweet) Samp. (Cistaceae) is a herbaceous species native to southwestern Europe, traditionally used to treat wounds, ulcers, and inflammatory or infectious skin conditions. This study aimed to characterize the phytochemical profile of its aqueous leaf extract and evaluate its skin-related in [...] Read more.
Tuberaria lignosa (Sweet) Samp. (Cistaceae) is a herbaceous species native to southwestern Europe, traditionally used to treat wounds, ulcers, and inflammatory or infectious skin conditions. This study aimed to characterize the phytochemical profile of its aqueous leaf extract and evaluate its skin-related in vitro biological activities. The phenolic composition was determined using UHPLC-HRMS/MS, HPLC-DAD, and quantitative colorimetric assays. Antioxidant activity was assessed against synthetic free radicals, reactive oxygen and nitrogen species, transition metals, and pro-oxidant enzymes. Enzymatic inhibition of tyrosinase, hyaluronidase, collagenase, and elastase were evaluated using in vitro assays. Cytocompatibility was tested on human keratinocytes and NIH/3T3 fibroblasts using MTT and resazurin assays, respectively, while wound healing was evaluated on NIH/3T3 fibroblasts using the scratch assay. Antifungal activity was investigated against several Candida and dermatophyte species, while antibiofilm activity was tested against Epidermophyton floccosum. The extract was found to be rich in phenolic compounds, accounting for nearly 45% of its dry weight. These included flavonoids, phenolic acids, and proanthocyanidins, with ellagitannins (punicalagin) being the predominant group. The extract demonstrated potent antioxidant, anti-tyrosinase, anti-collagenase, anti-elastase, and antidermatophytic activities, including fungistatic, fungicidal, and antibiofilm effects. These findings highlight the potential of T. lignosa as a valuable and underexplored source of bioactive phenolic compounds with strong potential for the development of innovative approaches for skin care and therapy. Full article
Show Figures

Graphical abstract

18 pages, 2540 KiB  
Article
Anti-Inflammatory, Antioxidant, and Reparative Effects of Casearia sylvestris Leaf Derivatives on Periodontium In Vitro
by Angélica L. R. Pavanelli, Maria Eduarda S. Lopes, André T. Reis, Flávio A. Carvalho, Sven Zalewski, André G. dos Santos, Joni A. Cirelli, James Deschner and Andressa V. B. Nogueira
Antioxidants 2025, 14(8), 901; https://doi.org/10.3390/antiox14080901 - 23 Jul 2025
Viewed by 339
Abstract
Gingival inflammation compromises the integrity of the gingival epithelium and the underlying tissues, highlighting the need for adjuvant therapies with immunomodulatory and healing properties. Casearia sylvestris, a medicinal plant known as guaçatonga, is traditionally used to treat inflammatory lesions. This study aimed [...] Read more.
Gingival inflammation compromises the integrity of the gingival epithelium and the underlying tissues, highlighting the need for adjuvant therapies with immunomodulatory and healing properties. Casearia sylvestris, a medicinal plant known as guaçatonga, is traditionally used to treat inflammatory lesions. This study aimed to investigate the effects of C. sylvestris on the synthesis of pro- and anti-inflammatory, proteolytic, and antioxidant molecules and on wound healing in epithelial cells. A human telomerase-immortalized gingival keratinocyte cell line (TIGKs) was used, and cells were exposed to Escherichia coli lipopolysaccharide (LPS) in the presence and absence of C. sylvestris extract, its diterpene-concentrated fraction, and its clerodane diterpene casearin J for 24 h and 48 h. Gene expression and protein synthesis were analyzed by RT-qPCR and ELISA, respectively. Nitric oxide (NO) and NF-κB activation were analyzed by Griess reaction and immunofluorescence, respectively. Additionally, cell viability was evaluated by alamarBlue® assay, and an automated scratch assay was used for wound healing. LPS significantly increased the expression of cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-10, IL-17), proteases (MMP-1 and MMP-13), iNOS as well as NO synthesis, and triggered NF-κB nuclear translocation. It also reduced IL-4 expression, cell viability, and cellular wound repopulation. Treatment with C. sylvestris derivatives significantly abrogated all aforementioned LPS-induced effects by 80–100%. Furthermore, even at higher concentrations, C. sylvestris did not affect cell viability, thus proving the safety of its derivatives. C. sylvestris exerts anti-inflammatory, antiproteolytic, and antioxidant effects on gingival keratinocytes, highlighting its potential as a valuable adjunct in the prevention and treatment of periodontal diseases. Full article
Show Figures

Figure 1

37 pages, 1761 KiB  
Review
Iron–Immune Crosstalk at the Maternal–Fetal Interface: Emerging Mechanisms in the Pathogenesis of Preeclampsia
by Jieyan Zhong, Ruhe Jiang, Nan Liu, Qingqing Cai, Qi Cao, Yan Du and Hongbo Zhao
Antioxidants 2025, 14(7), 890; https://doi.org/10.3390/antiox14070890 - 19 Jul 2025
Viewed by 639
Abstract
Preeclampsia (PE) is a pregnancy-specific hypertensive disorder characterized by systemic inflammation, endothelial dysfunction, and placental insufficiency. While inadequate trophoblast invasion and impaired spiral artery remodeling have long been recognized as central to its pathogenesis, emerging evidence underscores the critical roles of dysregulated iron [...] Read more.
Preeclampsia (PE) is a pregnancy-specific hypertensive disorder characterized by systemic inflammation, endothelial dysfunction, and placental insufficiency. While inadequate trophoblast invasion and impaired spiral artery remodeling have long been recognized as central to its pathogenesis, emerging evidence underscores the critical roles of dysregulated iron metabolism and its crosstalk with immune responses, particularly macrophage-mediated inflammation, in driving PE development. This review systematically explores the dynamic changes in iron metabolism during pregnancy, including increased maternal iron demand, placental iron transport mechanisms, and the molecular regulation of placental iron homeostasis. We further explore the contribution of ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, to trophoblast dysfunction and pregnancy-related diseases, including PE. Macrophages, pivotal immune regulators at the maternal–fetal interface, exhibit distinct polarization states that shape tissue remodeling and immune tolerance. We outline their origin, distribution, and polarization in pregnancy, and emphasize their aberrant phenotype and function in PE. The bidirectional crosstalk between iron and macrophages is also dissected: iron shapes macrophage polarization and function, while macrophages reciprocally modulate iron homeostasis. Notably, excessive reactive oxygen species (ROS) and pro-inflammatory cytokines secreted by M1-polarized macrophages may exacerbate trophoblast ferroptosis, amplifying placental injury. Within the context of PE, we delineate how iron overload and macrophage dysfunction synergize to potentiate placental inflammation and oxidative stress. Key iron-responsive immune pathways, such as the HO-1/hepcidin axis and IL-6/TNF-α signaling, are discussed in relation to disease severity. Finally, we highlight promising therapeutic strategies targeting the iron–immune axis, encompassing three key modalities—iron chelation therapy, precision immunomodulation, and metabolic reprogramming interventions—which may offer novel avenues for PE prevention and treatment. Full article
Show Figures

Figure 1

19 pages, 2781 KiB  
Review
From Control to Cure: Insights into the Synergy of Glycemic and Antibiotic Management in Modulating the Severity and Outcomes of Diabetic Foot Ulcers
by Idris Ajibola Omotosho, Noorasyikin Shamsuddin, Hasniza Zaman Huri, Wei Lim Chong and Inayat Ur Rehman
Int. J. Mol. Sci. 2025, 26(14), 6909; https://doi.org/10.3390/ijms26146909 - 18 Jul 2025
Viewed by 578
Abstract
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the [...] Read more.
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the AGE-RAGE-NF-κB axis, increases oxidative stress, and impairs macrophage polarization from the pro-inflammatory M1 to the reparative M2 phenotype, collectively disrupting normal wound healing processes. The local wound environment is further worsened by antibiotic-resistant polymicrobial infections, which sustain inflammatory signaling and promote extracellular matrix degradation. The rising threat of antimicrobial resistance complicates infection management even further. Recent studies emphasize that optimal glycemic control using antihyperglycemic agents such as metformin, Glucagon-like Peptide 1 receptor agonists (GLP-1 receptor agonists), and Dipeptidyl Peptidase 4 enzyme inhibitors (DPP-4 inhibitors) improves overall metabolic balance. These agents also influence angiogenesis, inflammation, and tissue regeneration through pathways including AMP-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), and vascular endothelial growth factor (VEGF) signaling. Evidence indicates that maintaining glycemic stability through continuous glucose monitoring (CGM) and adherence to antihyperglycemic treatment enhances antibiotic effectiveness by improving immune cell function and reducing bacterial virulence. This review consolidates current molecular evidence on the combined effects of glycemic and antibiotic therapies in DFUs. It advocates for an integrated approach that addresses both metabolic and microbial factors to restore wound homeostasis and minimize the risk of severe outcomes such as amputation. Full article
Show Figures

Figure 1

38 pages, 3566 KiB  
Article
Electron-Shuttling and Bioenergy-Stimulating Properties of Mulberry Anthocyanins: A Mechanistic Study Linking Redox Activity to MFC Performance and Receptor Affinity
by Gilbert S. Sobremisana, Po-Wei Tsai, Christine Joyce F. Rejano, Lemmuel L. Tayo, Chung-Chuan Hsueh, Cheng-Yang Hsieh and Bor-Yann Chen
Processes 2025, 13(7), 2290; https://doi.org/10.3390/pr13072290 - 18 Jul 2025
Viewed by 497
Abstract
Oxidative stress overwhelms cellular antioxidant defenses, causing DNA damage and pro-tumorigenic signaling that accelerate cancer initiation and progression. Electron shuttles (ESs) from phytocompounds offer precise redox control but lack quantitative benchmarks. This study aims to give a clearer definition to electron shuttles by [...] Read more.
Oxidative stress overwhelms cellular antioxidant defenses, causing DNA damage and pro-tumorigenic signaling that accelerate cancer initiation and progression. Electron shuttles (ESs) from phytocompounds offer precise redox control but lack quantitative benchmarks. This study aims to give a clearer definition to electron shuttles by characterizing mulberry’s electrochemical capabilities via the three defined ES criteria and deciphering its mechanism against oxidative stress-related cancer. Using double-chambered microbial-fuel-cell power metrics, cyclic voltammetry, and compartmental fermentation modeling, we show that anthocyanin shows a significant difference (p < 0.05) in power density at ≥500 µg/mL (maximum of 2.06-fold power-density increase) and reversible redox cycling (ratio = 1.65), retaining >90% activity over four fermentation cycles. Molecular docking implicates meta-dihydroxyl motifs within the core scaffold in receptor binding, overturning the view that only ortho- and para-substituents participate in bioactivity. In vitro, anthocyanins both inhibit nitric oxide release and reduce DU-145 cell viability dose-dependently. Overall, our findings establish mulberry anthocyanins as robust electron shuttles with potential for integration into large-scale bio-electrochemical platforms and targeted redox-based cancer therapies. Full article
(This article belongs to the Special Issue Advances in Renewable Energy Systems (2nd Edition))
Show Figures

Figure 1

41 pages, 1846 KiB  
Review
The Potential of Nutraceutical Supplementation in Counteracting Cancer Development and Progression: A Pathophysiological Perspective
by Carmen Altomare, Roberta Macrì, Maria Serra, Sara Ussia, Giovanna Ritorto, Jessica Maiuolo, Carolina Muscoli, Enzo Perri and Vincenzo Mollace
Nutrients 2025, 17(14), 2354; https://doi.org/10.3390/nu17142354 - 18 Jul 2025
Viewed by 686
Abstract
Cancer is a major cause of morbidity and mortality across the globe, with a substantial increase in cases anticipated over the next few decades. Given the constraints and adverse effects associated with standard cancer therapies, the contribution of diet and nutraceuticals to cancer [...] Read more.
Cancer is a major cause of morbidity and mortality across the globe, with a substantial increase in cases anticipated over the next few decades. Given the constraints and adverse effects associated with standard cancer therapies, the contribution of diet and nutraceuticals to cancer prevention and treatment is receiving increased scrutiny. A diet rich in plant-based foods, extra virgin olive oil (EVOO), and bioactive compounds, including the Mediterranean Diet, has been associated with reduced cancer risk and improved treatment outcomes. This review aims to explore the complex mechanisms of the MedDiet and nutraceuticals (polyphenols, flavonoids, terpenoids) in cancer prevention, to determine their potential as cancer treatment adjuvants. Promising results show that key compounds such as bergamot polyphenolic fraction (BPF), cynaropicrin, oleuropein, quercetin, resveratrol, and serotonin can modulate oxidative stress, inflammation, the tumor microenvironment, the cell cycle, and drug resistance. A significant observation is that many of these substances demonstrate dual dose-dependent activity; they function as antioxidants in healthy cells but induce pro-oxidant and pro-apoptotic effects in cancerous cells. Their ability to boost chemotherapy’s effectiveness and safety while lessening side effects and offering combined advantages is also explored. To summarize, this review suggests that the Mediterranean Diet and nutraceutical supplements may help prevent and manage cancer, but more research is needed to confirm their benefits. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health—2nd Edition)
Show Figures

Figure 1

18 pages, 3057 KiB  
Article
Valproic Acid Enhances the Anticancer Effect of L-Ascorbic Acid by Upregulating Sodium-Dependent Vitamin C Transporter 2 in Colorectal Cancer
by Kawalin Kantawong, Hakim Meutia Diva, Phuong T. Ho, Ahlim Lee, Misae Kiba, Mi-Gi Lee, Hee Kang, Taek-Kyun Lee and Sukchan Lee
Antioxidants 2025, 14(7), 864; https://doi.org/10.3390/antiox14070864 - 15 Jul 2025
Viewed by 937
Abstract
Vitamin C, also known as L-ascorbic acid (AA), functions as a pro-oxidant in cancer at high doses and exerts anticancer effects by generating reactive oxygen species (ROS) and selectively inducing damage to cancer cells. However, AA at low doses promotes cancer cell proliferation. [...] Read more.
Vitamin C, also known as L-ascorbic acid (AA), functions as a pro-oxidant in cancer at high doses and exerts anticancer effects by generating reactive oxygen species (ROS) and selectively inducing damage to cancer cells. However, AA at low doses promotes cancer cell proliferation. The efficacy of high-dose AA therapy is frequently restricted by inadequate intracellular AA uptake, resulting from low expression of sodium-dependent vitamin C transporter 2 (SVCT2). In this study, we investigated whether valproic acid (VPA), a histone deacetylase inhibitor, could circumvent this constraint by increasing the expression of SVCT2 in colorectal cancer cells, including HCT-116 and DLD-1 with low SVCT2 levels. We found that VPA increased SVCT2 expression in both cell lines. Co-treatment with AA and VPA increased the number of apoptotic cells and enhanced intracellular AA uptake via VPA-upregulated SVCT2, followed by increased ROS production in both cell lines. Furthermore, the combination increased the synergistic anticancer effects and suppressed the hormetic dose response of AA in both cell lines. In a xenograft mouse model, co-treatment decreased tumor size and increased the tumor growth inhibition ratio compared to treatment with AA or VPA alone. Accordingly, VPA treatment enhanced SVCT2 expression in colorectal cancer cells, suppressed the hormetic dose-response effect of AA, and improved the potential of high-dose AA therapy as an anticancer agent. Full article
Show Figures

Figure 1

17 pages, 24576 KiB  
Article
Gallic Acid Alleviates Acetaminophen-Induced Acute Liver Injury by Regulating Inflammatory and Oxidative Stress Signaling Proteins
by Jing Zhao, Yuan Zhao, Shuzhe Song, Sai Zhang, Guodong Yang, Yan Qiu and Weishun Tian
Antioxidants 2025, 14(7), 860; https://doi.org/10.3390/antiox14070860 - 14 Jul 2025
Viewed by 351
Abstract
Acetaminophen (APAP) overdose is a major cause of drug-induced liver injury (DILI) globally, which necessitates effective therapies. Gallic acid (GA), a naturally abundant polyphenol, possesses potent antioxidant and anti-inflammatory properties that may overcome the limitations of N-acetylcysteine (NAC), such as its narrow therapeutic [...] Read more.
Acetaminophen (APAP) overdose is a major cause of drug-induced liver injury (DILI) globally, which necessitates effective therapies. Gallic acid (GA), a naturally abundant polyphenol, possesses potent antioxidant and anti-inflammatory properties that may overcome the limitations of N-acetylcysteine (NAC), such as its narrow therapeutic window. This study systematically investigated the hepatoprotective effects and underlying molecular mechanisms of GA against APAP-induced acute liver injury (ALI). Mice received an intraperitoneal injection of APAP (300 mg/kg), followed by an oral administration of GA (50 or 100 mg/kg) or NAC (150 mg/kg) 1 h post-intoxication. Both GA and NAC significantly ameliorated hypertrophy and histopathological damage, as evidenced by reduced serum ALT/AST levels and inflammatory cytokines. TUNEL staining revealed a marked suppression of apoptotic and necrotic cell death, further supported by the downregulation of pro-apoptotic Bax and the upregulation of anti-apoptotic Bcl-2 mRNA expression. GA and NAC treatment restored hepatic glutathione (GSH) content, enhanced antioxidant enzyme gene expression, and reduced malondialdehyde (MDA) accumulation. Mechanistically, GA and NAC inhibited MAPK phosphorylation while activating AMPK signaling. Taken together, these findings demonstrate that GA mitigates APAP-induced ALI by modulating oxidative stress and inflammation through the regulation of MAPK/AMPK signaling proteins. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

29 pages, 2351 KiB  
Review
Animal Venoms as Potential Antitumor Agents Against Leukemia and Lymphoma
by Geovanna M. Malachias-Pires, Eloise T. M. Filardi, Marcela Romanazzi, Julia Lopes-de-Oliveira, Isabela C. dos Santos, Guilherme Melo-dos-Santos, Ana Beatriz Rossi, Michele Procópio Machado, Thiago A. da Silva and Manuela B. Pucca
Cancers 2025, 17(14), 2331; https://doi.org/10.3390/cancers17142331 - 14 Jul 2025
Viewed by 622
Abstract
Leukemias and lymphomas are hematologic malignancies characterized by complex pathophysiological mechanisms and increasing global incidence. Despite advances in chemotherapy, immunotherapy, and targeted therapies, challenges such as drug resistance and relapse persist, necessitating novel therapeutic strategies. This review explores the cytotoxic potential of venoms [...] Read more.
Leukemias and lymphomas are hematologic malignancies characterized by complex pathophysiological mechanisms and increasing global incidence. Despite advances in chemotherapy, immunotherapy, and targeted therapies, challenges such as drug resistance and relapse persist, necessitating novel therapeutic strategies. This review explores the cytotoxic potential of venoms derived from snakes, bees, and scorpions against leukemia and lymphoma cells. Numerous venom-derived components, such as L-amino acid oxidases (LAAOs), phospholipases A2 (PLA2s), and peptides like melittin, demonstrate selective antitumor activity through mechanisms involving oxidative stress, apoptosis induction, cell cycle arrest, and immunomodulation. These molecules exert their effects via mitochondrial pathways, caspase activation, and inhibition of pro-survival signaling cascades such as NF-κB and PI3K/Akt. Despite promising preclinical results, the clinical translation of these bioactive compounds remains limited due to challenges in standardization, delivery, and safety profiling. This review highlights recent advances in venom research, summarizes key molecular targets, and discusses future directions to harness venom-derived molecules as innovative therapies for hematological cancers. Full article
Show Figures

Graphical abstract

30 pages, 932 KiB  
Review
The Therapeutic Potential of Butyrate and Lauric Acid in Modulating Glial and Neuronal Activity in Alzheimer’s Disease
by Rathnayaka Mudiyanselage Uththara Sachinthanie Senarath, Lotta E. Oikari, Prashant Bharadwaj, Vijay Jayasena, Ralph N. Martins and Wanakulasuriya Mary Ann Dipika Binosha Fernando
Nutrients 2025, 17(14), 2286; https://doi.org/10.3390/nu17142286 - 10 Jul 2025
Viewed by 602
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by amyloid-β plaque accumulation, tau tangles, and extensive neuroinflammation. Neuroinflammation, driven by glial cells like microglia and astrocytes, plays a critical role in AD progression. Initially, these cells provide protective functions, such as debris [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by amyloid-β plaque accumulation, tau tangles, and extensive neuroinflammation. Neuroinflammation, driven by glial cells like microglia and astrocytes, plays a critical role in AD progression. Initially, these cells provide protective functions, such as debris clearance and neurotrophic support. However, as AD progresses, chronic activation of these cells exacerbates inflammation, contributing to synaptic dysfunction, neuronal loss, and cognitive decline. Microglia release pro-inflammatory cytokines and reactive oxygen species (ROS), while astrocytes undergo reactive astrogliosis, further impairing neuronal health. This maladaptive response from glial cells significantly accelerates disease pathology. Current AD treatments primarily aim at symptomatic relief, with limited success in disease modification. While amyloid-targeting therapies like Aducanumab and Lecanemab show some promise, their efficacy remains limited. In this context, natural compounds have gained attention for their potential to modulate neuroinflammation and promote neuroprotection. Among these, butyrate and lauric acid are particularly notable. Butyrate, produced by a healthy gut microbiome, acts as a histone deacetylase (HDAC) inhibitor, reducing pro-inflammatory cytokines and supporting neuronal health. Lauric acid, on the other hand, enhances mitochondrial function, reduces oxidative stress, and modulates inflammatory pathways, thereby supporting glial and neuronal health. Both compounds have been shown to decrease amyloid-β deposition, reduce neuroinflammation, and promote neuroprotection in AD models. This review explores the mechanisms through which butyrate and lauric acid modulate glial and neuronal activity, highlighting their potential as therapeutic agents for mitigating neuroinflammation and slowing AD progression. Full article
Show Figures

Figure 1

Back to TopTop