Gaultherin, a Natural Alternative to Aspirin: A Comprehensive Review of Molecular Mechanisms, Pharmacokinetics, Biocompatibility, Isolation Techniques, and Plant Sources
Abstract
1. Introduction
2. Occurrence in Plant Species
Family | Species | Plant Part | Identification Method | Extract (Gaultherin Content If Determined) | References |
---|---|---|---|---|---|
Apocynaceae Juss. | Poacynum hendersonii (Hook.fil.) Woodson | flowers | UV, IR, FAB-MS, 1H NMR, 13C NMR | ethyl acetate–water (1:1, v/v) fraction of methanolic extract | [44] |
Asteraceae Dum. | Artemisia copa Phil. | stems and leaves | UHPLC-Orbitrap-MS | infusion prepared with deionised water | [45] |
Betulaceae A. Gray. | Betula lenta L. | bark | — | — | [22] |
bark | melting point, [α]D30, hydrolysis | 3 g/kg fw of the bark | [24,25,35] | ||
Ostryopsis davidiana Decaisne. | bark | melting point, hydrolysis | – | [46] | |
Caprifoliaceae Juss. | Lonicera caerulea L. | fruits | UPLC-ESI-MS/MS | – | [47] |
Clethraceae Klotzsch | Clethra barbinervis Siebold & Zucc. | stems | acid hydrolysis, HR-FAB-MS, 1H NMR; 13C NMR, 2D NMR | Acetone–water (4:1, v/v) | [48] |
Cornaceae (Dumort.) Dumort.) | Alangium alpinum (C.B.Clarke) W.W.Sm. & Cave | whole plant (stems) | HR-ESI-MS, IR, CD, 1H NMR; 13C NMR, 2D NMR | ethanol–water (95:5, v/v) extract and its petroleum ether, ethyl acetate, and n-butanol fractions | [49] |
Ericaceae Juss. | Gaultheria leucocarpa var. cumingiana (S.Vidal) T.Z. Hsu | – | melting point, [α]D30, hydrolysis | methanolic extract | [50] |
Gaultheria fragrantissima Wall. | stems and leaves | 1H NMR, 13C NMR | methanol–water (70:20, v/v) | [51] | |
Gaultheria miqueliana Takeda | leaves | melting point, [α]D20, hydrolysis | methanol–water (50:50, v/v) | [52] | |
Gaultheria procumbens L. | leaves | melting point, UV, TLC | – | [53] | |
LC-DAD-MS | 26.00 mg/g fw of the leaves | [54,55] | |||
UHPLC-PDA-ESI-MS/MS, HPLC-PDA | liquid ME; gaultherin in mg/g dw of the leaves: 76.86 (April); 64.59 (May); 65.89 (June); 77.20 (July); 88.31 (August); 104.09 (September); 107.49 (October) | [56] | |||
melting point, UV, IR | – | [57,58,59] | |||
1H NMR, 13C NMR, 2D NMR, LC-MS/MS | water extract | [60] | |||
UHPLC-PDA-ESI-MS/MS, HPLC-PDA | ME; 98.41 mg/g dw of the extract | [38] | |||
content in mg/g dw of the extract: ME: 98.41; EAE: 288.13; BE: 127.81 | [40] | ||||
stems | UHPLC-PDA-ESI-MS3 HPLC-PDA | content in mg/g dw of the extract: ME: 93.76; EAE: 148.08; BE: 138.61; AE: 185.98; WE: 10.52 | [39] | ||
ME: 93.76 mg/g dw of the extract | [38] | ||||
fruits | HR-ESI-MS, 1H NMR, 13C NMR, 2D NMR; identification of aglycone (GC-MS) and sugars (acid hydrolysis, HPLC-PDA) | content in mg/g dw of the extract: ME: 48.89; EAE: 98.25; BE: 29.35; AE: 93.63; WE: 2.73 | [37] | ||
aerial parts | UHPLC-PDA-ESI-MS/MS, HPLC-PDA | content in mg/g dw of the extract: ME: 96.51; MED: 75.68; DEF: 21.37; EAF: 30.25; BF: 127.69; WF: 27.81 | [38] | ||
leaves, stems, and rhizomes | melting point, [α]D20, hydrolysis | leaves (22 g/kg); stems (7.65 g/kg); rhizomes (3.35 g/kg); leaves after enzymatic hydrolysis with boiling 60% alcohol (12.8 g/kg) | [23,31] | ||
leaves and fruits | UPLC-Q-TOF-HDMS | – | [60] | ||
Gaultheria yunnanensis (Franch.) Rehd. | leaves and stems | – | ethanol–water (95:5, v/v) | [15] | |
aerial parts | – | ethanol–water (80:20, v/v) | [19] | ||
seeds | melting point, UV, IR, 1H NMR, 13C NMR, 2D NMR | ethanol–water (75:25, v/v) | [61] | ||
leaves and roots | UPLC-Q-TOF-HDMS | – | [60] | ||
Gaultheria leucocarpa var. yunnanensis (Franch.) T.Z. Hsu & R.C. Fang (Dianbaizhu) | aerial parts | MS, NMR | – | [62] | |
– | isolation and identification by physicochemical properties and spectral analyses | – | [63] | ||
aerial parts | HPLC-Q-TOF-MS/MS HPLC-DAD | quantitative analysis of gaultherin after incubation with four intestinal segments (duodenum, jejunum, ileum, and colon) | [17,64] | ||
aerial parts | UPLC-LTQ-Orbitrap-MS/MS HPLC-DAD | the metabolism of gaultherin by human fecal microbiota in four intestinal segments (jejunum, ileum, cecum, and colon) and feces of rats in vitro by the HPLC-DAD method to methyl salicylate | [16] | ||
Monotropa hypopitys L. | – | melting point, [α]D20, hydrolysis | – | [10] | |
Monotropa uniflora L. | whole plant | TLC, melting point, [α]D23, NMR | acetone extract | [65] | |
Vaccinium myrtillus L. | leaves and fruits | – | – | [66] | |
Euphorbiaceae Juss. | Euphorbia lathyris L. | seeds | UPLC-QTOF-MS | ethanol–water-12 N HCl extract at pH = 2 (50:50:2, v/v) | [67] |
Oleaceae Hoffmanns. & Link | Olea europaea L. | leaves | UPLC-ESI-TOF-MS | methanol–water (80:20, v/v) | [68] |
Polygalaceae R. Br. In Flinders | Securidaca longipedunculata Fresen. | roots | hydrolysis | – | [69] |
roots | – | aqueous extract | [70] | ||
– | – | – | [71] | ||
Polygala arillate Buch.-Ham. Ex D.Don | stem bark | FAB-MS, 1H NMR, 13C NMR, 2D NMR | alcoholic extract | [72] | |
Primulaceae Vent. | Primula officinalis (L.) Hill | roots | melting point, fermentative hydrolysis | – | [30] |
Rosaceae Juss. | Prunus amygdalus Batsch | seeds (almonds) | melting point, hydrolysis | the emulsion of almonds | [29] |
Spiraea ulmaria, S. filipendula, S. gigantea var. rosea | roots | melting point, [α]D20, hydrolysis | – | [28] | |
Filipendula glaberrima Nakai | stems and roots | 1H NMR, 13C NMR, FAB-MS | n-butanolic extract | [73,74] | |
Filipendula ulmaria (L). Maxim. | flowers | melting point, [α]D15, hydrolysis | – | [75] | |
flowers | – | alcoholic and water extracts | [76] | ||
herb and flowers | LC-DAD-ESI-MS/MS | methanolic extract from herb: 1.108 mg/g dw of the plant material (expressed in salicylic acid equivalents) and 2.756 mg/g dw of the plant material (expressed in salicin equivalents); methanolic extract from flowers: 1.098 mg/g dw of the plant material (expressed in salicylic acid equivalents) and 2.787 mg/g dw of the plant material (expressed in salicin equivalents) | [36] | ||
aerial parts | LC-PDA-MS | Methanol–40 mM ammonium formate buffer (aqueous) (20:80, v/v) | [77] | ||
aerial parts and roots | LC-DAD-MS/MS | methanolic extract | [78] | ||
aerial parts | UHPLC-HR-ESI-MS | methanol–water (80:20, v/v) | [79] | ||
Filipendula vulgaris Moench | aerial parts and roots | LC-DAD-MS/MS | methanolic extract | [80] | |
Rubiaceae Juss. | Uncaria rhynchophylla (Miq.) Jacks. | leaves and stems | HR-ESI-MS, NMR | ethanol–water (95:5, v/v) | [81] |
Rutaceae Juss. | Citrus grandis L. Osbeck cv. guanxiyou | peels | UHPLC-TOF-MS | ethanol–water (80:20, v/v) | [82] |
Solanaceae Juss. | Physalis angulata L. | stems and leaves | UV, CD, IR, HR-ESI-MS, 1H NMR, 13C NMR | ethanol–water (75:25, v/v) and its petroleum ether, ethyl acetate, and n-butanol fractions | [83] |
Schisandraceae Blume | Schisandra propinqua (Wall) Hook. F. et Thoms. | seeds | UV, IR, 1H NMR, 13C NMR, MS | n-butanolic extract | [84] |
Theaceae D. Don | Camellia sinensis var. sinensis cv. Maoxie | leaves | enzymatic hydrolysis, GC-MS | aqueous extract and its methanol–water (60:40, v/v) and methanolic fractions | [85] |
Camellia sinensis var. sinensis cv. Yabukita | leaves | HR-FAB-MS, 1H NMR, 13C NMR | aqueous extract and its methanol–water (20:80, v/v) fraction | [86] | |
Camellia sinensis var. sinensis cv. Yabukita; Camellia sinensis var. sinensis cv. Chin-Shin-Oolong; Camellia sinensis var. sinensis cv. Benihomare | leaves | GC-MS | dried fresh leaves of three tea cultivars: Yabukita (18.2 mg/100 g of dried leaves), Chin-Shin-Oolong (10.0 mg/100 g), Benihomare (45.2 mg/100 g) | [87] | |
Camellia sinensis var. sinensis cv. Yabukita | leaves | enzymatic hydrolysis, GC-MS | acetone powder from fresh tea leaves | [88,89] | |
Camellia sinensis var. sinensis cv. Benihomare | leaves | GC-MS | dried fresh leaves (45.2 mg/100 g of dried leaves), withered leaves (40.9 mg/100 g), rolled leaves (13.7 mg/100 g), fermented leaves (0.8 mg/100 g) | [41] | |
Camellia sinensis var. sinensis cv. Chin-Shin-Oolong | leaves | GC-MS | dried fresh leaves (9.3 mg/100 g of dried leaves), solar-withered leaves (10.6 mg/100 g), indoor-withered leaves (13.9 mg/100 g), oolong tea (17.0 mg/100 g) | [42,43] | |
Camellia sinensis var. sinensis cv. Chinhsuan-Oolong | leaves | GC-MS | dried fresh leaves (4.4 mg/100 g of dried leaves), solar-withered leaves (3.9 mg/100 g), indoor-withered leaves (4.3 mg/100 g), oolong tea (6.8 mg/100 g) | ||
Camellia sinensis var. sinensis cv. Zhuye | leaves | GC, HPLC-MS | alcoholic extracts | [90] | |
Violaceae Batsch. | Viola cornuta L., V. tricolor L. | flowers | UPLC-Q-TOF-HDMS | vine | [60] |
Vitaceae Juss. | Vitis sp. | Verdichio, Trebbiano di Soave, Trebbiano di Lugana vines | UPLC-Q-TOF-HDMS | 2.5–181.0 μg/L of vine (expressed in gaultherin equivalents) | [60] |
Other | Cinnamomum ramulus, Ilex pubescens, Sargassum | Cinnamon twigs, Pubescent holly root, Seaweed | UPLC-MS/MS | – | [91] |
3. Isolation Methods from Plant Materials
Plant Material | Extraction and Isolation Method | Isolation Process Description | References |
---|---|---|---|
Gaultheria procumbens L.—whole plant (leaves, stems, or rhizomes) | liquid extraction and crystallisation of gaultherin |
| [23] |
Gaultheria procumbens L.—aerial parts | subsequent liquid extraction and concentration (in vacuo) of the ethanolic extract to obtain a solid residue containing 12–18% (by weight, determined by HPLC) of gaultherin |
| [54] |
Gaultheria procumbens L.—fruits | refluxed extraction and HPLC-preparative isolation of gaultherin |
| [37] |
Gaultheria fragrantissima Wall. (synonymous name: Gandapura)—leaves | UV photo extraction and isolation of a gaultherin-rich fraction |
| [92,93] |
4. Pharmacokinetic Properties
4.1. Absorption, Distribution, Metabolism, and Excretion Based on the ADMETlab 3.0 Web Server
4.2. Bioavailability Assessment Based on Experimental Studies
Parameter | Aspirin (Acetylsalicylic Acid)—Synthetic NSAID | Gaultherin and Other Methyl Salicylate Glycosides | References |
---|---|---|---|
Absorption | Rapid, absorbed mainly in the stomach and upper small intestine (duodenum). | Slow, intestinal absorption (requires bacterial and esterase metabolism). | [6,15,18,100,102,103,104,105] |
Bioavailability | High and predictable. | Variable, dependent on gut flora and enzyme activity. | [6,15,18,103,104,106] |
First-pass metabolism | Undergoes significant hepatic first-pass metabolism. | Minimal, as activation occurs before absorption. | [6,15,18,100,102] |
Elimination | Renal, primarily as salicylate metabolites. | Renal, post-conversion to salicylate. | [6,15,100,102,104,105] |
Parent compound in plasma | Detected; rapidly absorbed after oral administration. | Not detectable; it acts as a prodrug. | [6,15,106] |
Primary active metabolite | Salicylate, directly from aspirin hydrolysis. | Salicylate, via methyl salicylate intermediate. | [15,100] |
Time to peak plasma level (Tmax) | ~0.5–1 h (both animals and humans). | ~5 h (mouse), ~7.5 h (rat). | [15,18,106] |
Peak plasma concentration (cmax) | Rapid rise; variable, depending on the dose and formulation. | ~60 μg/mL (mouse), ~70 μg/mL (rat). | [6,18,106] |
Duration of salicylate exposure | Shorter due to rapid peak and decline. | Prolonged due to slow conversion. | [15,18,100] |
Half-life (T1/2) | Aspirin: ~15–20 min (plasma); Salicylate: 2–3 h (dose-dependent). | Salicylate formed from gaultherin has an extended half-life (~4–6 h, depending on formulation). | [15,18,102,103,105,106] |
Stomach | As an organic acid, aspirin is quickly released and induces tissue injury after oral administration. Only a small amount of acetylsalicylic acid ionises in the stomach due to its weak acidity, allowing it to be rapidly absorbed through the gut lining under acidic conditions by passive diffusion. | Gaultherin passes through the stomach without being degraded due to the presence of an ester group (blocked acid group), which can significantly reduce gastrointestinal irritation. | [5,6,15,16,18,100,104] |
Intestine | In the small intestine, aspirin is absorbed more slowly due to the higher pH and expanded surface area, which promote greater ionisation. During an overdose, the drug’s absorption is further delayed by the formation of concretions. | The intestinal bacteria produce β-glycosidases, which break down the ester linkage of gaultherin, producing methyl salicylate. | [5,6,15,16,18,100,104] |
COX-1 inhibition | Aspirin induces irreversible inhibition of gastrointestinal COX-1, which can reduce the risk of heart attack and stroke. At the same time, this activity results in the loss of the cytoprotective effect of prostaglandin E2 and prostaglandin I2 on the gastric mucosa (significant ulcerogenesis). This impact causes several adverse side effects, especially gastric mucosa injury, gastric ulcer, gastric bleeding, and dyspepsia. | Negligible impact on COX-1 activity. | [100,104,107,108] |
COX-2 inhibition | Aspirin is a non-selective, irreversible COX-2 inhibitor. | Gaultherin and other methyl salicylate glycosides are selective COX-2 inhibitors. | [5,100,104,108] |
Platelet aggregation | Aspirin strongly and irreversibly inhibits platelet aggregation, causing serious side effects such as bleeding, ulcers, or intracranial bleeding. | Negligible impact on platelet aggregation (no irreversible inhibition of platelets). | [6,100,104,109] |
Therapeutic dosage | In vivo studies conducted in animal models have shown that: aspirin (dose 200 mg/kg) and gaultherin (dose 400 mg/kg) reduced the ear swelling after application of croton oil and the visceral pain induced by acetic acid to a similar extent; | [15] | |
aspirin (dose 200 mg/kg) and a salicylate-rich fraction (dose 800 mg/kg) reduced the ear oedema with topical application of croton oil, the number of writhing and stretching induced by the acetic acid, and the time of paw licking induced by formalin at a similar level. | [19] | ||
Therapeutic implication | Aspirin is suitable for acute relief but is limited by gastrointestinal and bleeding risks. | Gaultherin has the potential for safer long-term use due to extended release and minimal gastrointestinal risk. | [15,16,18,19,100,103,104] |
Undesirable effects | Aspirin can cause stomach pain, heartburn, nausea, and vomiting, and increase the risk of ulcers and bleeding. It can also contribute to cardiovascular events, including increased blood pressure and a heart attack. Allergic reactions, kidney problems, and tinnitus (ringing in the ears) are no less important. | Gaultherin may cause allergic skin reactions. Mild side effects, including nausea, vomiting, rash, dizziness, and breathing difficulties, have also been reported. | [15,104,107,110] |
5. Safety of Use
5.1. The Toxicology Study Based on the ADMETlab 3.0 Web Server
5.2. The Cellular Safety Studies
6. Biological Activity
6.1. Anti-Inflammatory Activity
6.2. Antipyretic Activity
6.3. Analgesic Activity
6.4. Antioxidant Activity
6.5. Molecular Mechanisms of Action
7. Gaultherin vs. Aspirin—Differences in Pharmacokinetic and Pharmacodynamic Effects
8. Materials and Methods
9. Conclusions
Funding
Conflicts of Interest
Abbreviations
AA | ascorbic acid |
AMPK | AMP-activated protein kinase |
Akt | protein kinase B (PKB) |
AP-1 | activator protein-1 |
ATF2 | activating transcription factor 2 |
c-Jun | transcription factor Jun |
COX | cyclooxygenase |
CX | celecoxib |
DEX | dexamethasone |
dw | dry weight |
ELA-2 | human elastase-2 |
ERK | extracellular signal-regulated kinases |
fMLP | N-formyl-L-methionyl-L-leucyl-L-phenylalanine |
H2O2 | hydrogen peroxide |
HYAL | hyaluronidase |
HYD | hydrocortisone |
IL | interleukin |
IκBα | nuclear factor of kappa-light-polypeptide gene enhancer in B-cells inhibitor alpha |
iNOS | inducible nitric oxide synthase |
JNK | c-Jun N-terminal kinases |
LPS | bacterial lipopolysaccharide from Escherichia coli O55:B5 |
LOX | lipoxygenase |
MAPK | mitogen-activated protein kinase |
MMP-9 | matrix metalloproteinase-9 |
MSL | methyl salicylate 2-O-β-D-lactoside |
MSTG-A | methyl salicylate 2-O-β-D-xylopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→6)]-β-D-glucopyranoside |
MSTG-B | methyl salicylate 2-O-β-D-glucopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→6)]-β-D-glucopyranoside |
mTOR | mammalian target of rapamycin |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
NSAIDs | nonsteroidal anti-inflammatory drugs |
NO | nitric oxide |
O2•− | superoxide anion radical |
•OH | hydroxyl radical |
QU | quercetin |
P-gp | P-glycoprotein |
PH | methyl salicylate 2-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranoside (physanguloside A) |
PI3K | phosphoinositide 3-kinase |
RA | rosmarinic acid |
ROS | reactive oxygen species |
TNF-α | tumour necrosis factor-α |
TX | Trolox® (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) |
ZIL | zileuton |
References
- Bryan, C.P.; Smith, E.G. The Papyrus Ebers: Ancient Egyptian Medicine; Martino Fine Books: Eastford, CT, USA, 2021; ISBN 1684225221. [Google Scholar]
- Mahdi, J.G.; Mahdi, A.J.; Mahdi, A.J.; Bowen, I.D. The historical analysis of aspirin discovery, its relation to the willow tree and antiproliferative and anticancer potential. Cell Prolif. 2006, 39, 147–155. [Google Scholar] [CrossRef]
- Riddle, J.M. Historical data as an aid in pharmaceutical prospecting and drug safety determination. J. Altern. Complement. Med. 1999, 5, 195–201. [Google Scholar] [CrossRef]
- Desborough, M.J.R.; Keeling, D.M. The aspirin story—From willow to wonder drug. Br. J. Haematol. 2017, 177, 674–683. [Google Scholar] [CrossRef]
- Pierpoint, W.S. Salicylic acid and its derivatives in plants: Medicines, metabolites and messenger molecules. Adv. Bot. Res. 1994, 20, 163–235. [Google Scholar] [CrossRef]
- Mao, P.; Liu, Z.; Xie, M.; Jiang, R.; Liu, W.; Wang, X.; Meng, S.; She, G. Naturally occurring methyl salicylate glycosides. Mini-Rev. Med. Chem. 2014, 14, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Rana, J.N.; Mumtaz, S. Prunin: An emerging anticancer flavonoid. Int. J. Mol. Sci. 2025, 26, 2678. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, M.; Witek, M.; Olszewska, M.A. A comprehensive review of molecular mechanisms, pharmacokinetics, toxicology and plant sources of juglanin: Current landscape and future perspectives. Int. J. Mol. Sci. 2024, 25, 10323. [Google Scholar] [CrossRef]
- Owczarek-Januszkiewicz, A.; Magiera, A.; Olszewska, M.A. Enzymatically modified isoquercitrin: Production, metabolism, bioavailability, toxicity, pharmacology, and related molecular mechanisms. Int. J. Mol. Sci. 2022, 23, 14784. [Google Scholar] [CrossRef]
- Bridel, M. Biochemical study of the composition of Monotropa hypopitys L. Discovery of a new glucoside of methyl salicylate, monotropitine. C. R. Hebd. Séances l’Académie Sci. 1923, 177, 642–644. [Google Scholar]
- Bridel, M.; Picard, P. The preparation and properties of monotropitoside. Bull. Soc. Chim. Fr. 1925, 37, 1028–1033. [Google Scholar]
- Khan, H.; Pervaiz, A.; Intagliata, S.; Das, N.; Nagulapalli Venkata, K.C.; Atanasov, A.G.; Najda, A.; Nabavi, S.M.; Wang, D.; Pittalà, V.; et al. The analgesic potential of glycosides derived from medicinal plants. DARU J. Pharm. Sci. 2020, 28, 387–401. [Google Scholar] [CrossRef]
- Sondhi, S.; Dinodia, M.; Singh, J.; Rani, R. Heterocyclic compounds as anti-inflammatory agents. Curr. Bioact. Compd. 2007, 3, 91–108. [Google Scholar] [CrossRef]
- Rabate, J. Hydrolysis of monotropitoside by the enzyme of Gaultheria leaf powder in the presence of small quantities of alcohol. Bull. Soc. Chim. Biol. 1938, 20, 449–453. [Google Scholar]
- Zhang, B.; He, X.L.; Ding, Y.; Du, G.H. Gaultherin, a natural salicylate derivative from Gaultheria yunnanensis: Towards a better non-steroidal anti-inflammatory drug. Eur. J. Pharmacol. 2006, 530, 166–171. [Google Scholar] [CrossRef]
- Dong, Y.; Li, X.; Zhao, Y.; Ren, X.; Zheng, Y.; Song, R.; Zhong, X.; Shan, D.; Lv, F.; Deng, Q.; et al. Biotransformation and metabolism of three methyl salicylate glycosides by gut microbiota in vitro. J. Pharm. Biomed. Anal. 2023, 233, 115474. [Google Scholar] [CrossRef]
- Wang, X.; Dong, Y.; Song, R.; Yu, A.; Wei, J.; Fan, Q.; Yao, J.; Shan, D.; Zhong, X.; Lv, F.; et al. Intestinal metabolism and absorption mechanism of multi-components in Gaultheria leucocarpa var. yunnanensis—An assessment using in situ and in vitro models, comparing gut segments in pathological with physiological conditions. J. Ethnopharmacol. 2022, 286, 114844. [Google Scholar] [CrossRef]
- Wang, X.; Ma, J.; Yao, J.; Li, M.; Zhang, F.; Liu, W.; Sun, M.; Ying, L.; Yang, Y.; Cao, Y.; et al. Integration of tissue distribution, PK-PD modeling and metabolomics reveals inflammatory-immune response alterations in Gaultheria leucocarpa var. yunnanensis alleviating rheumatoid arthritis. J. Ethnopharmacol. 2025, 343, 119452. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.B.; Zhang, D.M.; Ding, Y.; Du, G.H. Analgesic and anti-inflammatory activities of a fraction rich in gaultherin isolated from Gaultheria yunnanensis (Franch.) Rehder. Biol. Pharm. Bull. 2007, 30, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Alam, F.; Hanif, M.; Ur Rahman, A.; Ali, S.; Jan, S. In vitro, in vivo and in silico evaluation of analgesic, anti-inflammatory, and anti-pyretic activity of salicylate rich fraction from Gaultheria trichophylla Royle (Ericaceae). J. Ethnopharmacol. 2023, 301, 115828. [Google Scholar] [CrossRef] [PubMed]
- Alam, F.; Ahmad, A.; Rauf, K.; Alamri, A.S.; Alsanie, W.F. Anti-arthritic studies of ethnomedicine Gaultheria trichophylla Royle extract and salicylate-rich fraction using complete Freud’s adjuvant-induced rats: Molecular docking and network pharmacology analysis. Inflammopharmacology 2024, 32, 3785–3798. [Google Scholar] [CrossRef]
- Procter, W., Jr. Observations on the volatile oil of Betula lenta, and on gaultherin, a substance which, by its composition, yields that oil. Am. J. Pharm. 1844, 9, 241–250. [Google Scholar]
- Bridel, M.; Grillon, S. The glucoside of methyl salicylate of Gaultheria procumbens is the monotropitoside. C. R. Hebd. Séances L’académie Sci. 1928, 187, 609–611. [Google Scholar]
- Bridel, M. Fermentative hydrolysis of monotropitin. Production of primeverose. C. R. Hebd. Séances L’académie Sci. 1924, 179, 991–993. [Google Scholar]
- Bridel, M.; Picard, P. The preparation and the properties of monotropitoside. C. R. Hebd. Séances l’Académie Sci. 1925, 180, 1864–1866. [Google Scholar]
- Bridel, M.; Picard, P. Primeveroside of salicylic acid. C. R. Hebd. Séances l’Académie Sci. 1928, 186, 98–99. [Google Scholar]
- Bridel, M.; Picard, P. Primeveroside of salicylic acid. Bull. Soc. Chim. Biol. 1928, 10, 381–385. [Google Scholar]
- Bridel, M. The presence of monotropitin in the fresh roots of three species of Spiraea: Spiraea ulmaria L.; S. filipendula L.; S. gigantea, var. rosea. Bull. Soc. Chim. Biol. 1924, 6, 679–682. [Google Scholar]
- Bridel, M. Presence in the emulsin of almonds of two new enzymes, primeverosidase and primeverase. C. R. Hebd. Séances l’Académie Sci. 1925, 181, 523–524. [Google Scholar]
- Bridel, M. Primeverose, the primeverosides and the primeverosidase. C. R. Hebd. Séances l’Académie Sci. 1925, 180, 1421–1423. [Google Scholar]
- Bridel, M.; Grillon, M.S. Presence of notable quantities of monotropitoside in the whole plant of Gaultheria procumbens L., after drying. J. Pharm. Chim. 1929, 9, 193–202. [Google Scholar]
- Robertson, A.; Waters, R.B. CCLIII.—Syntheses of glucosides. Part VIII. The synthesis of monotropitoside (gaultherin). J. Chem. Soc. 1931, 1881–1888. [Google Scholar] [CrossRef]
- Yuodvirshis, A.M.; Troshchenko, A.T. Synthesis of the α-primeveroside of methyl salicylate. Chem. Nat. Compd. 1965, 1, 236–238. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, T.T.; Du, G.H.; Zhang, D.M. Synthesis and anti-nociceptive and anti-inflammatory effects of gaultherin and its analogs. J. Asian Nat. Prod. Res. 2011, 13, 817–825. [Google Scholar] [CrossRef]
- Schneegans, A.; Gerock, J. Ueber Gaultherin, ein neues Glykosid aus Betula lenta L. Arch. Pharm. 1894, 232, 437–444. [Google Scholar] [CrossRef]
- Blazics, B.; Papp, I.; Kéry, Á. LC–MS qualitative analysis and simultaneous determination of six Filipendula salicylates with two standards. Chromatographia 2010, 71, 61–67. [Google Scholar] [CrossRef]
- Michel, P.; Granica, S.; Rosińska, K.; Rojek, J.; Poraj, Ł.; Olszewska, M.A. Biological and chemical insight into Gaultheria procumbens fruits: A rich source of anti-inflammatory and antioxidant salicylate glycosides and procyanidins for food and functional application. Food Funct. 2020, 11, 7532–7544. [Google Scholar] [CrossRef]
- Olszewska, M.A.; Owczarek, A.; Magiera, A.; Granica, S.; Michel, P. Screening for the active anti-inflammatory and antioxidant polyphenols of Gaultheria procumbens and their application for standardisation: From identification, through cellular studies to quantitative determination. Int. J. Mol. Sci. 2021, 22, 11532. [Google Scholar] [CrossRef]
- Michel, P.; Granica, S.; Magiera, A.; Rosińska, K.; Jurek, M.; Poraj, Ł.; Olszewska, M.A. Salicylate and procyanidin-rich stem extracts of Gaultheria procumbens L. inhibit pro-inflammatory enzymes and suppress pro-inflammatory and pro-oxidant functions of human neutrophils ex vivo. Int. J. Mol. Sci. 2019, 20, 1753. [Google Scholar] [CrossRef]
- Michel, P.; Granica, S.; Rosińska, K.; Glige, M.; Rojek, J.; Poraj, Ł.; Olszewska, M.A. The effect of standardised leaf extracts of Gaultheria procumbens on multiple oxidants, inflammation-related enzymes, and pro-oxidant and pro-inflammatory functions of human neutrophils. Molecules 2022, 27, 3357. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Kurasawa, E.; Yamaguchi, Y.; Kubota, K.; Kobayashi, A. Analysis of glycosidically bound aroma precursors in tea leaves. 2. Changes in glycoside contents and glycosidase activities in tea leaves during the black tea manufacturing process. J. Agric. Food Chem. 2001, 49, 1900–1903. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Kubota, K.; Kobayashi, A.; Juan, I.M. Analysis of glycosidically bound aroma precursors in tea leaves. 3. Change in the glycoside content of tea leaves during the oolong tea manufacturing process. J. Agric. Food Chem. 2001, 49, 5391–5396. [Google Scholar] [CrossRef]
- Wang, D.; Kurasawa, E.; Kubota, K.; Kobayashi, A.; Juan, I.-M. Quantitative change of glycosides as aroma precursors during the oolong tea manufacturing process. In Food Flavors and Chemistry: Advances of the New Millennium; Spanier, A.M., Shahidi, F., Parliment, T.H., Mussinan, C., Ho, C.-T., Contis, E.T., Eds.; ACS Food Chemistry Division: Washington, DC, USA, 2001; pp. 197–202. [Google Scholar]
- Morikawa, T.; Imura, K.; Miyake, S.; Ninomiya, K.; Matsuda, H.; Yamashita, C.; Muraoka, O.; Hayakawa, T.; Yoshikawa, M. Promoting the effect of chemical constituents from the flowers of Poacynum hendersonii on adipogenesis in 3T3-L1 cells. J. Nat. Med. 2012, 66, 39–48. [Google Scholar] [CrossRef]
- Larrazábal-Fuentes, M.J.; Fernández-Galleguillos, C.; Palma-Ramírez, J.; Romero-Parra, J.; Sepúlveda, K.; Galetovic, A.; González, J.; Paredes, A.; Bórquez, J.; Simirgiotis, M.J.; et al. Chemical profiling, antioxidant, anticholinesterase, and antiprotozoal potentials of Artemisia copa Phil. (Asteraceae). Front. Pharmacol. 2020, 11, 594174. [Google Scholar] [CrossRef]
- Paris, R.; Pointet, M. Presence of monotropitoside in the bark of Ostryopsis davidiana Decaisne. Ann. Pharm. Françaises 1953, 11, 346–348. [Google Scholar]
- Guo, L.; Qiao, J.; Zhang, L.; Ma, K.; Yang, H.; Zhao, J.; Qin, D.; Huo, J. Metabolome reveals high nitrogen supply decreases the antioxidant capacity of blue honeysuckle (Lonicera caerulea L.) by regulating flavonoids. Food Chem. 2025, 480, 143954. [Google Scholar] [CrossRef] [PubMed]
- Murata, T.; Suzuki, A.; Mafune, N.; Sato, E.; Miyase, T.; Yoshizaki, F. Triterpene saponins from Clethra barbinervis and their hyaluronidase inhibitory activities. Chem. Pharm. Bull. 2013, 61, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Xie, Y.; Guo, Y.; Zhu, S.; Jin, H.; Zhang, W. Unusual metal complex of cadinane sesquiterpene alkaloid and new neolignan glycosides from Alangium alpinum. Fitoterapia 2018, 125, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Yasue, M.; Sasaki, T. Isolierung des Monotropitosids aus Gaultheria cumingiana Vidal. Yakugaki Zasshi 1938, 58, 774–775. [Google Scholar] [CrossRef]
- Cong, F.; Joshi, K.R.; Devkota, H.P.; Watanabe, T.; Yahara, S. Dhasingreoside: New flavonoid from the stems and leaves of Gaultheria fragrantissima. Nat. Prod. Res. 2015, 29, 1442–1448. [Google Scholar] [CrossRef]
- Sasaki, T.; Watanabe, Y. Components of the leaves of Gaultheria miqueliana Takeda. Yakugaku Zasshi 1956, 76, 892–894. [Google Scholar] [CrossRef]
- Grisebach, H.; Vollmer, K.O. Untersuchungen zur Biosynthese des Salicylsäuremethylesters in Gaultheria procumbens L. Z. Naturforsch. B 1963, 18, 753–756. [Google Scholar] [CrossRef]
- Ribnicky, D.M.; Pulev, A.A.; Raskin, I. Recovery of Gaultherin from Plants; US 2002/00; United States Patent Application Publication: New Brunswick, NJ, USA, 2002.
- Ribnicky, D.M.; Poulev, A.; Raskin, I. The determination of salicylates in Gaultheria procumbens for use as a natural aspirin alternative. J. Nutraceuticals Funct. Med. Foods 2003, 4, 39–52. [Google Scholar] [CrossRef]
- Michel, P.; Owczarek, A.; Kosno, M.; Gontarek, D.; Matczak, M.; Olszewska, M.A. Variation in polyphenolic profile and in vitro antioxidant activity of eastern teaberry (Gaultheria procumbens L.) leaves following foliar development. Phytochem. Lett. 2017, 20, 356–364. [Google Scholar] [CrossRef]
- Middleton, D.J. A chemotaxonomic survey of flavonoids and simple phenols in the leaves of Gaultheria, L. and related genera (Ericaceae). Bot. J. Linn. Soc. 1992, 110, 313–324. [Google Scholar] [CrossRef]
- Towers, G.H.N.; Tse, A.; Maass, W.S.G. Phenolic acids and phenolic glycosides of Gaultheria species. Phytochemistry 1966, 5, 677–681. [Google Scholar] [CrossRef]
- Ibrahim, R.K.; Towers, G.H.N. Conversion of salicylic acid to gentisic acid and o-pyrocatechuic acid, all labelled with carbon-14, in plants. Nature 1959, 184, 1803. [Google Scholar] [CrossRef]
- Carlin, S.; Masuero, D.; Guella, G.; Vrhovsek, U.; Mattivi, F. Methyl salicylate glycosides in some Italian varietal wines. Molecules 2019, 24, 3260. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Lu, Y.-Y.; Su, X.-J.; Huang, C.-P.; Lu, X.-W. A new dilactone from the seeds of Gaultheria yunnanensis. Fitoterapia 2010, 81, 35–37. [Google Scholar] [CrossRef]
- Zhe, G.; Li, D.; Zhang, Y.; Guo, Z.; Lu, H.; Zhe, D. Chemical constituents of aerial parts of Dianbaizhu (Gaultheria leucocarpa var. yunanensis or var. crenulata). Beijing Zhongyiyao Daxue Xuebao 2010, 33, 62–63. [Google Scholar]
- He, T.; Zhao, Y.C.; Li, P.Y.; Weng, Z.Y.; Chang, Y.L.; Chen, X.Y.; Bai, S.J.; Liu, Z.Z.; She, G.M. Chemical constituents from anti-inflammatory and analgesic active fraction of Gaultheria leucocarpa var. yunnanensis. Chin. Tradit. Herb. Drugs 2017, 48, 3469–347412. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Wang, R.; Wang, L.; Fan, S.; Wang, X.; Xu, X.; Yan, X.; He, T.; Ren, X.; et al. Human gastrointestinal metabolism of the anti-rheumatic fraction of Dianbaizhu (Gaultheria leucocarpa var. yunnanensis) in vitro: Elucidation of the metabolic analysis in gastric juice, intestinal juice and human intestinal bacteria by UPLC-LTQ-Orbitrap-M. J. Pharm. Biomed. Anal. 2019, 175, 112791. [Google Scholar] [CrossRef]
- Bobbitt, J.M.; Rao, K.V.; Kiely, D.E. Constituents of Monotropa uniflora. Lloydia 1966, 29, 90–93. [Google Scholar]
- Friedrich, H.; Schoenert, J. Phytochemical investigation of leaves and fruits of Vaccinium myrtillus. Planta Med. 1973, 24, 90–100. [Google Scholar] [CrossRef]
- Mesas, C.; Martínez, R.; Ortíz, R.; Galisteo, M.; López-Jurado, M.; Cabeza, L.; Perazzoli, G.; Melguizo, C.; Porres, J.M.; Prados, J. Antitumor effect of the ethanolic extract from seeds of Euphorbia lathyris in colorectal cancer. Nutrients 2021, 13, 566. [Google Scholar] [CrossRef]
- Moudache, M.; Silva, F.; Nerín, C.; Zaidi, F. Olive cake and leaf extracts as valuable sources of antioxidant and antimicrobial compounds: A comparative study. Waste Biomass Valorization 2021, 12, 1431–1445. [Google Scholar] [CrossRef]
- Prista, L.N.; Correia, A.A. Pharmacognostic study of Securidaca longipedunculata. Garcia Orta 1958, 6, 131–147. [Google Scholar]
- Azevedo, J.F.; de Medeiros, L. Molluscicidal action of a plant found in Angola, Securidaca longipedunculata. Bull. Soc. Pathol. Exot. Filiales 1963, 56, 68–76. [Google Scholar]
- Eiam-Ong, S.; Sitprija, V. Tropical plant-associated nephropathy. Nephrology 1998, 4, 313–319. [Google Scholar] [CrossRef]
- Wu, Z.; Ouyang, M.; Yang, C. Oligosaccharide ester and phenol compounds from Polygala arillata. Yunnan Zhiwu Yanjiu 2000, 22, 482–494. [Google Scholar]
- Yeo, H.S.; Kim, J.; Chung, B.S. Phytochemical studies on Filipendula glaberrima. In Proceedings of the Planta Medica; Georg Thieme: Stuttgart, Germany, 1990; Volume 56, p. 539. [Google Scholar]
- Yeo, H.; Kim, J.; Chung, B.S. Phytochemical studies on the constituents of Filipendula glaberrima. Saengyak Hakhoechi 1992, 23, 121–125. [Google Scholar]
- Thieme, H. Isolation and structural clarification of spiraein, a phenol glycoside from Filipendula ulmaria. Pharmazie 1965, 20, 113–114. [Google Scholar]
- Barnaulov, O.D.; Kumkov, A.V.; Khalikova, N.A.; Kozhina, I.S.; Shukhobodskii, B.A. Chemical composition and primary evaluation of the properties of preparations from Filipendula ulmaria (L.) Maxim flowers. Rastit. Resur. 1977, 13, 661–669. [Google Scholar]
- Bijttebier, S.; Van der Auwera, A.; Voorspoels, S.; Noten, B.; Hermans, N.; Pieters, L.; Apers, S. A first step in the quest for the active constituents in Filipendula ulmaria (Meadowsweet): Comprehensive phytochemical identification by liquid chromatography coupled to Quadrupole-Orbitrap mass spectrometry. Planta Med. 2016, 82, 559–572. [Google Scholar] [CrossRef]
- Katanić, J.; Matić, S.; Pferschy-Wenzig, E.-M.; Kretschmer, N.; Boroja, T.; Mihailović, V.; Stanković, V.; Stanković, N.; Mladenović, M.; Stanić, S.; et al. Filipendula ulmaria extracts attenuate cisplatin-induced liver and kidney oxidative stress in rats: In vivo investigation and LC-MS analysis. Food Chem. Toxicol. 2017, 99, 86–102. [Google Scholar] [CrossRef]
- Marinov, L.; Momekov, G.; Voynikov, Y.; Zheleva-Dimitrova, D.; Gevrenova, R.; Balabanova, V.; Mangarov, I.; Nikolova, I. Anti-inflammatory and analgesic effects of Filipendula ulmaria extract. Pharmacia 2025, 72, 1–11. [Google Scholar] [CrossRef]
- Katanić, J.; Pferschy-Wenzig, E.-M.; Mihailović, V.; Boroja, T.; Pan, S.-P.; Nikles, S.; Kretschmer, N.; Rosić, G.; Selaković, D.; Joksimović, J.; et al. Phytochemical analysis and anti-inflammatory effects of Filipendula vulgaris Moench extracts. Food Chem. Toxicol. 2018, 122, 151–162. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Y.-D.; Su, J.-L.; Li, R.-S.; Wang, F.; Wang, K. Chemical constituents of Uncaria rhynchophylloides How and their chemotaxonomic significance. Biochem. Syst. Ecol. 2020, 91, 104051. [Google Scholar] [CrossRef]
- Zheng, Z.; Xu, Y.; Qu, H.; Zhou, H.; Yang, H. Enhancement of anti-diabetic activity of pomelo peel by the fermentation of Aspergillus oryzae CGMCC23295: In vitro and in silico docking studies. Food Chem. 2024, 432, 137195. [Google Scholar] [CrossRef]
- Sun, C.P.; Nie, X.F.; Kang, N.; Zhao, F.; Chen, L.X.; Qiu, F. A new phenol glycoside from Physalis angulata. Nat. Prod. Res. 2017, 31, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, F.; Lu, Y.; Zhang, Y.; Huang, X. Isolation and identification of methyl salicylate 2-O-β-D-xylosyl(1-6)-β-D-glucopyranoside from the seed of Schisandra propinqua. Guangxi Kexue 2006, 13, 217–218, 225. [Google Scholar]
- Moon, J.-H.; Watanabe, N.; Ijima, Y.; Yagi, A.; Sakata, K. cis - and trans-linalool 3,7-oxides and methyl salicylate glycosides and (Z)-3-hexenyl β-D-glucopyranoside as aroma precursors from tea leaves for oolong tea. Biosci. Biotechnol. Biochem. 1996, 60, 1815–1819. [Google Scholar] [CrossRef]
- Nishikitani, M.; Wang, D.; Kubota, K.; Kobayashi, A.; Sugawara, F. (Z)-3-hexenyl and trans -linalool 3,7-oxide β-primeverosides isolated as aroma precursors from leaves of a green tea cultivar. Biosci. Biotechnol. Biochem. 1999, 63, 1631–1633. [Google Scholar] [CrossRef]
- Wang, D.; Yoshimura, T.; Kubota, K.; Kobayashi, A. Analysis of glycosidically bound aroma precursors in tea leaves. 1. Qualitative and quantitative analyses of glycosides with aglycons as aroma compounds. J. Agric. Food Chem. 2000, 48, 5411–5418. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, A.; Kubota, K.; Wang, D. Qualitative and quantitative analyses of glycosides as aroma precursors during the tea manufacturing process. In Proceedings of the Frontiers of Flavour Science, [Proceedings of the Weurman Flavour Research Symposium], Freising, Germany, 22–25 June 1999; Schieberle, P., Engel, K.-H., Eds.; Academic Press: Cambridge, UK; pp. 452–456. [Google Scholar]
- Kobayashi, A.; Kubota, K.; Wang, D.; Yoshimura, T. Specificity of glycosidases from tea leaves toward glycidic tea aroma precursors. In Aroma Active Compounds in Foods. Chemistry and Sensory Properties; Takeoka, G.R., Gunter, M., Engel, K.-H., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2001; Volume 794, pp. 167–175. [Google Scholar]
- Zhang, Z.; Wan, X.; Tao, G. Analysis of glycosidic aroma precursors in fresh tea leaves by combination of liquid chromatography and mass spectrometry. Chaye Kexue 2005, 25, 276–281. [Google Scholar]
- He, X.; Li, Z.; Li, S.; Zhang, X.; Liu, D.; Han, X.; He, H.; Chen, J.; Dong, X.; Long, W.; et al. Huoxue Tongluo tablet enhances atherosclerosis efferocytosis by promoting the differentiation of Trem2+ macrophages via PPARγ signaling pathway. Phytomedicine 2025, 140, 156579. [Google Scholar] [CrossRef] [PubMed]
- Sutrisno; Ariwibowo, D.; Yulianto, M.E.; Maulinda, N.A. Preliminary study of gaultherine extraction from Gandapura through UV-photo extraction. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Yekaterinburg, Russia, 1–2 October 2020; Volume 771, p. 012040. [Google Scholar] [CrossRef]
- Sutrisno; Yulianto, M.E.; Ariwibowo, D.; Nyamiati, R.D.; Rahma, M.Y.; Ainurrofiq, M. Gaultherin production from gandapura (Gandapura fragantissima) using photo extractor-UV machine. Mater. Today Proc. 2022, 63, S183–S187. [Google Scholar] [CrossRef]
- ADMETlab 3.0. Available online: https://admetlab3.scbdd.com (accessed on 10 July 2025).
- Fu, L.; Shi, S.; Yi, J.; Wang, N.; He, Y.; Wu, Z.; Peng, J.; Deng, Y.; Wang, W.; Wu, C.; et al. ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res. 2024, 52, W422–W431. [Google Scholar] [CrossRef]
- Binkhathlan, Z.; Lavasanifar, A. P-glycoprotein inhibition as a therapeutic approach for overcoming multidrug resistance in cancer: Current status and future perspectives. Curr. Cancer Drug Targets 2013, 13, 326–346. [Google Scholar] [CrossRef]
- Nguyen, T.-T.-L.; Duong, V.-A.; Maeng, H.-J. Pharmaceutical formulations with P-glycoprotein inhibitory effect as promising approaches for enhancing oral drug absorption and bioavailability. Pharmaceutics 2021, 13, 1103. [Google Scholar] [CrossRef]
- He, Y.; Yan, Y.; Zhang, T.; Ma, Y.; Zhang, W.; Wu, P.; Song, J.; Wang, S.; Du, G. Lack of dose dependent kinetics of methyl salicylate-2-O-β-D-lactoside in rhesus monkeys after oral administration. J. Ethnopharmacol. 2015, 164, 293–300. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, X.; Xin, W.; Huang, C.; Zhang, W.; Zhang, T.; Du, G. Pharmacokinetics of methyl salicylate-2-O-β-D-lactoside, a novel salicylic acid analog isolated from Gaultheria yunnanensis, in dogs. Biomed. Chromatogr. 2013, 27, 1680–1684. [Google Scholar] [CrossRef]
- Visagie, J.L.; Aruwajoye, G.S.; van der Sluis, R. Pharmacokinetics of aspirin: Evaluating shortcomings in the literature. Expert Opin. Drug Metab. Toxicol. 2024, 20, 727–740. [Google Scholar] [CrossRef]
- Blobaum, A.L.; Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem. 2007, 50, 1425–1441. [Google Scholar] [CrossRef]
- Needs, C.J.; Brooks, P.M. Clinical pharmacokinetics of the salicylates. Clin. Pharmacokinet. 1985, 10, 164–177. [Google Scholar] [CrossRef]
- Awtry, E.H.; Loscalzo, J. Aspirin. Circulation 2000, 101, 1206–1218. [Google Scholar] [CrossRef] [PubMed]
- Schrör, K. Acetylsalicylic Acid; Wiley: Hoboken, NJ, USA, 2008; ISBN 9783527321094. [Google Scholar]
- Angiolillo, D.J.; Prats, J.; Deliargyris, E.N.; Schneider, D.J.; Scheiman, J.; Kimmelstiel, C.; Steg, P.G.; Alberts, M.; Rosengart, T.; Mehran, R.; et al. Pharmacokinetic and pharmacodynamic profile of a novel phospholipid aspirin formulation. Clin. Pharmacokinet. 2022, 61, 465–479. [Google Scholar] [CrossRef] [PubMed]
- Cong, D.; Qi, W.; Liu, X.; Xu, X.; Dong, L.; Xue, W.; Li, K. Pharmacokinetic study of enteric-coated sustained-release aspirin tablets in healthy Chinese participants. Drug Des. Devel. Ther. 2023, 17, 2421–2429. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.L. Prostaglandins, NSAIDs, and gastric mucosal protection: Why doesn’t the stomach digest itself? Physiol. Rev. 2008, 88, 1547–1565. [Google Scholar] [CrossRef]
- Xin, W.; Huang, C.; Zhang, X.; Zhang, G.; Ma, X.; Sun, L.; Wang, C.; Zhang, D.; Zhang, T.; Du, G. Evaluation of the new anti-inflammatory compound ethyl salicylate 2-O-β-D-glucoside and its possible mechanism of action. Int. Immunopharmacol. 2013, 15, 303–308. [Google Scholar] [CrossRef]
- Vane, J.; Botting, R. The mechanism of action of aspirin. Thromb. Res. 2003, 110, 255–258. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.; Shen, B.; Chen, C.; Ding, X.; Song, H. Effects of aspirin on the gastrointestinal tract: Pros vs. cons (Review). Oncol. Lett. 2020, 20, 2567–2578. [Google Scholar] [CrossRef]
- Wang, X.; Ma, J.; Dong, Y.; Ren, X.; Li, R.; Yang, G.; She, G.; Tan, Y.; Chen, S. Exploration on the potential efficacy and mechanism of methyl salicylate glycosides in the treatment of schizophrenia based on bioinformatics, molecular docking and dynamics simulation. Schizophrenia 2024, 10, 64. [Google Scholar] [CrossRef]
- Föllmann, W.; Degen, G.; Oesch, F.; Hengstler, J.G. Ames Test. In Brenner’s Encyclopedia of Genetics; Elsevier: Amsterdam, The Netherlands, 2013; pp. 104–107. ISBN 978-0-08-096156-9. [Google Scholar]
- Sheppard, A.; Hayes, S.H.; Chen, G.-D.; Ralli, M.; Salvi, R. Review of salicylate-induced hearing loss, neurotoxicity, tinnitus and neuropathophysiology. Acta Otorhinolaryngol. Ital. 2014, 34, 79–93. [Google Scholar]
- Thongprayoon, C.; Petnak, T.; Kaewput, W.; Qureshi, F.; Mao, M.A.; Pivovarova, A.I.; Boonpheng, B.; Bathini, T.; Vallabhajosyula, S.; Medaura, J.; et al. Acute kidney injury among salicylate intoxication hospitalisations in the United States. Int. J. Clin. Pract. 2021, 75, 1–8. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, R.; Sun, L.; Huang, C.; Wang, C.; Zhang, D.-M.; Zhang, T.-T.; Du, G.-H. Anti-inflammatory activity of methyl salicylate glycosides isolated from Gaultheria yunnanensis (Franch.) Rehder. Molecules 2011, 16, 3875–3884. [Google Scholar] [CrossRef]
- Lan, X.; Liu, R.; Sun, L.; Zhang, T.; Du, G. Methyl salicylate 2-O-β-D-lactoside, a novel salicylic acid analogue, acts as an anti-inflammatory agent on microglia and astrocytes. J. Neuroinflammation 2011, 8, 98. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Sun, L.; Liu, R.; Zhang, D.; Lan, X.; Huang, C.; Xin, W.; Wang, C.; Zhang, D.; Du, G. A novel naturally occurring salicylic acid analogue acts as an anti-inflammatory agent by inhibiting nuclear factor-kappaB activity in RAW264.7 macrophages. Mol. Pharm. 2012, 9, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yu, Z.; Yuan, T.; Wang, L.; Wang, X.; Yang, H.; Sun, L.; Wang, Y.; Du, G. Therapeutic effect of methyl salicylate 2-O-β-D-lactoside on LPS-induced acute lung injury by inhibiting TAK1/NF-kappaB phosphorylation and NLRP3 expression. Int. Immunopharmacol. 2016, 40, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Michel, P.; Olszewska, M.A. Phytochemistry and biological profile of Gaultheria procumbens L. and wintergreen essential oil: From traditional application to molecular mechanisms and therapeutic targets. Int. J. Mol. Sci. 2024, 25, 565. [Google Scholar] [CrossRef]
- Kaur, A.; Rehman, H.M.; Mishra, V.K.; Kaur, G.; Kaur, M.; Okla, M.K.; Shah, M.; Bansal, M. Aspirin vs. ibuprofen: Unveiling the distinct cyclooxygenase-1/2 behaviour and dual efficacy of their synthesized analogues via molecular modeling and in vitro biological assessment. RSC Med. Chem. 2025, 16, 2027–2048. [Google Scholar] [CrossRef]
- Fang, X.-X.; Zhai, M.-N.; Zhu, M.; He, C.; Wang, H.; Wang, J.; Zhang, Z.-J. Inflammation in pathogenesis of chronic pain: Foe and friend. Mol. Pain 2023, 19, 17448069231178176. [Google Scholar] [CrossRef]
- Zuo, L.; Prather, E.R.; Stetskiv, M.; Garrison, D.E.; Meade, J.R.; Peace, T.I.; Zhou, T. Inflammaging and oxidative stress in human diseases: From molecular mechanisms to novel treatments. Int. J. Mol. Sci. 2019, 20, 4472. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, J.; Xin, W.; Li, Y.; Ni, L.; Ma, X.; Zhang, D.; Zhang, D.; Zhang, T.; Du, G. Anti-inflammation effect of methyl salicylate 2-O-β-D-lactoside on adjuvant induced-arthritis rats and lipopolysaccharide (LPS)-treated murine macrophages RAW264.7 cells. Int. Immunopharmacol. 2015, 25, 88–95. [Google Scholar] [CrossRef]
- He, Y.-Y.; Yan, Y.; Zhang, H.-F.; Lin, Y.-H.; Chen, Y.-C.; Yan, Y.; Wu, P.; Fang, J.-S.; Yang, S.-H.; Du, G.-H. Methyl salicylate 2-O-β-D-lactoside alleviates the pathological progression of pristane-induced systemic lupus erythematosus-like disease in mice via suppression of inflammatory response and signal transduction. Drug Des. Devel. Ther. 2016, 10, 3183–3196. [Google Scholar] [CrossRef]
- Dong, Z.; Huang, C.; Brown, R.E.; Ma, W.-Y. Inhibition of activator protein 1 activity and neoplastic transformation by aspirin. J. Biol. Chem. 1997, 272, 9962–9970. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Brecher, P. Salicylate inhibition of extracellular signal-regulated kinases and inducible nitric oxide synthase. Hypertension 1999, 34, 1259–1264. [Google Scholar] [CrossRef]
- Li, J.; Ma, X.; Wang, Y.; Chen, C.; Hu, M.; Wang, L.; Fu, J.; Shi, G.; Zhang, D.; Zhang, T. Methyl salicylate lactoside protects neurons ameliorating cognitive disorder through inhibiting amyloid beta-induced neuroinflammatory response in Alzheimer’s disease. Front. Aging Neurosci. 2018, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Vartiainen, N.; Goldsteins, G.; Keksa-Goldsteine, V.; Chan, P.H.; Koistinaho, J. Aspirin inhibits p44/42 mitogen-activated protein kinase and is protective against hypoxia/reoxygenation neuronal damage. Stroke 2003, 34, 752–757. [Google Scholar] [CrossRef]
- Schwenger, P.; Alpert, D.; Skolnik, E.Y.; Vilček, J. Activation of p38 mitogen-activated protein kinase by sodium salicylate leads to inhibition of tumor necrosis factor-induced IκBα phosphorylation and degradation. Mol. Cell. Biol. 1998, 18, 78–84. [Google Scholar] [CrossRef]
- Vittimberga, F.J.; McDade, T.P.; Perugini, R.A.; Callery, M.P. Sodium salicylate inhibits macrophage TNF-α production and alters MAPK activation. J. Surg. Res. 1999, 84, 143–149. [Google Scholar] [CrossRef]
- Klessig, D.F.; Tian, M.; Choi, H.W. Multiple targets of salicylic acid and its derivatives in plants and animals. Front. Immunol. 2016, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, G.R.; Dandapani, M.; Hardie, D.G. AMPK: Mediating the metabolic effects of salicylate-based drugs? Trends Endocrinol. Metab. 2013, 24, 481–487. [Google Scholar] [CrossRef] [PubMed]
Compound | Cell Model | Concentration Tested | Safe Concentration | Method | References |
---|---|---|---|---|---|
gaultherin | human neutrophils | 25, 50, 75 μM | 25–75 μM | flow cytometry with propidium iodide staining, 24 h | [37,38] |
RAW264.7 murine macrophages | – | 0.1–100 μg/mL | MTT, 24 h | [115] | |
MSL | primary rat glial cells (microglia and astrocytes) | 0.1, 1, 10 μM | 0.1–10 μM | MTT, 24 h | [116] |
RAW264.7 murine macrophages | – | 0.01–100 μM | MTT, 48 h | [117] | |
RAW264.7 murine macrophages | 1, 3, 10, 30, 100, 300, 600, 800, 1000 μM | 1–1000 μM | MTT, 24 h | [118] | |
ethyl salicylate 2-O-β-D-glucoside | RAW264.7 murine macrophages | 2, 10, 50, 100 μM | 2–100 μM | MTT, 48 h | [108] |
PH | human neutrophils | 25, 50, 75 μM | 25–75 μM | flow cytometry with propidium iodide staining, 24 h | [37] |
MSTG-A | RAW264.7 murine macrophages | – | 0.1–100 μg/mL | MTT, 24 h | [115] |
MSTG-B | human neutrophils | 25, 50, 75 μM | 25–75 μM | flow cytometry with propidium iodide staining, 24 h | [37] |
Disease/Pathology Model | Type of Study | Type of Groups, Treatment | Effect of Gaultherin Treatment | References |
---|---|---|---|---|
Antioxidant activity | ||||
Oxidative stress-related disorders | In vitro studies | Positive controls: DPPH; QU: SC50 = 1.65 μg/mL; TX: SC50 = 4.31 μg/mL; FRAP; QU: 47.09 mmol Fe2+/g; TX: 11.89 mmol Fe2+/g; TBARS; QU: IC50 = 1.78 μg/mL; TX: IC50 = 4.68 μg/mL; O2•−; QU: SC50 = 7.58 μg/mL; TX: SC50 = 135.24 μg/mL; •OH; QU: SC50 = 42.48 μg/mL; TX: SC50 = 165.45 μg/mL; H2O2; QU: SC50 = 7.52 μg/mL; TX: SC50 = 15.87 μg/mL | Gaultherin presented low antioxidant activity; DPPH: SC50 = 265.69 μg/mL; FRAP: 0.64 mmol Fe2+/g; TBARS: IC50 = 269.40 μg/mL; O2•−: SC50 = 451.76 μg/mL; •OH: SC50 = 488.52 μg/mL; H2O2: SC50 = 587.86 μg/mL | [37,39,119] |
Positive controls: FRAP; AA: 3.97 mol/mol, TX: 2.98 mol/mol; O2•−; AA: SC50 = 29.87 μM, TX: SC50 = 540.33 μM | Gaultherin presented low ferric reducing activity and scavenging potential towards O2•−; FRAP: 0.29 mol/mol; O2•−: 1012.00 μM | [38] | ||
In vitro study of LPS-stimulated RAW264.7 murine macrophages; Impact on ROS level | – | Gaultherin exhibited weak activity towards ROS secretion; ROS level: 88.75% (gaultherin concentration 0.3 μg/mL), 56.25% (1.0 μg/mL), 47.5% (3.0 μg/mL) | [115] | |
Ex vivo studies in fMLP-stimulated human neutrophils; Impact on ROS level | Positive control: ROS level; QU: 48.2% (25 μM), 25.6% (50 μM), 20.4% (75 μM) | Gaultherin exhibited weak activity towards ROS secretion; ROS level: 78.5% (gaultherin concentration 25 μM), 55.2% (50 μM), 47.7% (75 μM) | [38,39,119] | |
Anti-inflammatory activity | ||||
Inflammation-related disorders | In vitro studies; Inhibition of hyaluronidase (HYAL), lipoxygenase (LOX), and cyclooxygenase-2 (COX-2) activity | Positive controls: HYAL; IND: IC50 = 12.77 μg/mL; DEX: IC50 = 14.18 μg/mL; QU: IC50 = 30.78 μg/mL; LOX; IND: IC50 = 0.09 mg/mL; DEX: IC50 = 0.12 mg/mL; QU: IC50 = 0.09 mg/mL; COX-2; IND: IC50 = 0.18 mg/mL; DEX: IC50 = 0.51 mg/mL; QU: IC50 = 0.47 mg/mL | Gaultherin presented moderate anti-inflammatory activity towards hyaluronidase and lipoxygenase and significant activity against cyclooxygenase-2 enzymes; HYAL; IC50 = 28.58 μg/mL; LOX; IC50 = 0.56 mg/mL; COX-2; IC50 = 0.35 mg/mL | [37,39,119] |
In vitro studies; Inhibition of hyaluronidase (HYAL) and cyclooxygenase-2 (COX-2) activity | Positive controls: HYAL; IND: IC50 = 35.69 μM; DEX: IC50 = 36.13 μM; COX-2; IND: IC50 = 0.50 mM; DEX: IC50 = 1.29 mM | Gaultherin presented moderate anti-inflammatory activity towards hyaluronidase and significant activity against cyclooxygenase-2 enzymes; HYAL; IC50 = 64.02 μM; COX-2; IC50 = 0.78 mM | [38] | |
Ex-vivo study of LPS/fMLP+cytochalasin B-stimulated human neutrophils | Positive controls: IL-8; DEX: 55.8% (25 μM), 67.8% (50 μM), 76.9% (75 μM); IL-1β; DEX: 51.8% (25 μM), 74.4% (50 μM), 79.6% (75 μM); TNF-α; DEX: 68.8% (25 μM), 91.4% (50 μM), 98.7% (75 μM); MMP-9; DEX: 26.9% (25 μM), 30.2% (50 μM), 43.7% (75 μM); ELA-2; QU: 39.3% (25 μM), 47.0% (50 μM), 55.6% (75 μM) | Gaultherin significantly ↓ the release of pro-inflammatory cytokines; IL-8; % of inhibition 0% (gaultherin concentration 25 μM), 14.2% (50 μM), 25.6% (75 μM); IL-1β; 13.7% (25 μM), 32.4% (50 μM), 46.6% (75 μM); TNF-α; 6.0% (25 μM), 48.9% (50 μM), 73.7% (75 μM); MMP-9; 6.3% (25 μM), 22.9 (50 μM), 35.6% (75 μM); ELA-2; 34.1% (25 μM), 54.8% (50 μM), 64.9% (75 μM) | [37,38,39,119] | |
In vitro studies; Inhibition of hyaluronidase (HYAL) | Positive controls: HYAL; RA: 41.3% (positive control concentration 1.0 mM); IC50 = 1.36 mM | Gaultherin presented weak anti-inflammatory activity towards the hyaluronidase enzyme; HYAL; % of inhibition 0.6% (gaultherin concentration 1.0 mM) | [48] | |
In vitro studies; Inhibition of lipoxygenase (5-LOX) and COX-2 | Positive controls: 5-LOX; ZIL: IC50 = 12.00 μg/mL; COX-2; CX: IC50 = 10.00 μg/mL | Salicylate-rich fraction (containing gaultherin) exhibited a weak direct ability to inhibit pro-inflammatory enzymes. 5-LOX; IC50 = 39.70 μg/mL; COX-2; IC50 = 77.20 μg/mL | [20] | |
In vitro study of LPS-stimulated RAW264.7 murine macrophages; Inhibition of NO production | Positive control: NO; HYD: IC50 = 58.79 μM | Gaultherin presented weak anti-inflammatory activity toward nitric oxide production; NO; IC50 > 100 μM | [83] | |
In vitro study of LPS-stimulated RAW264.7 murine macrophages; Inhibition of NO production | Positive control: NO; freshly cultured medium: Inhibition [%]: - | Gaultherin moderately ↓ the production of nitric oxide; NO; Inhibition [%]: 39.8 | [34] | |
In vitro study of LPS-stimulated RAW264.7 murine macrophages; Inhibition of pro-inflammatory cytokines release and NO production | – | Gaultherin significantly ↓ the release of pro-inflammatory cytokines and production of NO; TNF-α; % of inhibition 11.21% (gaultherin concentration 0.3 μg/mL), 32.69% (1.0 μg/mL), 56.46% (3.0 μg/mL); IL-1β; 53.58% (0.3 μg/mL), 64.40% (1.0 μg/mL), 75.67% (3.0 μg/mL); IL-6; 61.81% (0.3 μg/mL), 71.26% (1.0 μg/mL), 73.15% (3.0 μg/mL); NO; 22.97% (0.3 μg/mL), 45.90% (1.0 μg/mL), 56.20% (3.0 μg/mL) | [115] | |
Carrageenan-induced paw oedema | In vivo animal model; Albino mice of both genders; n = 6/group | 1. Normal control (saline); 2. Diclofenac group (10 mg/kg); 3–5. Groups treated with the plant extract in a dose of 100, 200, and 300 mg/kg, respectively; 6. Group treated with a salicylate-rich fraction (150 mg/kg) containing gaultherin; Inhibition [%]; diclofenac: 19.17 (1 h), 32.87 (2 h), 56.6 (3 h), 61.6 (4 h), 76.7 (5 h) | Salicylate-rich fraction ↓ the carrageen-induced paw oedema with a maximum inhibition of 67.75%, after the standard drug diclofenac with 76.7% inhibition; Inhibition [%]; salicylate rich fraction: 15.06 (1 h), 15.06 (2 h), 34.24 (3 h), 52.05 (4 h), 65.75 (5 h) | [20] |
Croton oil-induced ear oedema | 1. Normal control (saline); 2. Celecoxib group (100 mg/kg); 3–5. Groups treated with the plant extract in a dose of 100, 200, and 300 mg/kg, respectively; 6. Group treated with salicylate-rich fraction (150 mg/kg) containing gaultherin; Oedema [mg]; celecoxib: 3.9; Inhibition [%]; celecoxib: 70.2 | Salicylate-rich fraction ↓ the croton oil-induced ear oedema and showed almost similar and significant (p < 0.01) anti-inflammatory effect as the standard drug celecoxib; Oedema [mg]; salicylate-rich fraction: 4.5; Inhibition [%]; salicylate-rich fraction: 65.7 | [20] | |
Croton oil-induced ear oedema | In vivo animal model; Kunming mice—males; n = 10/group | 1. Normal control; 2. Aspirin group (200 mg/kg); 3. Gaultherin group (400 mg/kg) Oedema [g]; aspirin: 10.8; Inhibition [%]: 44 | Gaultherin significantly ↓ the ear swelling after application of croton oil; Oedema [g]; gaultherin: 11.8; Inhibition [%]: 39 | [15] |
Croton oil-induced ear oedema | In vivo animal model; Kunming mice of both genders; n = 10/group | 1. Normal control; 2. Aspirin group (200 mg/kg); 3–5. Groups treated with the salicylate-rich fraction in a dose of 200, 400, and 800 mg/kg, respectively, containing 50% of gaultherin; Oedema [mg]; aspirin: 6.39; Inhibition [%]: 48.75 | Salicylate-rich fraction significantly ↓ of ear oedema with topical application of croton oil; Oedema [mg]; salicylate-rich fraction: 8.11 (200 mg/kg), 7.07 (mg/kg), 6.44 (800 mg/kg); Inhibition [%]: 34.94 (200 mg/kg), 43.29 (400 mg/kg), 48.3 (800 mg/kg) | [19] |
Carrageenan-induced paw oedema | In vivo animal model; Wistar rats of both genders; n = 8/group | 1. Normal control; 2. Indomethacin group (10 mg/kg); 3–5. Groups treated with the salicylate derivatives fraction in a dose of 100, 200, and 400 mg/kg, respectively, containing 50% of gaultherin; Paw oedema [mm]; indomethacin: 2.94 (1 h), 2.31 (2 h), 2.75 (4 h), 3.19 (6 h) | Salicylate derivatives fraction significantly ↓ the carrageenan-induced oedema in 6 h measurements; Paw oedema [mm]; salicylate derivatives fraction: 100 mg/kg: 3.94 (1 h), 3.63 (2 h), 4.94 (4 h), 5.19 (6 h); 200 mg/kg: 2.94 (1 h), 3.44 (2 h), 3.94 (4 h), 3.31 (6 h); 400 mg/kg: 2.75 (1 h), 2.63 (2 h), 3.31 (4 h), 3.06 (6 h) | [19] |
Ankle joint diameter measurements | In vivo animal model; Albino rats of both genders; n = 6/group | 1. Normal control; 2. Negative control; 3. Diclofenac group (10 mg/kg); 4–6. Groups treated with the plant extract in a dose of 100, 200, and 300 mg/kg, respectively; 7. Group treated with a salicylate-rich fraction (150 mg/kg) containing gaultherin;Tail response time [s]; diclofenac: 11.50 (30 min), 13.20 (60 min), 14.5 (120 min) | Salicylate-rich fraction showed a moderate ↓ in joint diameter after 12 days of the experiment | [21] |
Biochemical parameters in blood | In vivo animal model; Albino rats of both genders; n = 6/group | 1. Normal control; 2. Negative control; 3. Diclofenac group (10 mg/kg); 4–6. Groups treated with the plant extract in a dose of 100, 200, and 300 mg/kg, respectively; 7. Group treated with a salicylate-rich fraction (150 mg/kg) containing gaultherin; Diclofenac; AST: 92 (U/L); ALT: 106 (U/L); ALP: 299 (U/L); Total protein: 5.94 (g/dL) | Salicylate-rich fraction significantly ↓ the concentration of AST, ALT, and ALP. In addition, there was a significant ↑ in the level of total protein in the blood; AST: 105 (U/L); ALT: 123 (U/L); ALP: 349 (U/L); Total protein: 5.73 (g/dL) | [21] |
Antipyretic activity | ||||
Brewer’s yeast-induced pyrexia | In vivo animal model; Albino mice of both genders; n = 6/group | 1. Normal control (saline); 2. Paracetamol group (150 mg/kg); 3–5. Groups treated with the plant extract in a dose of 100, 200, and 300 mg/kg, respectively; 6. Group treated with salicylate-rich fraction (150 mg/kg) containing gaultherin; Rectal temperature [°C]; paracetamol: 38.2 (0 h), 39.1 (1 h), 39.2 (2 h), 39.1 (3 h), 38.1 (4 h), 37.0 (5 h) | Salicylate rich fraction ↓ the pyrexia significantly in the 5th hour of experiment (p < 0.01); Rectal temperature [°C]; salicylate-rich fraction: 38.6 (0 h), 38.8 (1 h), 38.9 (2 h), 38.2 (3 h), 37.5 (4 h), 37.2 (5 h) | [20] |
Analgesic activity | ||||
Acetic acid-induced abdominal contraction | In vivo animal model; Kunming mice—males; n = 10/group | 1. Normal control; 2. Aspirin group (200 mg/kg); 3. Gaultherin group (400 mg/kg) Number of contractions; aspirin: 17.6; Inhibition [%]: 44 | Gaultherin significantly ↓ the visceral pain induced by acetic acid; Number of contractions; gaultherin: 21.0; Inhibition [%]: 33 | [15] |
Ulcerogenic effect on the gastric mucosa | In vivo animal model; Wistar rats—males; n = 6–8/group | 1. Normal control; 2. Aspirin group (135 mg/kg); 3. Gaultherin group (400 mg/kg) Gastric lesion [mm2]: aspirin: 20.3 | Gaultherin caused no lesions in the rat stomachs; Gastric lesion [mm2]: gaultherin: 0 | [15] |
Acute gastric lesions induced by water immersion restrain stress | In vivo animal model; Wistar rats—males; n = 6–8/group | 1. Normal control; 2. Aspirin group (135 mg/kg); 3. Gaultherin group (330 mg/kg) Gastric lesion [mm2]: aspirin: 50.6 | Gaultherin did not significantly affect the ulcerogenic response to water immersion restraint stress; Gastric lesion [mm2]: gaultherin: 31.1 | [15] |
Hot plate-induced pain | In vivo animal model; Kunming mice of both genders; n = 10/group | 1. Normal control; 2. Morphine group (5 mg/kg); 3–4. Groups treated with the salicylate-rich fraction in a dose of 400 and 800 mg/kg, respectively, containing 50% of gaultherin; Latency [s]; morphine: 0 h: 19.2; 2 h: 33.9; 3 h: 47.3; 4 h: 40.0 | Salicylate-rich fraction did not alter the latency reaction to the thermal stimulus, as demonstrated by the hot plate test; Latency [s]; salicylate-rich fraction: 0 h: 17.9 (400 mg/kg), 17.3 (800 mg/kg); 2 h: 18.1 (400 mg/kg), 22.5 (800 mg/kg); 3 h: 18.6 (400 mg/kg), 23.4 (800 mg/kg); 4 h: 22.4 (400 mg/kg), 23.0 (800 mg/kg) | [19] |
Acetic acid-induced writhing | In vivo animal model; Kunming mice of both genders; n = 10/group | 1. Normal control; 2. Aspirin group (200 mg/kg); 3–5. Groups treated with the salicylate-rich fraction in a dose of 200, 400, and 800 mg/kg, respectively, containing 50% of gaultherin; Number of writhing; aspirin: 6.67 | Salicylate-rich fraction significantly ↓ the number of writhing and stretching induced by the acetic acid; Number of writhing; salicylate-rich fraction: 15.75 (200 mg/kg), 14.73 (400 mg/kg), 8.83 (800 mg/kg) | [19] |
Formalin-induced pain | In vivo animal model; Kunming mice of both genders; n = 10/group | 1. Normal control; 2. Aspirin group (200 mg/kg); 3. Morphine group (5 mg/kg); 4–6. Groups treated with the salicylate-rich fraction in a dose of 200, 400, and 800 mg/kg, respectively, containing 50% of gaultherin; Paw licking time [s]; aspirin: 0–5 min: 56.1; Inhibition [%]: −2.8; 20–30 min: 95.9; Inhibition [%]: 40.2; morphine: 0–5 min: 16.7; Inhibition [%]: 69.4; 20–30 min: 88.3; Inhibition [%]: 44.9 | Salicylate-rich fraction exerted no effect on the first phase (0–5 min) of the formalin test; however, in the second phase (20–30 min), it significantly ↓ the time of paw licking; Paw licking time [s]; salicylate-rich fraction: 0–5 min: 55.1 (200 mg/kg), 54.7 (400 mg/kg), 53.5 (800 mg/kg); Inhibition [%]: −0.9 (200 mg/kg), −0.1 (400 mg/kg), 2.0 (800 mg/kg); 20–30 min: 144.4 (200 mg/kg), 95.5 (400 mg/kg), 93.3 (800 mg/kg); Inhibition [%]: 9.9 (200 mg/kg), 40.4 (400 mg/kg), 41.8 (800 mg/kg) | [19] |
Acetic acid-induced writhing test | In vivo animal model; Albino mice of both genders; n = 6/group | 1. Normal control (saline); 2. Diclofenac group (10 mg/kg); 3–5. Groups treated with the plant extract in a dose of 100, 200, and 300 mg/kg, respectively; 6. Group treated with a salicylate-rich fraction (150 mg/kg) containing gaultherin; Number of writhing (20 min); diclofenac: 18.46 | Salicylate-rich fraction ↓ the analgesia to a significant level (p < 0.01), and the result was comparable to diclofenac used as a standard drug; Number of writhing (20 min); salicylate-rich fraction: 27.66 | [20] |
Tail immersion test | 1. Normal control (saline); 2. Tramadol group (30 mg/kg); 3–5. Groups treated with the plant extract in a dose of 100, 200, and 300 mg/kg, respectively; 6. Group treated with a salicylate-rich fraction (150 mg/kg) containing gaultherin; Tail response time [s]; tramadol: 3.28 (0 min), 3.27 (30 min), 4.09 (60 min), 5.50 (90 min), 6.63 (120 min) | Salicylate-rich fraction ↑ the tail immersion time (↑ the tail-withdrawal latency) to a significant level (p > 0.01) after 90 min, and the result was comparable to tramadol used as a standard drug; Tail response time [s]; salicylate-rich fraction: 3.21 (0 min), 3.50 (30 min), 3.71 (60 min), 4.87 (90 min), 4.95 (120 min) | [20] | |
Tail immersion test | In vivo animal model; Albino rats of both genders; n = 6/group | 1. Normal control; 2. Negative control; 3. Diclofenac group (10 mg/kg); 4–6. Groups treated with the plant extract in a dose of 100, 200, and 300 mg/kg, respectively; 7. Group treated with a salicylate-rich fraction (150 mg/kg) containing gaultherin; Tail response time [s]; diclofenac: 11.50 (30 min), 13.20 (60 min), 14.5 (120 min) | Salicylate-rich fraction significantly ↑ the tail immersion time after 60 min, and the result was comparable to diclofenac used as a standard drug; Tail response time [s]; salicylate-rich fraction: 9.77 (30 min), 11.83 (60 min), 13.26 (120 min) | [21] |
Pain haematological parameters in blood | In vivo animal model; Albino rats of both genders; n = 6/group | 1. Normal control; 2. Negative control; 3. Diclofenac group (10 mg/kg); 4–6. Groups treated with the plant extract in a dose of 100, 200, and 300 mg/kg, respectively; 7. Group treated with a salicylate-rich fraction (150 mg/kg) containing gaultherin; Diclofenac; RBC: 4.93 (106 cells/mm3); WBC: 10.01 (103 cells/mm3); Hb: 13.1 (g/dL); Platelets: 1328 (103 cells/mm3); CRP: 3.90 (mg/lit); RF value: 43 (IU/mL) | Salicylate-rich fraction significantly ↓ the C-reactive protein and rheumatoid factor in the blood; RBC: 4.60 (106 cells/mm3); WBC: 11 (103 cells/mm3); Hb: 12.4 (g/dL); Platelets: 1468 (103 cells/mm3); CRP: 4.73 (mg/lit); RF value: 49 (IU/mL) | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michel, P. Gaultherin, a Natural Alternative to Aspirin: A Comprehensive Review of Molecular Mechanisms, Pharmacokinetics, Biocompatibility, Isolation Techniques, and Plant Sources. Int. J. Mol. Sci. 2025, 26, 7280. https://doi.org/10.3390/ijms26157280
Michel P. Gaultherin, a Natural Alternative to Aspirin: A Comprehensive Review of Molecular Mechanisms, Pharmacokinetics, Biocompatibility, Isolation Techniques, and Plant Sources. International Journal of Molecular Sciences. 2025; 26(15):7280. https://doi.org/10.3390/ijms26157280
Chicago/Turabian StyleMichel, Piotr. 2025. "Gaultherin, a Natural Alternative to Aspirin: A Comprehensive Review of Molecular Mechanisms, Pharmacokinetics, Biocompatibility, Isolation Techniques, and Plant Sources" International Journal of Molecular Sciences 26, no. 15: 7280. https://doi.org/10.3390/ijms26157280
APA StyleMichel, P. (2025). Gaultherin, a Natural Alternative to Aspirin: A Comprehensive Review of Molecular Mechanisms, Pharmacokinetics, Biocompatibility, Isolation Techniques, and Plant Sources. International Journal of Molecular Sciences, 26(15), 7280. https://doi.org/10.3390/ijms26157280