Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (105)

Search Parameters:
Keywords = priority PAHs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 354 KB  
Article
Polycyclic Aromatic Hydrocarbons and Microbial Contamination in Traditional Pork Meat Products: Implications for Food Safety
by Alexandra Tabaran, Oana Lucia Crisan-Reget, Dana Alina Magdas, Mihai Borzan, Sergiu Condor, Caroline Lǎcǎtuş and Sorin Daniel Dan
Microorganisms 2025, 13(12), 2805; https://doi.org/10.3390/microorganisms13122805 - 9 Dec 2025
Viewed by 232
Abstract
Traditional pork meat products produced through artisanal smoking and drying techniques are highly appreciated for their distinctive sensory characteristics; however, such practices may raise concerns regarding both chemical and microbiological safety. The present study aimed to assess the occurrence of selected polycyclic aromatic [...] Read more.
Traditional pork meat products produced through artisanal smoking and drying techniques are highly appreciated for their distinctive sensory characteristics; however, such practices may raise concerns regarding both chemical and microbiological safety. The present study aimed to assess the occurrence of selected polycyclic aromatic hydrocarbons (PAHs) and hygiene- and safety-related microorganisms in traditionally processed pork meat products collected from local markets and small-scale producers. A total of 140 samples were analyzed for four marker PAHs—benzo[a]pyrene (BaP), benz[a]anthracene (BaA), benzo[b]fluoranthene (BbF), and chrysene (Chr)—using gas chromatography–mass spectrometry (GC–MS). Microbiological contamination was evaluated through standard plate count techniques, and the presence of Listeria monocytogenes and Salmonella serovars was determined using selective isolation methods, followed by PCR confirmation of pathogenic strains. PAH concentrations varied widely: BaP (0.3–1.8 µg/kg), BaA (0.5–2.4 µg/kg), BbF (0.8–3.1 µg/kg) and Chr (0.4–2.0 µg/kg), with ΣPAH4 (Sum of PAH4, referring to the total concentration of the four-priority polycyclic aromatic hydrocarbons) ranging from 2.5 to 8.3 µg/kg. Smoked sausages showed the highest contamination (BaP: 1.8 µg/kg; ΣPAH4: 8.3 µg/kg), significantly exceeding levels in dry-cured ham (BaP: 1.2 µg/kg; ΣPAH4: 6.1 µg/kg) and smoked bacon (BaP: 0.9 µg/kg; ΣPAH4: 5.4 µg/kg) (Kruskal–Wallis, p < 0.0001). Although all samples complied with the EU ΣPAH4 limit (12 µg/kg), 15% exceeded the BaP limit of 2.0 µg/kg, primarily among artisanal sausages. Microbiological analyses revealed total coliform counts between 1.5 × 102 and 6.2 × 104 CFU/g, while Enterobacteriaceae ranged from 2.0 × 102 to 4.9 × 104 CFU/g. Samples obtained from unregulated producers exhibited higher bacterial loads, indicating suboptimal hygiene during processing and storage. A moderate positive correlation was identified between total coliform and Enterobacteriaceae counts (r = 0.59, p < 0.05). Moreover, Salmonella serovars was detected in ten sausage samples, and Listeria monocytogenes was confirmed in three samples of traditional products. Overall, the findings suggest that although PAH contamination generally complied with EU safety limits, occasional exceedances of benzo[a]pyrene and elevated microbial indicators underscore the need for stricter control of smoking parameters, fuel sources, and hygienic handling. Implementation of standardized smoking protocols and good manufacturing practices (GMP) is recommended to enhance the safety and quality of traditional pork meat products Full article
Show Figures

Figure 1

20 pages, 1780 KB  
Article
A Social Survey to Capture the Public Awareness and Perception About Chemicals Under Ireland’s Human Biomonitoring Feasibility Study
by Richa Singh, Holger Martin Koch, Marike Kolossa-Gehring, André Conrad and Alison Connolly
Environments 2025, 12(11), 410; https://doi.org/10.3390/environments12110410 - 1 Nov 2025
Viewed by 1420
Abstract
As chemical exposures are increasingly emphasised as public health concerns, understanding how people perceive chemical risks is vital for shaping responsive and inclusive human biomonitoring (HBM) programmes. Public awareness not only influences individual behaviours but can also inform national policy priorities and scientific [...] Read more.
As chemical exposures are increasingly emphasised as public health concerns, understanding how people perceive chemical risks is vital for shaping responsive and inclusive human biomonitoring (HBM) programmes. Public awareness not only influences individual behaviours but can also inform national policy priorities and scientific focus. This study reports findings from the Human Biomonitoring for Ireland (HBM4IRE) feasibility study, which conducted a social survey adapted from the HBM4EU framework. The survey assessed awareness and perceived harmfulness of 24 chemical groups among 218 Irish residents, distinguishing between experts (involved in chemical management) and non-experts. Lead, arsenic, mercury, pesticides, tobacco alkaloids, volatile organic compounds (VOCs), solvents, cadmium, polycyclic aromatic hydrocarbons (PAHs), and persistent organic pollutants (POPs) received the highest perceived harmfulness scores. Non-experts reported lower perceived harmfulness for substances such as phthalates, parabens, and Per- and polyfluoroalkyl substances (PFASs), indicating significant awareness gaps. These findings demonstrate convergence between public and expert views for well-recognised substances but also highlight gaps for certain emerging chemicals. This study highlights the importance of targeted, country-specific education campaigns and shows the added value of integrating public perceptions into HBM design and priority setting. Full article
Show Figures

Figure 1

19 pages, 798 KB  
Article
Polycyclic Aromatic Hydrocarbons (PAHs) and Phthalate Esters (PAEs) in the Farmed Fishes from Khanh Hoa, Viet Nam: Level and Health Risk Assessment
by Xuan-Vy Nguyen, Trung-Du Hoang, Nhu-Thuy Nguyen-Nhat, Quoc-Hoi Nguyen, Xuan-Thuy Nguyen, Trung-Hieu Nguyen, Si Hai Trinh Truong, My-Ngan T. Nguyen and Viet-Ha Dao
Foods 2025, 14(20), 3518; https://doi.org/10.3390/foods14203518 - 16 Oct 2025
Viewed by 750
Abstract
Phthalic acid esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) are known to potentially impact both marine organisms and human health through the consumption of fish and seafood. In this study, the concentrations of 12 priority PAHs and 6 PAEs were analyzed in the [...] Read more.
Phthalic acid esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) are known to potentially impact both marine organisms and human health through the consumption of fish and seafood. In this study, the concentrations of 12 priority PAHs and 6 PAEs were analyzed in the tissues of 76 samples of five farmed fish species, including Litopenaeus vannamei (crustacean), Babylonia areolata, Marcia hiantina (mollusk), Trachinotus blochii, and Epinephelus lanceolatus (fish), collected from four coastal sites in Khanh Hoa province. Freeze-dried tissue was extracted using water bath ultrasonication with an acetone/n-hexane mixture. A triple quadrupole gas chromatograph–mass spectrometer (GC-MS/MS) was used for the analyses. The results showed that the total PAHs had low contamination levels. Among the PAEs, bis(2-ethylhexyl) phthalate (DEHP) exhibited the highest concentrations. The calculated hazard index (HI) for PAEs suggested no significant health risk. Six PAHs were detected, ranging from 9.14 µg kg−1 in Pacific white shrimp to 47.34 µg kg−1 in cockle. The incremental lifetime cancer risk (ILCR) values for PAHs in some samples exceeded the acceptable safety threshold. In the future, natural fish, environmental samples (seawater and marine sediment), and other information on natural conditions will be collected for analyses. This is the first report on the levels and health risks of PAEs and PAHs in farmed fishes along the Khanh Hoa coast. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

13 pages, 846 KB  
Article
Simultaneous Determination of Polycyclic Aromatic Hydrocarbons and Anthraquinone in Yerba Mate by Modified MSPD Method and GC-MS
by Dylan M. Hoffmann, José D. da Silva, Igor F. de Souza, Gabriel A. B. Prates, Vagner A. Dutra, Osmar D. Prestes and Renato Zanella
Separations 2025, 12(9), 240; https://doi.org/10.3390/separations12090240 - 4 Sep 2025
Viewed by 1710
Abstract
Yerba mate (Ilex paraguariensis) is widely consumed in South America and is valued for its bioactive compounds, such as polyphenols and methylxanthines. However, during traditional processing, mainly in the fire-based scorch and drying steps, polycyclic aromatic hydrocarbons (PAHs) and anthraquinone (AQ), [...] Read more.
Yerba mate (Ilex paraguariensis) is widely consumed in South America and is valued for its bioactive compounds, such as polyphenols and methylxanthines. However, during traditional processing, mainly in the fire-based scorch and drying steps, polycyclic aromatic hydrocarbons (PAHs) and anthraquinone (AQ), substances with carcinogenic potential, may be formed. This study aimed to develop and validate an analytical method based on the balls-in-tube matrix solid-phase dispersion technique (BiT-MSPD) and analysis by gas chromatography with mass spectrometry (GC-MS) for the simultaneous determination of 16 priority PAHs and AQ in yerba mate. Parameters such as sorbent type, solvent, sample-to-sorbent ratio, and extraction time were optimized. The method showed good linearity (r2 > 0.99), detection limits between 1.8 and 3.6 µg·kg−1, recoveries ranging from 70 to 120%, and acceptable precision (RSD ≤ 20%). The method was applied to 31 yerba mate samples, including 20 commercial samples and 11 collected at different stages of processing. Most commercial samples showed detectable levels of PAHs, with some exceeding the limits established by the European Union. AQ was detected in 40% of the samples, with some values above the permitted limit of 20 µg·kg−1. The results confirm that scorch (sapeco) and drying contribute to contaminant formation, highlighting the need to modernize industrial processing practices. The proposed method proved to be effective, rapid, and sustainable, representing a promising tool for the quality control and food safety monitoring of yerba mate. Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages, 2nd Edition)
Show Figures

Graphical abstract

21 pages, 3027 KB  
Article
Residues of Priority Organic Micropollutants in Eruca vesicaria (Rocket) Irrigated by Reclaimed Wastewater: Optimization of a QuEChERS SPME-GC/MS Protocol and Risk Assessment
by Luca Rivoira, Simona Di Bonito, Veronica Libonati, Massimo Del Bubba, Mihail Simion Beldean-Galea and Maria Concetta Bruzzoniti
Foods 2025, 14(17), 2963; https://doi.org/10.3390/foods14172963 - 25 Aug 2025
Viewed by 812
Abstract
The increasing use of reclaimed wastewater in agriculture raises growing concerns about the accumulation of priority organic micropollutants in edible crops. In this study, we developed and validated a novel QuEChERS–SPME–GC/MS method for the simultaneous determination of 15 polycyclic aromatic hydrocarbons (PAHs), 3 [...] Read more.
The increasing use of reclaimed wastewater in agriculture raises growing concerns about the accumulation of priority organic micropollutants in edible crops. In this study, we developed and validated a novel QuEChERS–SPME–GC/MS method for the simultaneous determination of 15 polycyclic aromatic hydrocarbons (PAHs), 3 nitro-PAHs, and 14 polychlorinated biphenyls congeners in Eruca vesicaria (rocket) leaves. The method was optimized to address the matrix complexity of leafy vegetables and included a two-step dispersive solid-phase extraction (d-SPE) cleanup and aqueous dilution prior to SPME. Validation showed excellent performance, with MDLs between 0.1 and 6.7 µg/kg, recoveries generally between 70 and 120%, and precision (RSD%) below 20%. The greenness of the protocol was assessed using the AGREE metric, yielding a score of 0.60. Application to rocket samples irrigated with treated wastewater revealed no significant accumulation of target pollutants compared to commercial samples. All PCB and N-PAH congeners were below detection limits, and PAH concentrations were low and mostly limited to lighter compounds. Human health risk assessment based on toxic equivalent concentrations confirmed that estimated cancer risk (CR) values 10−9–10−8 were well below accepted safety thresholds. These findings support the safe use of reclaimed water for leafy crop irrigation under proper treatment conditions and highlight the suitability of the method for trace-level food safety monitoring. Full article
Show Figures

Figure 1

20 pages, 2328 KB  
Article
Characteristics, Sources, and Risk Assessment of Polycyclic Aromatic Hydrocarbons in Soils and Sediments in the Yellow River Delta, China
by Yilei Zhao, Yuxuan Wu, Yue Qi, Junsheng Li, Xueyan Huang, Yuchen Hou, Haojing Hao and Shuyu Zhu
Land 2025, 14(8), 1608; https://doi.org/10.3390/land14081608 - 7 Aug 2025
Viewed by 866
Abstract
This study investigates the presence, origin, and associated ecological and human health risks of polycyclic aromatic hydrocarbons (PAHs) in soils from uncultivated lands and beach sediments within the Yellow River Delta (YRD), China. The measured concentrations of 16 priority PAHs in soils spanned [...] Read more.
This study investigates the presence, origin, and associated ecological and human health risks of polycyclic aromatic hydrocarbons (PAHs) in soils from uncultivated lands and beach sediments within the Yellow River Delta (YRD), China. The measured concentrations of 16 priority PAHs in soils spanned 24.97–326.42 ng/g (mean: 130.88 ng/g), while concentrations in sediments ranged from 46.17 to 794.32 ng/g, averaging 227.22 ng/g. In terms of composition, low-molecular-weight PAHs predominated in soil samples, whereas high-molecular-weight compounds were more prevalent in sediments. The positive matrix factorization (PMF) model results suggested that petroleum pollution and fuel combustion were the main sources of PAHs in soils, whereas the contribution in sediments was derived from petroleum and traffic pollution. The ecological risk assessment results indicated that there existed no obvious ecological risk of soil PAHs, but sediment PAHs could negatively impact the surrounding ecological environment, especially in the northern coastal beach area. In addition, soil PAHs posed no potential carcinogenic risk to humans. Further pollution prevention and management measures are required in this region to ensure the safety of the environment. Full article
Show Figures

Figure 1

13 pages, 2414 KB  
Article
In Silico Characterization of Molecular Interactions of Aviation-Derived Pollutants with Human Proteins: Implications for Occupational and Public Health
by Chitra Narayanan and Yevgen Nazarenko
Atmosphere 2025, 16(8), 919; https://doi.org/10.3390/atmos16080919 - 29 Jul 2025
Viewed by 818
Abstract
Combustion of aviation jet fuel emits a complex mixture of pollutants linked to adverse health outcomes among airport personnel and nearby communities. While epidemiological studies showed the detrimental effects of aviation-derived air pollutants on human health, the molecular mechanisms of the interactions of [...] Read more.
Combustion of aviation jet fuel emits a complex mixture of pollutants linked to adverse health outcomes among airport personnel and nearby communities. While epidemiological studies showed the detrimental effects of aviation-derived air pollutants on human health, the molecular mechanisms of the interactions of these pollutants with cellular biomolecules like proteins that drive the adverse health effects remain poorly understood. In this study, we performed molecular docking simulations of 272 pollutant–protein complexes using AutoDock Vina 1.2.7 to characterize the binding strength of the pollutants with the selected proteins. We selected 34 aviation-derived pollutants that constitute three chemical categories of pollutants: volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and organophosphate esters (OPEs). Each pollutant was docked to eight proteins that play critical roles in endocrine, metabolic, transport, and neurophysiological functions, where functional disruption is implicated in disease. The effect of binding of multiple pollutants was analyzed. Our results indicate that aliphatic and monoaromatic VOCs display low (<6 kcal/mol) binding affinities while PAHs and organophosphate esters exhibit strong (>7 kcal/mol) binding affinities. Furthermore, the binding strength of PAHs exhibits a positive correlation with the increasing number of aromatic rings in the pollutants, ranging from nearly 7 kcal/mol for two aromatic rings to more than 15 kcal/mol for five aromatic rings. Analysis of intermolecular interactions showed that these interactions are predominantly stabilized by hydrophobic, pi-stacking, and hydrogen bonding interactions. Simultaneous docking of multiple pollutants revealed the increased binding strength of the resulting complexes, highlighting the detrimental effect of exposure to pollutant mixtures found in ambient air near airports. We provide a priority list of pollutants that regulatory authorities can use to further develop targeted mitigation strategies to protect the vulnerable personnel and communities near airports. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

20 pages, 2063 KB  
Article
Chemometric Evaluation of 16 Priority PAHs in Soil and Roots of Syringa vulgaris and Ficus carica from the Bor Region (Serbia): An Insight into the Natural Plant Potential for Soil Phytomonitoring and Phytoremediation
by Aleksandra D. Papludis, Slađana Č. Alagić, Snežana M. Milić, Jelena S. Nikolić, Snežana Č. Jevtović, Vesna P. Stankov Jovanović and Gordana S. Stojanović
Environments 2025, 12(8), 256; https://doi.org/10.3390/environments12080256 - 28 Jul 2025
Viewed by 839
Abstract
The soil phytomonitoring and phytostabilization potential of Syringa vulgaris and Ficus carica was evaluated regarding 16 priority polycyclic aromatic hydrocarbons (PAHs) using a chemometric approach and the calculation of bioconcentration factors (BCFs) for each individual PAH in plants’ roots from each selected location [...] Read more.
The soil phytomonitoring and phytostabilization potential of Syringa vulgaris and Ficus carica was evaluated regarding 16 priority polycyclic aromatic hydrocarbons (PAHs) using a chemometric approach and the calculation of bioconcentration factors (BCFs) for each individual PAH in plants’ roots from each selected location in the Bor region. PAHs in roots and the corresponding soils were analyzed using the QuEChERS (Quick, Effective, Cheap, Easy, Rugged, Safe) method with some new modifications, gas chromatography/mass spectrometry, Pearson’s correlation study, hierarchical cluster analysis, and BCFs. Several central conclusions are as follows: Each plant species developed its own specific capability for PAH management, and root concentrations ranged from not detected (for several compounds) to 5592 μg/kg (for fluorene in S. vulgaris). In some cases, especially regarding benzo(a)pyrene and chrysene, both plants had a similar tactic—the total avoidance of assimilation (probably due to their high toxicity). Both plants retained significant quantities of different PAHs in their roots (many calculated BCFs were higher than 1 or were even extremely high), which recommends them for PAH phytostabilization (especially fluorene, benzo(b)fluoranthene, and benzo(k)fluoranthene). In soil monitoring, neither of the plants are helpful because their roots do not reflect the actual situation found in soil. Finally, the analysis of the corresponding soils provided useful monitoring information. Full article
Show Figures

Graphical abstract

17 pages, 983 KB  
Article
Oak Acorns as Functional Foods: Antioxidant Potential and Safety Assessment
by Vesna Stankov Jovanović, Vladan Djurić, Violeta Mitić, Ana Barjaktarević, Snežana Cupara, Marija Ilić and Jelena Nikolić
Foods 2025, 14(14), 2486; https://doi.org/10.3390/foods14142486 - 16 Jul 2025
Viewed by 1568
Abstract
With the growing interest in natural and health-supporting foods, oak acorns (Quercus robur) are gaining renewed attention for their nutritional and antioxidant potential. This study explored how different processing methods affect bioactive compounds in three acorn-based products: raw acorn flour, roasted [...] Read more.
With the growing interest in natural and health-supporting foods, oak acorns (Quercus robur) are gaining renewed attention for their nutritional and antioxidant potential. This study explored how different processing methods affect bioactive compounds in three acorn-based products: raw acorn flour, roasted “coffee,” and washed-and-roasted “super coffee.” Extracts were obtained using methanol, acetone, and hexane to evaluate total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity via ABTS, DPPH, CUPRAC, FRAP, and TRP assays. Methanol proved to be the most effective solvent, extracting up to 66.53 mg GAE/g dw of phenolics in raw flour and 76.50 mg GAE/g dw in roasted “coffee,” reflecting a 15% increase in TPC after thermal treatment. However, the same treatment resulted in a 17% decrease in flavonoid content, from 181.5 mg RE/g dw in raw flour to 150.67 mg RE/g dw in “super coffee.” Antioxidant activity followed a similar pattern, with methanol extracts showing the highest values, up to 584 mg TE/g dw in the CUPRAC assay and 126.7 mg TE/g dw in ABTS. Safety was also assessed through the quantification of 16 priority polycyclic aromatic hydrocarbons (PAHs). The total PAH levels in the roasted “coffee” and “super coffee” samples were 222 ng/g dw and 290 ng/g dw, respectively. Importantly, PAH4 compounds, used as key safety indicators in EU regulations, were present in low concentrations, primarily as benzo[a]anthracene (34.3–39.8 ng/g), and none exceeded the maximum limits established for cocoa-based products. Benzo[a]pyrene, a major carcinogen, was not detected. The results confirm that acorns of Quercus robur, especially in their native flour form, are rich in antioxidants, naturally gluten-free, and safe when thermally processed, making them a strong candidate for use in functional foods. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

22 pages, 1389 KB  
Article
Cancer Risk Associated with Inhalation Exposure to PM10-Bound PAHs and PM10-Bound Heavy Metals in Polish Agglomerations
by Barbara Kozielska and Dorota Kaleta
Appl. Sci. 2025, 15(14), 7903; https://doi.org/10.3390/app15147903 - 15 Jul 2025
Cited by 1 | Viewed by 1924
Abstract
Particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and heavy metals (HMs) present in polluted air are strongly associated with an increased risk of respiratory diseases. In our study, we grouped cities based on their pollution levels using a method called Ward’s cluster analysis [...] Read more.
Particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and heavy metals (HMs) present in polluted air are strongly associated with an increased risk of respiratory diseases. In our study, we grouped cities based on their pollution levels using a method called Ward’s cluster analysis and looked at the increased cancer risk from PM10-bound harmful substances for adult men and women living in Polish cities. The analysis was based on data from 8 monitoring stations where concentrations of PM10, PAHs, and HMs were measured simultaneously between 2018 and 2022. The cluster analysis made it possible to distinguish three separate agglomeration clusters: cluster I (Upper Silesia, Wroclaw) with the highest concentrations of heavy metals and PAHs, with mean levels of lead 14.97 ± 7.27 ng·m−3, arsenic 1.73 ± 0.60 ng·m−3, nickel 1.77 ± 0.95 ng·m−3, cadmium 0.49 ± 0.28 ng·m−3, and ∑PAHs 15.53 ± 6.44 ng·m−3, cluster II (Warsaw, Łódź, Lublin, Cracow) with dominant road traffic emissions and low emissions, with average levels of lead 8.00 ± 3.14 ng·m−3, arsenic 0.70 ± 0.17 ng·m−3, nickel 1.64 ± 0.96 ng·m−3, and cadmium 0.49 ± 0.28 ng·m−3, and cluster III (Szczecin, Tricity) with the lowest concentration levels with favourable ventilation conditions. All calculated ILCR values were in the range of 1.20 × 10−6 to 1.11 × 10−5, indicating a potential cancer risk associated with long-term exposure. The highest ILCR values were reached in Upper Silesia and Wroclaw (cluster I), and the lowest in Tricity, which was classified in cluster III. Our findings suggest that there are continued preventive actions and stricter air quality control. The results confirm that PM10 is a significant carrier of airborne carcinogens and should remain a priority in both environmental and public health policy. Full article
Show Figures

Figure 1

15 pages, 2017 KB  
Article
Assessment of Harmful Emissions from Multiple Binder Systems in Pilot-Scale Sand Casting
by Erika Garitaonandia, Andoni Ibarra, Angelika Kmita, Rafał Dańko and Mariusz Holtzer
Molecules 2025, 30(13), 2765; https://doi.org/10.3390/molecules30132765 - 27 Jun 2025
Cited by 2 | Viewed by 1059
Abstract
This study investigates hazardous emissions from foundry binder systems, comparing organic resins (phenolic urethane, furan, and alkaline-phenolic) and clay-bonded green sand with inorganic alternatives (sodium silicate and geopolymer). The research was conducted at the Fundaciόn Azterlan pilot plant (Spain), involving controlled chamber tests [...] Read more.
This study investigates hazardous emissions from foundry binder systems, comparing organic resins (phenolic urethane, furan, and alkaline-phenolic) and clay-bonded green sand with inorganic alternatives (sodium silicate and geopolymer). The research was conducted at the Fundaciόn Azterlan pilot plant (Spain), involving controlled chamber tests for the production of 60 kg iron alloy castings in 110 kg sand molds. The molds were evaluated under two configurations: homogeneous systems, where both mold and cores were manufactured using the same binder (five trials), and heterogeneous systems, where different binders were used for mold and cores (four trials). Each mold was placed in a metallic box fitted with a lid and an integrated gas extraction duct. The lid remained open during pouring and was closed immediately afterward to enable efficient evacuation of casting gases through the extraction system. Although the box was not completely airtight, it was designed to direct most exhaust gases through the duct. Along the extraction system line, different sampling instruments were strategically located for the precise measurement of contaminants: volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), phenol, multiple forms of particulate matter (including crystalline silica content), and gases produced during pyrolysis. Across the nine trials, inorganic binders demonstrated significant reductions in gas emissions and priority pollutants, achieving decreases of over 90% in BTEX compounds (benzene, toluene, ethylbenzene, and xylene) and over 94% in PAHs compared to organic systems. Gas emissions were also substantially reduced, with CO emissions lowered by over 30%, NOx by more than 98%, and SO2 by over 75%. Conducted under the Greencasting LIFE project (LIFE 21 ENV/FI/101074439), this work provides empirical evidence supporting sodium silicate and geopolymer binders as viable, sustainable solutions for minimizing occupational and ecological risks in metal casting processes. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

24 pages, 4223 KB  
Article
Chemical Prioritisation for Human Biomonitoring in Ireland: A Synergy of Global Frameworks and Local Perspectives
by Richa Singh, Holger Martin Koch, Marike Kolossa-Gehring and Alison Connolly
Toxics 2025, 13(4), 281; https://doi.org/10.3390/toxics13040281 - 7 Apr 2025
Cited by 3 | Viewed by 1544
Abstract
Human biomonitoring (HBM) is a critical scientific tool for assessing human exposure by quantifying chemicals and their metabolites in biological specimens such as blood and urine. This approach provides a comprehensive and accurate evaluation of internal exposures from diverse sources and exposure routes. [...] Read more.
Human biomonitoring (HBM) is a critical scientific tool for assessing human exposure by quantifying chemicals and their metabolites in biological specimens such as blood and urine. This approach provides a comprehensive and accurate evaluation of internal exposures from diverse sources and exposure routes. In Ireland, establishing a national HBM programme requires a systematic chemical prioritisation process that aligns global frameworks with local public perceptions. This study integrates insights from international initiatives such as the European Joint Programme Human Biomonitoring for Europe (HBM4EU) and the Partnership for the Assessment of Risks from Chemicals (PARC)—along with HBM programmes from EU countries (Germany, France, Belgium, Norway, Slovenia, Czech Republic, and Sweden) and non-EU countries (US, Canada, South Korea, China, and New Zealand). In addition, a national survey was conducted to capture the perceptions of people in Ireland regarding chemicals of concern to develop a comprehensive priority list of chemicals and biomarkers. The broader chemical groups identified include heavy metals (lead, cadmium, mercury, arsenic, and chromium VI), plasticisers (phthalates), bisphenols, pesticides, flame retardants, PFASs (per- and polyfluoroalkyl substances), PAHs (polycyclic aromatic hydrocarbons), POPs (persistent organic compounds), VOCs (volatile organic compounds), and UV (ultraviolet) filters. This integrated, participatory approach provides a roadmap for a robust, adaptable chemical list that supports evidence-based policy decisions in HBM in Ireland and enhances public health outcomes. Full article
(This article belongs to the Special Issue Pesticide Risk Assessment, Emerging and Re-Emerging Problems)
Show Figures

Graphical abstract

23 pages, 4023 KB  
Article
Atmospheric Estrogenic Semi-Volatile Compounds and PAH in PM2.5 in Mexico City
by José Gustavo Ronderos-Lara, Fernando Millán-Vázquez, Mario Alfonso Murillo-Tovar, Hugo Albeiro Saldarriaga-Noreña, Brenda Liz Valle-Hernández, Khirbet López-Velázquez and Violeta Mugica-Álvarez
Atmosphere 2025, 16(2), 178; https://doi.org/10.3390/atmos16020178 - 5 Feb 2025
Viewed by 1247
Abstract
The quantification of semi-volatile organic compounds with potential endocrine-disrupting activity contained in fine atmospheric particles (PM2.5) is essential to understand their temporal behavior, identify their sources, and evaluate the health risks resulting from population exposure to said compounds. Since information and [...] Read more.
The quantification of semi-volatile organic compounds with potential endocrine-disrupting activity contained in fine atmospheric particles (PM2.5) is essential to understand their temporal behavior, identify their sources, and evaluate the health risks resulting from population exposure to said compounds. Since information and research outcomes regarding their presence in the atmosphere in developing countries are scarce, the main objective of this work was the development of a methodology devoted to extracting, characterizing, and quantifying, for the first time in Mexico, the concentration levels of three important groups of endocrine-disrupting compounds (EDCs) bonded to PM2.5 and collected during a year, namely: alkylphenols (4-n-nonylphenol (4NP) and 4-tert-octylphenol (4tOP)); bisphenols (bisphenol A (BPA) and bisphenol F (BPF)); natural and synthetic hormones (17β-estradiol (E2), estriol (E3) and 17α-ethinyl estradiol (EE2)). Further, priority polycyclic aromatic hydrocarbons (PAH) that also disrupt endocrine activity were analyzed. All compounds were determined by gas chromatography coupled to tandem mass spectrometry, and the concentration levels were analyzed for different climatic seasons. Cold-dry (CD) season displayed higher levels of 4NP, bisphenols, and hormones (between 0.71 (4NP) and 1860 pg m−3 (BPA)), as well as PAH concentrations (9.12 ng m−3). Regarding health effects, concentrations of alkylphenols, bisphenols, and hormones quantified had a value of estradiol equivalent concentration (EEQE2) between 0.07 and 0.17 ng m−3. PAH concentrations did not have carcinogenic and mutagenic risk with BaP(PEQ) < 1 ng m−3. These results can be used by policymakers in the design of strategies for air pollution control. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

12 pages, 1333 KB  
Article
Determination of 16 European Priority Polycyclic Aromatic Hydrocarbons in Doner Kebab Varieties Cooked Under Different Heating Sources
by Esra Akkaya, Hilal Colak, Hamparsun Hampikyan, Burcu Cakmak Sancar, Meryem Akhan, Ayse Seray Engin, Omer Cetin and Enver Baris Bingol
Foods 2024, 13(23), 3725; https://doi.org/10.3390/foods13233725 - 21 Nov 2024
Cited by 3 | Viewed by 2866
Abstract
Doner kebab is a traditional Turkish meat product produced from lamb, beef or poultry meat seasoned with a blend of spices such as salt, black pepper, cumin, thyme and/or sauces. The aim of this study was to determine 16 EU priority polycyclic aromatic [...] Read more.
Doner kebab is a traditional Turkish meat product produced from lamb, beef or poultry meat seasoned with a blend of spices such as salt, black pepper, cumin, thyme and/or sauces. The aim of this study was to determine 16 EU priority polycyclic aromatic hydrocarbons (PAHs) in doner kebabs cooked under four different heating sources (electricity, open gas, wood and charcoal grilling). For this purpose, 200 meat doner and 200 chicken doner kebab samples were obtained randomly from various buffets and restaurants located in Istanbul and analyzed by means of GC-MS. According to the results, benzo[a]pyrene and PAH4 levels, which are important PAH compounds as biomarkers, were significantly higher in chicken doner than in meat doner (p < 0.05). The highest occurrence of benzo[a]pyrene and PAH4 in meat and chicken doner samples was in the charcoal heating source, whereas the lowest occurrence was detected in electric grilling. In terms of all PAH compounds, cooking with an electric heating source caused the formation of fewer PAH compounds in doner kebab samples. Consequently, the fat content of fatty meat products such as doner kebab should be reduced, the contact of fat with the heating source (especially flame) and dripping of fat to the source should be prevented and overcooking of meat should be avoided. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

20 pages, 7267 KB  
Article
Integrated Assessment and Agricultural Planning in Selenium-Rich Hilly Soils: A Case Study on Land Use, Heavy Metal Contamination, and Nutrient Element Distribution
by Jianzhou Yang, Kai Li, Jianweng Gao, Zhenliang Wang, Jingjing Gong, Shuqi Hu, Qiang Zhang, Zhuang Duan and Yong Li
Land 2024, 13(11), 1798; https://doi.org/10.3390/land13111798 - 31 Oct 2024
Cited by 4 | Viewed by 1860
Abstract
The strategic development of selenium-enriched soil cultivation is essential for effective agricultural land management. This research explores the sustainable utilization of selenium-rich soils in Qiongzhong County, Hainan Island. An extensive evaluation was conducted on 7266 surface soil samples, assessing the selenium concentrations, nutrient [...] Read more.
The strategic development of selenium-enriched soil cultivation is essential for effective agricultural land management. This research explores the sustainable utilization of selenium-rich soils in Qiongzhong County, Hainan Island. An extensive evaluation was conducted on 7266 surface soil samples, assessing the selenium concentrations, nutrient levels, heavy metals, pH values, and soil organic matter (SOM). In addition, analyses of 70 samples for organochlorine compounds and PAHs were performed. The results indicated average selenium content of 0.46 mg/kg, with 55.2% of the samples surpassing the selenium enrichment threshold of 0.4 mg/kg. According to the GB15618-2018 standards, 127 samples (1.75%) showed medium or high chromium-associated risks. No contamination from organochlorine compounds or PAHs was found, including the 16 priority-controlled PAHs with an average concentration of 30.3 µg/kg, confirming the soil’s high quality. The correlation and factor analysis identified surface enrichment as the main factor influencing selenium accumulation, presenting minimal environmental risks. Consequently, three categories of selenium-rich soil were defined: selenium-rich, pollution-free, and high-nutrient selenium-rich soil. Recommendations based on the soil characteristics and existing agricultural practices were made for the cultivation of selenium-rich vegetables, rubber, and nuts. This study lays a foundation for the sustainable management of selenium-rich soils, providing insights for further research and decision-making to optimize these resources, thus promoting environmental protection and agricultural sustainability. Full article
Show Figures

Figure 1

Back to TopTop