Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (880)

Search Parameters:
Keywords = price adjustment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 425 KiB  
Article
Game-Optimization Modeling of Shadow Carbon Pricing and Low-Carbon Transition in the Power Sector
by Guangzeng Sun, Bo Yuan, Han Zhang, Peng Xia, Cong Wu and Yichun Gong
Energies 2025, 18(15), 4173; https://doi.org/10.3390/en18154173 - 6 Aug 2025
Abstract
Under China’s ‘Dual Carbon’ strategy, the power sector plays a central role in achieving carbon neutrality. This study develops a bi-level game-optimization model involving the government, power producers, and technology suppliers to explore the dynamic coordination between shadow carbon pricing and emission trajectories. [...] Read more.
Under China’s ‘Dual Carbon’ strategy, the power sector plays a central role in achieving carbon neutrality. This study develops a bi-level game-optimization model involving the government, power producers, and technology suppliers to explore the dynamic coordination between shadow carbon pricing and emission trajectories. The upper-level model, guided by the government, focuses on minimizing total costs, including emission reduction costs, technological investments, and operational costs, by dynamically adjusting emission targets and shadow carbon prices. The lower-level model employs evolutionary game theory to simulate the adaptive behaviors and strategic interactions among power producers, regulatory authorities, and technology suppliers. Three representative uncertainty scenarios, disruptive technological breakthroughs, major policy interventions, and international geopolitical shifts, are incorporated to evaluate system robustness. Simulation results indicate that an optimistic scenario is characterized by rapid technological advancement and strong policy incentives. Conversely, under a pessimistic scenario with sluggish technology development and weak regulatory frameworks, there are substantially higher transition costs. This research uniquely contributes by explicitly modeling dynamic feedback between policy and stakeholder behavior under multiple uncertainties, highlighting the critical roles of innovation-driven strategies and proactive policy interventions in shaping effective, resilient, and cost-efficient carbon pricing and low-carbon transition pathways in the power sector. Full article
Show Figures

Figure 1

27 pages, 1062 KiB  
Article
Dynamic Supply Chain Decision-Making of Live E-Commerce Considering Netflix Marketing Under Different Power Structures
by Yawen Liu, Mohammed Gadafi Tamimu and Junwu Chai
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 202; https://doi.org/10.3390/jtaer20030202 - 6 Aug 2025
Abstract
The rapid growth of live e-commerce, a sector valued at over USD 100 billion worldwide, demonstrates its transformative impact on the retail industry, especially in markets like China, where platforms such as Taobao Live and TikTok Shop have markedly altered consumer interaction. This [...] Read more.
The rapid growth of live e-commerce, a sector valued at over USD 100 billion worldwide, demonstrates its transformative impact on the retail industry, especially in markets like China, where platforms such as Taobao Live and TikTok Shop have markedly altered consumer interaction. This transition is further expedited by Netflix-like entertainment marketing methods, which have demonstrated the capacity to enhance consumer retention by as much as 40%. As organizations adjust to this evolving landscape, it is essential to optimize supply chain strategies to align with these dynamic, consumer-centric environments. This paper examines the complexity of decision-making in live e-commerce supply chains, specifically regarding Netflix-inspired marketing strategies. The primary aim of this study is to design a game-theoretic framework that examines the interactions between producers and online celebrity retailers (OCRs) across different power dynamics. As live commerce integrates digital retail with immersive experiences, businesses must optimize pricing, quality, and marketing strategies in real-time. We present engagement-driven marketing as a strategic variable and incorporate consumer regret and switching costs into the demand function. To illustrate practical trade-offs in strategy, we incorporate a multi-criteria decision-making (MCDM) layer with AHP-TOPSIS, assessing profit, consumer surplus, engagement score, and channel efficiency. The experiment results indicate that Netflix-style marketing markedly increases demand and profit in retailer-led frameworks, whereas centralized tactics enhance overall channel performance. TOPSIS analysis prioritizes high-effort, high-engagement methods, whereas the Stackelberg experiment underscores the influence of power dynamics on profit distribution. This study presents an innovative integrative decision-making methodology for enhancing live-streaming commerce tactics in data-driven and consumer-focused markets. Full article
Show Figures

Figure 1

26 pages, 20835 KiB  
Article
Reverse Mortgages and Pension Sustainability: An Agent-Based and Actuarial Approach
by Francesco Rania
Risks 2025, 13(8), 147; https://doi.org/10.3390/risks13080147 - 4 Aug 2025
Abstract
Population aging poses significant challenges to the sustainability of pension systems. This study presents an integrated methodological approach that uniquely combines actuarial life-cycle modeling with agent-based simulation to assess the potential of Reverse Mortgage Loans (RMLs) as a dual lever for enhancing retiree [...] Read more.
Population aging poses significant challenges to the sustainability of pension systems. This study presents an integrated methodological approach that uniquely combines actuarial life-cycle modeling with agent-based simulation to assess the potential of Reverse Mortgage Loans (RMLs) as a dual lever for enhancing retiree welfare and supporting pension system resilience under demographic and financial uncertainty. We explore Reverse Mortgage Loans (RMLs) as a potential financial instrument to support retirees while alleviating pressure on public pensions. Unlike prior research that treats individual decisions or policy outcomes in isolation, our hybrid model explicitly captures feedback loops between household-level behavior and system-wide financial stability. To test our hypothesis that RMLs can improve individual consumption outcomes and bolster systemic solvency, we develop a hybrid model combining actuarial techniques and agent-based simulations, incorporating stochastic housing prices, longevity risk, regulatory capital requirements, and demographic shifts. This dual-framework enables a structured investigation of how micro-level financial decisions propagate through market dynamics, influencing solvency, pricing, and adoption trends. Our central hypothesis is that reverse mortgages, when actuarially calibrated and macroprudentially regulated, enhance individual financial well-being while preserving long-run solvency at the system level. Simulation results indicate that RMLs can improve consumption smoothing, raise expected utility for retirees, and contribute to long-term fiscal sustainability. Moreover, we introduce a dynamic regulatory mechanism that adjusts capital buffers based on evolving market and demographic conditions, enhancing system resilience. Our simulation design supports multi-scenario testing of financial robustness and policy outcomes, providing a transparent tool for stress-testing RML adoption at scale. These findings suggest that, when well-regulated, RMLs can serve as a viable supplement to traditional retirement financing. Rather than offering prescriptive guidance, this framework provides insights to policymakers, financial institutions, and regulators seeking to integrate RMLs into broader pension strategies. Full article
Show Figures

Figure 1

26 pages, 2056 KiB  
Article
“(Don’t) Stop the Rising Oil Price”: Mediatization, Digital Discourse, and Fuel Price Controversies in Indonesian Online Media
by Nezar Patria, Budi Irawanto and Ana Nadhya Abrar
Journal. Media 2025, 6(3), 124; https://doi.org/10.3390/journalmedia6030124 - 4 Aug 2025
Viewed by 30
Abstract
Fuel price increases have long been a contentious issue in Indonesia, sparking intense public and political debates. This study examines how digital media, particularly Kompas.com and Tempo.co, shape public discourse on fuel price hikes through mediatization. Using discourse network analysis, this study compares [...] Read more.
Fuel price increases have long been a contentious issue in Indonesia, sparking intense public and political debates. This study examines how digital media, particularly Kompas.com and Tempo.co, shape public discourse on fuel price hikes through mediatization. Using discourse network analysis, this study compares the political narratives surrounding fuel price increases during the administrations of Susilo Bambang Yudhoyono (2013) and Joko Widodo (2022). The findings reveal a shift in dominant discourse—opposition to price hikes was prominent in both periods, with government authority and economic justification emphasized in 2013, whereas concerns over rising living costs and social unrest dominated in 2022. This study highlights how mediatization has transformed policymaking from deliberative discussions into fragmented media battles, where digital platforms amplify competing narratives rather than facilitating consensus. Kompas.com predominantly featured counter-discourses, while Tempo.co exhibited stronger pro-government narratives in 2013. This study suggests that while digital media plays a crucial role in shaping policy perceptions, it does not necessarily translate into policy influence. It contributes to the broader understanding of the media’s role in policy debates. It underscores the need for more strategic government communication to manage public expectations and mitigate political unrest surrounding fuel price adjustments. Full article
Show Figures

Figure 1

28 pages, 2335 KiB  
Article
Fine-Tuning Pre-Trained Large Language Models for Price Prediction on Network Freight Platforms
by Pengfei Lu, Ping Zhang, Jun Wu, Xia Wu, Yunsheng Mao and Tao Liu
Mathematics 2025, 13(15), 2504; https://doi.org/10.3390/math13152504 - 4 Aug 2025
Viewed by 37
Abstract
Various factors influence the formation and adjustment of network freight prices, including transportation costs, cargo characteristics, and policies and regulations. The interaction of these factors increases the difficulty of accurately predicting network freight prices through regressions or other machine learning models, especially when [...] Read more.
Various factors influence the formation and adjustment of network freight prices, including transportation costs, cargo characteristics, and policies and regulations. The interaction of these factors increases the difficulty of accurately predicting network freight prices through regressions or other machine learning models, especially when the amount and quality of training data are limited. This paper introduces large language models (LLMs) to predict network freight prices using their inherent prior knowledge. Different data sorting methods and serialization strategies are employed to construct the corpora of LLMs, which are then tested on multiple base models. A few-shot sample dataset is constructed to test the performance of models under insufficient information. The Chain of Thought (CoT) is employed to construct a corpus that demonstrates the reasoning process in freight price prediction. Cross entropy loss with LoRA fine-tuning and cosine annealing learning rate adjustment, and Mean Absolute Error (MAE) loss with full fine-tuning and OneCycle learning rate adjustment to train the models, respectively, are used. The experimental results demonstrate that LLMs are better than or competitive with the best comparison model. Tests on a few-shot dataset demonstrate that LLMs outperform most comparison models in performance. This method provides a new reference for predicting network freight prices. Full article
Show Figures

Figure 1

18 pages, 603 KiB  
Article
Leveraging Dynamic Pricing and Real-Time Grid Analysis: A Danish Perspective on Flexible Industry Optimization
by Sreelatha Aihloor Subramanyam, Sina Ghaemi, Hessam Golmohamadi, Amjad Anvari-Moghaddam and Birgitte Bak-Jensen
Energies 2025, 18(15), 4116; https://doi.org/10.3390/en18154116 - 3 Aug 2025
Viewed by 113
Abstract
Flexibility is advocated as an effective solution to address the growing need to alleviate grid congestion, necessitating efficient energy management strategies for industrial operations. This paper presents a mixed-integer linear programming (MILP)-based optimization framework for a flexible asset in an industrial setting, aiming [...] Read more.
Flexibility is advocated as an effective solution to address the growing need to alleviate grid congestion, necessitating efficient energy management strategies for industrial operations. This paper presents a mixed-integer linear programming (MILP)-based optimization framework for a flexible asset in an industrial setting, aiming to minimize operational costs and enhance energy efficiency. The method integrates dynamic pricing and real-time grid analysis, alongside a state estimation model using Extended Kalman Filtering (EKF) that improves the accuracy of system state predictions. Model Predictive Control (MPC) is employed for real-time adjustments. A real-world case studies from aquaculture industries and industrial power grids in Denmark demonstrates the approach. By leveraging dynamic pricing and grid signals, the system enables adaptive pump scheduling, achieving a 27% reduction in energy costs while maintaining voltage stability within 0.95–1.05 p.u. and ensuring operational safety. These results confirm the effectiveness of grid-aware, flexible control in reducing costs and enhancing stability, supporting the transition toward smarter, sustainable industrial energy systems. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

19 pages, 2280 KiB  
Article
A Swap-Integrated Procurement Model for Supply Chains: Coordinating with Long-Term Wholesale Contracts
by Min-Yeong Ryu and Pyung-Hoi Koo
Mathematics 2025, 13(15), 2495; https://doi.org/10.3390/math13152495 - 3 Aug 2025
Viewed by 179
Abstract
In today’s volatile supply chain environment, organizations require flexible and collaborative procurement strategies. Swap contracts, originally developed as financial instruments, have recently been adopted to address inventory imbalances—such as the 2021 COVID-19 vaccine swap between South Korea and Israel. Despite its increasing adoption [...] Read more.
In today’s volatile supply chain environment, organizations require flexible and collaborative procurement strategies. Swap contracts, originally developed as financial instruments, have recently been adopted to address inventory imbalances—such as the 2021 COVID-19 vaccine swap between South Korea and Israel. Despite its increasing adoption in the real world, theoretical studies on swap-based procurement remain limited. This study proposes an integrated model that combines buyer-to-buyer swap agreements with long-term wholesale contracts under demand uncertainty. The model quantifies the expected swap quantity between parties and embeds it into the profit function to derive optimal order quantities. Numerical experiments are conducted to compare the performance of the proposed strategy with that of a baseline wholesale contract. Sensitivity analyses are performed on key parameters, including demand asymmetry and swap prices. The numerical analysis indicates that the swap-integrated procurement strategy consistently outperforms procurement based on long-term wholesale contracts. Moreover, the results reveal that under the swap-integrated strategy, the optimal order quantity must be adjusted—either increased or decreased—depending on the demand scale of the counterpart and the specified swap price, deviating from the optimal quantity under traditional long-term contracts. These findings highlight the potential of swap-integrated procurement strategies as practical coordination mechanisms across both private and public sectors, offering strategic value in contexts such as vaccine distribution, fresh produce, and other critical products. Full article
(This article belongs to the Special Issue Theoretical and Applied Mathematics in Supply Chain Management)
Show Figures

Figure 1

30 pages, 866 KiB  
Article
Balancing Profitability and Sustainability in Electric Vehicles Insurance: Underwriting Strategies for Affordable and Premium Models
by Xiaodan Lin, Fenqiang Chen, Haigang Zhuang, Chen-Ying Lee and Chiang-Ku Fan
World Electr. Veh. J. 2025, 16(8), 430; https://doi.org/10.3390/wevj16080430 - 1 Aug 2025
Viewed by 185
Abstract
This study aims to develop an optimal underwriting strategy for affordable (H1 and M1) and premium (L1 and M2) electric vehicles (EVs), balancing financial risk and sustainability commitments. The research is motivated by regulatory pressures, risk management needs, and sustainability goals, necessitating an [...] Read more.
This study aims to develop an optimal underwriting strategy for affordable (H1 and M1) and premium (L1 and M2) electric vehicles (EVs), balancing financial risk and sustainability commitments. The research is motivated by regulatory pressures, risk management needs, and sustainability goals, necessitating an adaptation of traditional underwriting models. The study employs a modified Delphi method with industry experts to identify key risk factors, including accident risk, repair costs, battery safety, driver behavior, and PCAF carbon impact. A sensitivity analysis was conducted to examine premium adjustments under different risk scenarios, categorizing EVs into four risk segments: Low-Risk, Low-Carbon (L1); Medium-Risk, Low-Carbon (M1); Medium-Risk, High-Carbon (M2); and High-Risk, High-Carbon (H1). Findings indicate that premium EVs (L1 and M2) exhibit lower volatility in underwriting costs, benefiting from advanced safety features, lower accident rates, and reduced carbon attribution penalties. Conversely, budget EVs (H1 and M1) experience higher premium fluctuations due to greater accident risks, costly repairs, and higher carbon costs under PCAF implementation. The worst-case scenario showed a 14.5% premium increase, while the best-case scenario led to a 10.5% premium reduction. The study recommends prioritizing premium EVs for insurance coverage due to their lower underwriting risks and carbon efficiency. For budget EVs, insurers should implement selective underwriting based on safety features, driver risk profiling, and energy efficiency. Additionally, incentive-based pricing such as telematics discounts, green repair incentives, and low-carbon charging rewards can mitigate financial risks and align with net-zero insurance commitments. This research provides a structured framework for insurers to optimize EV underwriting while ensuring long-term profitability and regulatory compliance. Full article
Show Figures

Figure 1

16 pages, 263 KiB  
Article
Hospitality in Crisis: Evaluating the Downside Risks and Market Sensitivity of Hospitality REITs
by Davinder Malhotra and Raymond Poteau
Int. J. Financial Stud. 2025, 13(3), 140; https://doi.org/10.3390/ijfs13030140 - 1 Aug 2025
Viewed by 202
Abstract
This study evaluates the risk-adjusted performance of Hospitality REITs using multi-factor asset pricing models and downside risk measures with the aim of assessing their diversification potential and crisis sensitivity. Unlike prior studies that examine REITs in aggregate, this study isolates Hospitality REITs to [...] Read more.
This study evaluates the risk-adjusted performance of Hospitality REITs using multi-factor asset pricing models and downside risk measures with the aim of assessing their diversification potential and crisis sensitivity. Unlike prior studies that examine REITs in aggregate, this study isolates Hospitality REITs to explore their unique cyclical and macroeconomic sensitivities. This study looks at the risk-adjusted performance of Hospitality Real Estate Investment Trusts (REITs) in relation to more general REIT indexes and the S&P 500 Index. The study reveals that monthly returns of Hospitality REITs increasingly move in tandem with the stock markets during financial crises, which reduces their historical function as portfolio diversifiers. Investing in Hospitality REITs exposes one to the hospitality sector; however, these investments carry notable risks and provide little protection, particularly during economic upheavals. Furthermore, the study reveals that Hospitality REITs underperform on a risk-adjusted basis relative to benchmark indexes. The monthly returns of REITs show significant volatility during the post-COVID-19 era, which causes return-to-risk ratios to be below those of benchmark indexes. Estimates from multi-factor models indicate negative alpha values across conditional models, indicating that macroeconomic variables cause unremunerated risks. This industry shows great sensitivity to market beta and size and value determinants. Hospitality REITs’ susceptibility comes from their showing the most possibility for exceptional losses across asset classes under Value at Risk (VaR) and Conditional Value at Risk (CvaR) downside risk assessments. The findings have implications for investors and portfolio managers, suggesting that Hospitality REITs may not offer consistent diversification benefits during downturns but can serve a tactical role in procyclical investment strategies. Full article
79 pages, 12542 KiB  
Article
Evolutionary Game-Theoretic Approach to Enhancing User-Grid Cooperation in Peak Shaving: Integrating Whole-Process Democracy (Deliberative Governance) in Renewable Energy Systems
by Kun Wang, Lefeng Cheng and Ruikun Wang
Mathematics 2025, 13(15), 2463; https://doi.org/10.3390/math13152463 - 31 Jul 2025
Viewed by 292
Abstract
The integration of renewable energy into power grids is imperative for reducing carbon emissions and mitigating reliance on depleting fossil fuels. In this paper, we develop symmetric and asymmetric evolutionary game-theoretic models to analyze how user–grid cooperation in peak shaving can be enhanced [...] Read more.
The integration of renewable energy into power grids is imperative for reducing carbon emissions and mitigating reliance on depleting fossil fuels. In this paper, we develop symmetric and asymmetric evolutionary game-theoretic models to analyze how user–grid cooperation in peak shaving can be enhanced by incorporating whole-process democracy (deliberative governance) into decision-making. Our framework captures excess returns, cooperation-driven profits, energy pricing, participation costs, and benefit-sharing coefficients to identify equilibrium conditions under varied subsidy, cost, and market scenarios. Furthermore, this study integrates the theory, path, and mechanism of deliberative procedures under the perspective of whole-process democracy, exploring how inclusive and participatory decision-making processes can enhance cooperation in renewable energy systems. We simulate seven scenarios that systematically adjust subsidy rates, cost–benefit structures, dynamic pricing, and renewable-versus-conventional competitiveness, revealing that robust cooperation emerges only under well-aligned incentives, equitable profit sharing, and targeted financial policies. These scenarios systematically vary these key parameters to assess the robustness of cooperative equilibria under diverse economic and policy conditions. Our findings indicate that policy efficacy hinges on deliberative stakeholder engagement, fair profit allocation, and adaptive subsidy mechanisms. These results furnish actionable guidelines for regulators and grid operators to foster sustainable, low-carbon energy systems and inform future research on demand response and multi-source integration. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

17 pages, 3966 KiB  
Article
Beyond the Detour: Modeling Traffic System Shocks After the Francis Scott Key Bridge Failure
by Daeyeol Chang, Niyeyesh Meimandi Nejad, Mansoureh Jeihani and Mansha Swami
Sustainability 2025, 17(15), 6916; https://doi.org/10.3390/su17156916 - 30 Jul 2025
Viewed by 265
Abstract
This research examines the traffic disruptions resulting from the collapse of the Francis Scott Key Bridge in Baltimore, utilizing advanced econometric methods and real-time ClearGuide data. Employing Fixed Effects (FEs), Mixed Effects (MEs), Difference-in-Differences (DiDs), and stratified regression models, the study uniquely examines [...] Read more.
This research examines the traffic disruptions resulting from the collapse of the Francis Scott Key Bridge in Baltimore, utilizing advanced econometric methods and real-time ClearGuide data. Employing Fixed Effects (FEs), Mixed Effects (MEs), Difference-in-Differences (DiDs), and stratified regression models, the study uniquely examines the impacts of congestion across Immediate, Fall, and Winter periods, distinctly separating AM and PM peak patterns. Significant findings include severe PM peak congestion, up to four times greater than AM peak congestion, particularly on critical corridors such as the Harbor Tunnel Thruway northbound and MD-295 northbound. Initial route-level impacts were heterogeneous, gradually becoming uniform as the network adapted. The causal DiD analysis provides strong evidence that increased congestion is causally linked to proximity to the collapse. It is anticipated that incorporating the suggested framework will yield insightful information for stakeholders and decision-makers, such as targeted freight restriction, peak-hour dynamic pricing, corridor-specific signal adjustments, and investments in real-time traffic monitoring systems to strengthen transportation network resilience. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

19 pages, 6937 KiB  
Article
Optimal Placement of Distributed Solar PV Adapting to Electricity Real-Time Market Operation
by Xi Chen and Hai Long
Sustainability 2025, 17(15), 6879; https://doi.org/10.3390/su17156879 - 29 Jul 2025
Viewed by 274
Abstract
Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning [...] Read more.
Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning and economic assessment model for building-integrated PV (BIPV) systems, incorporating hourly electricity real-time market prices, solar geometry, and submeter building spatial data. Wuhan (30.60° N, 114.05° E) serves as the case study to evaluate optimal PV placement and tilt angles on rooftops and façades, focusing on maximizing economic returns rather than energy production alone. The results indicate that adjusting rooftop PV tilt from a maximum generation angle (30°) to a maximum revenue angle (15°) slightly lowers generation but increases revenue, with west-facing orientations further improving returns by aligning output with peak electricity prices. For façades, south-facing panels yielded the highest output, while north-facing panels with tilt angles above 20° also showed significant potential. Façade PV systems demonstrated substantially higher generation potential—about 5 to 15 times that of rooftop PV systems under certain conditions. This model provides a spatially detailed, market-responsive framework supporting sustainable urban energy planning, quantifying economic and environmental benefits, and aligning with integrated approaches to urban sustainability. Full article
(This article belongs to the Special Issue Sustainable Energy Planning and Environmental Assessment)
Show Figures

Figure 1

29 pages, 9145 KiB  
Article
Ultra-Short-Term Forecasting-Based Optimization for Proactive Home Energy Management
by Siqi Liu, Zhiyuan Xie, Zhengwei Hu, Kaisa Zhang, Weidong Gao and Xuewen Liu
Energies 2025, 18(15), 3936; https://doi.org/10.3390/en18153936 - 23 Jul 2025
Viewed by 207
Abstract
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy [...] Read more.
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy that integrates advanced forecasting models with multi-objective scheduling algorithms. By leveraging deep learning techniques like Graph Attention Network (GAT) architectures, the system predicts ultra-short-term household load profiles with high accuracy, addressing the volatility of residential energy use. Then, based on the predicted data, a comprehensive consideration of electricity costs, user comfort, carbon emission pricing, and grid load balance indicators is undertaken. This study proposes an enhanced mixed-integer optimization algorithm to collaboratively optimize multiple objective functions, thereby refining appliance scheduling, energy storage utilization, and grid interaction. Case studies demonstrate that integrating photovoltaic (PV) power generation forecasting and load forecasting models into a home energy management system, and adjusting the original power usage schedule based on predicted PV output and water heater demand, can effectively reduce electricity costs and carbon emissions without compromising user engagement in optimization. This approach helps promote energy-saving and low-carbon electricity consumption habits among users. Full article
Show Figures

Figure 1

23 pages, 5432 KiB  
Article
Efficient Heating System Management Through IoT Smart Devices
by Álvaro de la Puente-Gil, Alberto González-Martínez, Enrique Rosales-Asensio, Ana-María Diez-Suárez and Jorge-Juan Blanes Peiró
Machines 2025, 13(8), 643; https://doi.org/10.3390/machines13080643 - 23 Jul 2025
Viewed by 234
Abstract
A novel approach to managing domestic heating systems through IoT technologies is introduced in this paper. The system optimizes energy consumption by dynamically adapting to electricity and fuel price fluctuations while maintaining user comfort. Integrating smart devices significantly reduce energy costs and offer [...] Read more.
A novel approach to managing domestic heating systems through IoT technologies is introduced in this paper. The system optimizes energy consumption by dynamically adapting to electricity and fuel price fluctuations while maintaining user comfort. Integrating smart devices significantly reduce energy costs and offer a favorable payback period, positioning the solution as both sustainable and economically viable. Efficient heating management is increasingly critical amid growing energy and environmental concerns. This strategy uses IoT devices to collect real-time data on prices, consumption, and user preferences. Based on this data, the system adjusts heating settings intelligently to balance comfort and cost savings. IoT connectivity manages continuous monitoring and dynamic optimization in response to changing conditions. This study includes a real-case comparison between a conventional central heating system and an IoT-managed electric radiator setup. By applying automation rules linked to energy pricing and user habits, the system enhances energy efficiency, especially in cold climates. The economic evaluation shows that using low-cost IoT devices yields meaningful savings and achieves equipment payback within approximately three years. The results demonstrate the system’s effectiveness, demonstrating that smart, adaptive heating solutions can cut energy expenses without sacrificing comfort, while offering environmental and financial benefits. Full article
Show Figures

Figure 1

24 pages, 6464 KiB  
Article
A Hybrid Model for Carbon Price Forecasting Based on Secondary Decomposition and Weight Optimization
by Yongfa Chen, Yingjie Zhu, Jie Wang and Meng Li
Mathematics 2025, 13(14), 2323; https://doi.org/10.3390/math13142323 - 21 Jul 2025
Viewed by 304
Abstract
Accurate carbon price forecasting is essential for market stability, risk management, and policy-making. To address the nonlinear, non-stationary, and multiscale nature of carbon prices, this paper proposes a forecasting framework integrating secondary decomposition, two-stage feature selection, and dynamic ensemble learning. Firstly, the original [...] Read more.
Accurate carbon price forecasting is essential for market stability, risk management, and policy-making. To address the nonlinear, non-stationary, and multiscale nature of carbon prices, this paper proposes a forecasting framework integrating secondary decomposition, two-stage feature selection, and dynamic ensemble learning. Firstly, the original price series is decomposed into intrinsic mode functions (IMFs), using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). The IMFs are then grouped into low- and high-frequency components based on multiscale entropy (MSE) and K-Means clustering. To further alleviate mode mixing in the high-frequency components, an improved variational mode decomposition (VMD) optimized by particle swarm optimization (PSO) is applied for secondary decomposition. Secondly, a two-stage feature-selection method is employed, in which the partial autocorrelation function (PACF) is used to select relevant lagged features, while the maximal information coefficient (MIC) is applied to identify key variables from both historical and external data. Finally, this paper introduces a dynamic integration module based on sliding windows and sequential least squares programming (SLSQP), which can not only adaptively adjust the weights of four base learners but can also effectively leverage the complementary advantages of each model and track the dynamic trends of carbon prices. The empirical results of the carbon markets in Hubei and Guangdong indicate that the proposed method outperforms the benchmark model in terms of prediction accuracy and robustness, and the method has been tested by Diebold Mariano (DM). The main contributions are the improved feature-extraction process and the innovative use of a sliding window-based SLSQP method for dynamic ensemble weight optimization. Full article
Show Figures

Figure 1

Back to TopTop