Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,464)

Search Parameters:
Keywords = pressure transmission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3031 KiB  
Article
Integrated Capuchin Search Algorithm-Optimized Multilayer Perceptron for Robust and Precise Prediction of Blast-Induced Airblast in a Blasting Mining Operation
by Kesalopa Gaopale, Takashi Sasaoka, Akihiro Hamanaka and Hideki Shimada
Geosciences 2025, 15(8), 306; https://doi.org/10.3390/geosciences15080306 - 6 Aug 2025
Abstract
Blast-induced airblast poses a significant environmental and operational issue for surface mining, affecting safety, regulatory adherence, and the well-being of surrounding communities. Despite advancements in machine learning methods for predicting airblast, present studies neglect essential geomechanical characteristics, specifically rock mass strength (RMS), which [...] Read more.
Blast-induced airblast poses a significant environmental and operational issue for surface mining, affecting safety, regulatory adherence, and the well-being of surrounding communities. Despite advancements in machine learning methods for predicting airblast, present studies neglect essential geomechanical characteristics, specifically rock mass strength (RMS), which is vital for energy transmission and pressure-wave attenuation. This paper presents a capuchin search algorithm-optimized multilayer perceptron (CapSA-MLP) that incorporates RMS, hole depth (HD), maximum charge per delay (MCPD), monitoring distance (D), total explosive mass (TEM), and number of holes (NH). Blast datasets from a granite quarry were utilized to train and test the model in comparison to benchmark approaches, such as particle swarm optimized artificial neural network (PSO-ANN), multivariate regression analysis (MVRA), and the United States Bureau of Mines (USBM) equation. CapSA-MLP outperformed PSO-ANN (RMSE = 1.120, R2 = 0.904 compared to RMSE = 1.284, R2 = 0.846), whereas MVRA and USBM exhibited lower accuracy. Sensitivity analysis indicated RMS as the main input factor. This study is the first to use CapSA-MLP with RMS for airblast prediction. The findings illustrate the significance of metaheuristic optimization in developing adaptable, generalizable models for various rock types, thereby improving blast design and environmental management in mining activities. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

28 pages, 5190 KiB  
Article
Assessing the Coevolution Between Ecosystem Services and Human Well-Being in Ecotourism-Dominated Counties: A Case Study of Chun’an, Zhejiang Province, China
by Weifeng Jiang and Lin Lu
Land 2025, 14(8), 1604; https://doi.org/10.3390/land14081604 - 6 Aug 2025
Abstract
Investigating the coevolution between ecosystem services (ES) and human well-being (HWB) holds significant implications for achieving the sustainable operation of human–environment systems. However, limited research has focused on ES-HWB interactions in ecotourism-dominated counties. To address this gap, this study takes Chun’an County in [...] Read more.
Investigating the coevolution between ecosystem services (ES) and human well-being (HWB) holds significant implications for achieving the sustainable operation of human–environment systems. However, limited research has focused on ES-HWB interactions in ecotourism-dominated counties. To address this gap, this study takes Chun’an County in Zhejiang Province, China, as a case study, with the research objective of exploring the processes, patterns, and mechanisms of the coevolution between ecosystem services (ES) and human well-being (HWB) in ecotourism-dominated counties. By integrating multi-source heterogeneous data, including land use data, the normalized difference vegetation index (NDVI), and statistical records, and employing methods such as the dynamic equivalent factor method, the PLUS model, the coupling coordination degree model, and comprehensive evaluation, we analyzed the synergistic evolution of ES-HWB in Chun’an County from 2000 to 2020. The results indicate that (1) the ecosystem service value (ESV) fluctuated between 30.15 and 36.85 billion CNY, exhibiting a spatial aggregation pattern centered on the Qiandao Lake waterbody, with distance–decay characteristics. The PLUS model confirms ecological conservation policies optimize ES patterns. (2) The HWB index surged from 0.16 to 0.8, driven by tourism-led economic growth, infrastructure investment, and institutional innovation, facilitating a paradigm shift from low to high well-being at the county level. (3) The ES-HWB interaction evolved through three phases—disordered, antagonism, and coordination—revealing tourism as a key mediator driving coupled human–environment system sustainability via a pressure–adaptation–synergy transmission mechanism. This study not only advances the understanding of ES-HWB coevolution in ecotourism-dominated counties, but also provides a transferable methodological framework for sustainable development in similar regions. Full article
Show Figures

Figure 1

9 pages, 1938 KiB  
Brief Report
Single-Component Silicon-Containing Polyurethane for High-Performance Waterproof and Breathable Nanofiber Membranes
by Dongxu Lu, Yanbing Li, Yake Chai, Ximei Wen, Liming Chen and Sanming Sun
Fibers 2025, 13(8), 105; https://doi.org/10.3390/fib13080105 - 5 Aug 2025
Viewed by 57
Abstract
High-performance waterproof and breathable nanofiber membranes (WBNMs) are in great demand for various advanced applications. However, the fabrication of such membranes often relies on fluorinated materials or involves complex preparation processes, limiting their practical use. In this study, we present an innovative approach [...] Read more.
High-performance waterproof and breathable nanofiber membranes (WBNMs) are in great demand for various advanced applications. However, the fabrication of such membranes often relies on fluorinated materials or involves complex preparation processes, limiting their practical use. In this study, we present an innovative approach by utilizing silicon-containing polyurethane (SiPU) as a single-component, fluorine-free raw material to prepare high-performance WBNMs via a simple one-step electrospinning process. The electrospinning technique enables the formation of SiPU nanofibrous membranes with a small maximum pore size (dmax) and high porosity, while the intrinsic hydrophobicity of SiPU imparts excellent water-repellent characteristics to the membranes. As a result, the single-component SiPU WBNM exhibits superior waterproofness and breathability, with a hydrostatic pressure of 52 kPa and a water vapor transmission rate (WVTR) of 5798 g m−2 d−1. Moreover, the optimized SiPU-14 WBNM demonstrates outstanding mechanical properties, including a tensile strength of 6.15 MPa and an elongation at break of 98.80%. These findings indicate that the single-component SiPU-14 WBNMs not only achieve excellent waterproof and breathable performance but also possess robust mechanical strength, thereby enhancing the comfort and expanding the potential applications of protective textiles, such as outdoor apparel and car seats. Full article
Show Figures

Graphical abstract

10 pages, 1103 KiB  
Article
Shock Wave Pressure Measurement and Calibration Method Based on Bar Pressure Sensor
by Yong-Xiang Shi, Ying-Cheng Peng, Yuan-Ding Xing, Xue-Jie Jiao, Xiao-Fei Huang and Ze-Qun Ba
Sensors 2025, 25(15), 4743; https://doi.org/10.3390/s25154743 - 1 Aug 2025
Viewed by 174
Abstract
In order to correctly measure the shock wave pressure generated by a near-field explosion, and while considering the limitations of the measurement and calibration method of the current bar pressure sensor, an improved shock wave pressure measurement method was designed based on a [...] Read more.
In order to correctly measure the shock wave pressure generated by a near-field explosion, and while considering the limitations of the measurement and calibration method of the current bar pressure sensor, an improved shock wave pressure measurement method was designed based on a bar pressure sensor combined with photon Doppler velocimetry (PDV) and strain measurement. By measuring the strain on the pressure bar and the particle velocity on the rear-end face, the shock wave pressure applied on the front-end face of the pressure bar was calculated based on one-dimensional stress wave theory. On the other hand, a calibration method was designed to validate the reliability of the test system. Based on the split-Hopkinson pressure bar (SHPB) loading experiment, the transmission characteristics of stress wave in the bar and the accuracy of the system test results were verified. The results indicated that the stress wave measurement results were consistent with the one-dimensional elementary theoretical calculation results of stress wave propagation in different wave-impedance materials, and the peak deviation measured by PDV and strain measurement method was less than 1.5%, which proved the accuracy of the test method and the feasibility of the calibration method. Full article
(This article belongs to the Special Issue Sensors for Characterization of Energetic Materials Effects)
Show Figures

Figure 1

15 pages, 5596 KiB  
Article
Effects of Hypertension Induced by 0.3% Saline Loading on Diabetic Retinopathy in Spontaneously Diabetic Torii Fatty Rats
by Rina Takagi, Yoshiaki Tanaka, Tetsuya Hasegawa, Masami Shinohara, Yasushi Kageyama, Tomohiko Sasase, Takeshi Ohta, Shin-ichi Muramatsu, Nobuhiko Ohno, Akihiro Kakehashi and Toshikatsu Kaburaki
Diabetology 2025, 6(8), 73; https://doi.org/10.3390/diabetology6080073 - 1 Aug 2025
Viewed by 202
Abstract
Objective: This study aimed to determine the possibility of creating a new animal model in which diabetic retinopathy (DR) progresses due to hypertension caused by salt loading. Methods: Male Spontaneously Diabetic Torii (SDT) fatty rats were divided into two groups: one group received [...] Read more.
Objective: This study aimed to determine the possibility of creating a new animal model in which diabetic retinopathy (DR) progresses due to hypertension caused by salt loading. Methods: Male Spontaneously Diabetic Torii (SDT) fatty rats were divided into two groups: one group received 0.3% saline water starting at 8 weeks of age for a duration of 16 weeks (salt SDT fatty group), while the control group was provided with tap water (SDT fatty group). In addition, Sprague-Dawley (SD) rats receiving tap water served as normal controls. Retinal function was assessed by electroretinography (ERG) at 8 and 24 weeks of age. At 24 weeks, following perfusion with fluorescein dextran, the eyes were enucleated, and retinal flat mounts were prepared for vascular evaluation. Retinal thickness and the number of retinal folds were assessed histologically, and ultrastructural changes in the retina were examined using transmission electron microscopy. Results: Saline administration did not lead to significant changes in food consumption or body weight among the groups. In the salt SDT fatty group, blood pressure was significantly elevated, while blood glucose levels showed a slight reduction. ERG analysis showed that the amplitude of oscillatory potential (OP)1 waves was suppressed, and the latencies of OP3, OP4, and OP5 waves were prolonged. Although no significant changes were noted in retinal thickness or the number of retinal folds, thickening of the retinal capillary basement membrane was evident in the salt SDT fatty group. Conclusions: Hypertension induced by 0.3% saline promotes DR progression in SDT fatty rats. This model may help clarify the role of hypertension in DR. Full article
Show Figures

Graphical abstract

13 pages, 13107 KiB  
Article
Ceramic Isolated High-Torque Permanent Magnet Coupling for Deep-Sea Applications
by Liying Sun, Xiaohui Gao and Yongguang Liu
J. Mar. Sci. Eng. 2025, 13(8), 1474; https://doi.org/10.3390/jmse13081474 - 31 Jul 2025
Viewed by 193
Abstract
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This [...] Read more.
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This study presents a novel permanent magnet coupling featuring a ceramic isolation sleeve engineered for deep-sea cryogenic ammonia submersible pumps. The ceramic sleeve eliminates eddy current losses and provides exceptional corrosion resistance in acidic/alkaline environments. To withstand 3.5 MPa hydrostatic pressure, a 6-mm-thick sleeve necessitates a 10 mm operational air gap, challenging magnetic circuit efficiency. To address this limitation, an improved 3D magnetic equivalent circuit (MEC) model was developed that explicitly accounts for flux leakage and axial end-effects, enabling the accurate characterization of large air gap fields. Leveraging this model, a Taguchi method-based optimization framework was implemented by balancing key parameters to maximize the torque density. This co-design strategy achieved a 21% increase in torque density, enabling higher torque transfer per unit volume. Experimental validation demonstrated a maximum torque of 920 Nm, with stable performance under simulated deep-sea conditions. This design establishes a new paradigm for high-power leak-free transmission in corrosive, high-pressure marine environments, advancing applications from deep-sea propulsion to offshore energy systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 5712 KiB  
Article
A Fractional Fourier Transform-Based Channel Estimation and Equalization Algorithm for Mud Pulse Telemetry
by Jingchen Zhang, Zitong Sha, Lei Wan, Yishan Su, Jiang Zhu and Fengzhong Qu
J. Mar. Sci. Eng. 2025, 13(8), 1468; https://doi.org/10.3390/jmse13081468 - 31 Jul 2025
Viewed by 214
Abstract
Mud pulse telemetry (MPT) systems are a promising approach to transmitting downhole data to the ground. During transmission, the amplitudes of pressure waves decay exponentially with distance, and the channel is often frequency-selective due to reflection and multipath effect. To address these issues, [...] Read more.
Mud pulse telemetry (MPT) systems are a promising approach to transmitting downhole data to the ground. During transmission, the amplitudes of pressure waves decay exponentially with distance, and the channel is often frequency-selective due to reflection and multipath effect. To address these issues, this work proposes a fractional Fourier transform (FrFT)-based channel estimation and equalization method. Leveraging the energy aggregation of linear frequency-modulated signals in the fractional Fourier domain, the time delay and attenuation parameters of the multipath channel can be estimated accurately. Furthermore, a fractional Fourier domain equalizer is proposed to pre-filter the frequency-selective fading channel using fractionally spaced decision feedback equalization. The effectiveness of the proposed method is evaluated through a simulation analysis and field experiments. The simulation results demonstrate that this method can significantly reduce multipath effects, effectively control the impact of noise, and facilitate subsequent demodulation. The field experiment results indicate that the demodulation of real data achieves advanced data rate communication (over 12 bit/s) and a low bit error rate (below 0.5%), which meets engineering requirements in a 3000 m drilling system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 1652 KiB  
Article
Antimicrobial and Physicochemical Properties of Hemicellulose-Based Films Incorporating Carvacrol
by Syed Ammar Hussain, Brajendra K. Sharma, Phoebe X. Qi, Madhav P. Yadav and Tony Z. Jin
Polymers 2025, 17(15), 2073; https://doi.org/10.3390/polym17152073 - 29 Jul 2025
Viewed by 333
Abstract
Antimicrobial food packaging with natural antimicrobials and biodegradable polymers presents an innovative solution to mitigate microbial contamination, prolong freshness, reduce food waste, and alleviate environmental burden. This study developed antimicrobial hemicellulose-based films by incorporating carvacrol (1% and 2%) as a natural antimicrobial agent [...] Read more.
Antimicrobial food packaging with natural antimicrobials and biodegradable polymers presents an innovative solution to mitigate microbial contamination, prolong freshness, reduce food waste, and alleviate environmental burden. This study developed antimicrobial hemicellulose-based films by incorporating carvacrol (1% and 2%) as a natural antimicrobial agent through micro-emulsification produced by high-pressure homogenization (M-films). For comparison, films with the same formula were constructed using coarse emulsions (C-films) without high-pressure homogenization. These films were investigated for their antimicrobial efficacy, mechanical and barrier properties, and physicochemical attributes to explore their potential as sustainable antimicrobial packaging solutions. The M-films demonstrated superior antimicrobial activity, achieving reductions exceeding 4 Log CFU/mL against Listeria monocytogenes, Escherichia coli, and Salmonella enterica, compared to the C-films. High-pressure homogenization significantly reduced the emulsion’s particle size, from 11.59 to 2.55 μm, and considerably enhanced the M-film’s uniformity, hydrophobicity, and structural quality. Most importantly, the M-films exhibited lower oxygen transmission (35.14 cc/m2/day) and water vapor transmission rates (52.12 g/m2/day) than the C-films at 45.1 and 65.5 cc/m2/day, respectively, indicating superior protection against gas and moisture diffusion. Markedly improved mechanical properties, including foldability, toughness, and bubble-free surfaces, were also observed, making the M-films suitable for practical applications. This study highlights the potential of high-pressure homogenization as a method for enhancing the functional properties of hemicellulose-based films (i.e., M-films). The fabricated films offer a viable alternative to conventional plastic packaging, paving the way for safer and greener solutions tailored to modern industry needs. Full article
(This article belongs to the Special Issue Polymer-Based Coatings: Principles, Development and Applications)
Show Figures

Figure 1

29 pages, 3259 KiB  
Review
The Role of the Environment (Water, Air, Soil) in the Emergence and Dissemination of Antimicrobial Resistance: A One Health Perspective
by Asma Sassi, Nosiba S. Basher, Hassina Kirat, Sameh Meradji, Nasir Adam Ibrahim, Takfarinas Idres and Abdelaziz Touati
Antibiotics 2025, 14(8), 764; https://doi.org/10.3390/antibiotics14080764 - 29 Jul 2025
Viewed by 439
Abstract
Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments—water, soil, and air—as dynamic reservoirs and transmission routes [...] Read more.
Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments—water, soil, and air—as dynamic reservoirs and transmission routes for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs). Recent metagenomic, epidemiological, and mechanistic evidence demonstrates that anthropogenic pressures—including pharmaceutical effluents, agricultural runoff, untreated sewage, and airborne emissions—amplify resistance evolution and interspecies gene transfer via horizontal gene transfer mechanisms, biofilms, and mobile genetic elements. Importantly, it is not only highly polluted rivers such as the Ganges that contribute to the spread of AMR; even low concentrations of antibiotics and their metabolites, formed during or after treatment, can significantly promote the selection and dissemination of resistance. Environmental hotspots such as European agricultural soils and airborne particulate zones near wastewater treatment plants further illustrate the complexity and global scope of pollution-driven AMR. The synergistic roles of co-selective agents, including heavy metals, disinfectants, and microplastics, are highlighted for their impact in exacerbating resistance gene propagation across ecological and geographical boundaries. The efficacy and limitations of current mitigation strategies, including advanced wastewater treatments, thermophilic composting, biosensor-based surveillance, and emerging regulatory frameworks, are evaluated. By integrating a One Health perspective, this review underscores the imperative of including environmental considerations in global AMR containment policies and proposes a multidisciplinary roadmap to mitigate resistance spread across interconnected human, animal, and environmental domains. Full article
(This article belongs to the Special Issue The Spread of Antibiotic Resistance in Natural Environments)
Show Figures

Figure 1

23 pages, 4708 KiB  
Article
Mechanical Characteristics and Precision Analysis of Inflatable Deployable Parabolic Membrane Antenna Structures
by Yu Hu, Huichao Ji and Wujun Chen
Aerospace 2025, 12(8), 677; https://doi.org/10.3390/aerospace12080677 - 29 Jul 2025
Viewed by 200
Abstract
As accuracy of the reflector surface of a space parabolic deployable antenna is an important factor to determine its electrical characteristics (transmission gain and side lobes), mechanical characteristics of parabolic antennas under various internal pressures should be studied. The objective of this paper [...] Read more.
As accuracy of the reflector surface of a space parabolic deployable antenna is an important factor to determine its electrical characteristics (transmission gain and side lobes), mechanical characteristics of parabolic antennas under various internal pressures should be studied. The objective of this paper is to explore the force analysis of parabolic antennas by theoretical method and to estimate the effect of different air pressures on the surface precision of parabolic antennas via experiments in horizontal and vertical directions, and then a numerical analysis of the vibration characteristics of the parabolic antenna is proposed to explore the transient response of parabolic antennas. It is found that the ratio of tension reduces as depth of the parabolic membrane increases and can infinitely converge to 1/2. For precision analysis, it is concluded that precision of the parabolic membrane surface in a vertical state is higher than that in a horizontal state. Full article
Show Figures

Figure 1

23 pages, 1019 KiB  
Article
Deciphering the Environmental Consequences of Competition-Induced Cost Rationalization Strategies of the High-Tech Industry: A Synergistic Combination of Advanced Machine Learning and Method of Moments Quantile Regression Procedures
by Salih Çağrı İlkay, Harun Kınacı and Esra Betül Kınacı
Sustainability 2025, 17(15), 6867; https://doi.org/10.3390/su17156867 - 28 Jul 2025
Viewed by 533
Abstract
This study intends to portray how varying degrees of environmental policy stringency and the growing pressure of global competition reflect on high-tech (HT) sectors’ cost rationalization strategies and lead to environmental consequences in 15 G20 countries (1992–2019). Moreover, we center the pattern of [...] Read more.
This study intends to portray how varying degrees of environmental policy stringency and the growing pressure of global competition reflect on high-tech (HT) sectors’ cost rationalization strategies and lead to environmental consequences in 15 G20 countries (1992–2019). Moreover, we center the pattern of cost rationalization management regarding the opportunity cost of ecosystem service consumption and propose to test the fundamental hypothesis stating the possible transmission of competition-induced technological innovations to green economic transformation. Our new methodology estimates quantile-specific effects with MM-QR, while identifying the main interaction effects between regulatory pressure and trade competition uses an extended STIRPAT model. The results reveal a paradoxical finding: despite higher environmental policy stringency and opportunity costs of ecosystem services, HT sectors persistently adopt environmentally detrimental cost-reduction approaches. These findings carry important policy implications: (1) environmental regulations for HT sectors require complementary innovation subsidies, (2) trade agreements should incorporate clean technology transfer clauses, and (3) governments must monitor sectoral emission leakage risks. Our dual machine learning–econometric approach provides policymakers with targeted insights for different emission scenarios, highlighting the need for differentiated strategies across clean and polluting HT subsectors. Full article
Show Figures

Figure 1

31 pages, 1632 KiB  
Article
Climate Risks and Common Prosperity for Corporate Employees: The Role of Environment Governance in Promoting Social Equity in China
by Yi Zhang, Pan Xia and Xinjie Zheng
Sustainability 2025, 17(15), 6823; https://doi.org/10.3390/su17156823 - 27 Jul 2025
Viewed by 427
Abstract
Promoting social equity is a global issue, and common prosperity is an important goal for human society’s sustainable development. This study is the first to examine climate risks’ impacts on common prosperity from the perspective of corporate employees, providing micro-level evidence for the [...] Read more.
Promoting social equity is a global issue, and common prosperity is an important goal for human society’s sustainable development. This study is the first to examine climate risks’ impacts on common prosperity from the perspective of corporate employees, providing micro-level evidence for the coordinated development of climate governance and social equity. Employing data from companies listed on the Shanghai and Shenzhen stock exchanges from 2016 to 2023, a fixed-effects model analysis was conducted, and the results showed the following: (1) Climate risks are positively associated with the common prosperity of corporate employees in a significant way, and this effect is mainly achieved through employee guarantees, rather than employee remuneration or employment. (2) Climate risk will increase corporate financing constraints, but it will also force companies to improve their ESG performance. (3) The mechanism tests show that climate risks indirectly promote improvements in employee rights and interests by forcing companies to improve the quality of internal controls and audits. (4) The results of the moderating effect analysis show that corporate size and performance have a positive moderating effect on the relationship between climate risk and the common prosperity of corporate employees. This finding may indicate the transmission path of “climate pressure—governance upgrade—social equity” and suggest that climate governance may be transformed into social value through institutional changes in enterprises. This study breaks through the limitations of traditional research on the financial perspective of the economic consequences of climate risks, incorporates employee welfare into the climate governance assessment framework for the first time, expands the micro research dimension of common prosperity, provides a new paradigm for cross-research on ESG and social equity, and offers recommendations and references for different stakeholders. Full article
Show Figures

Figure 1

38 pages, 2182 KiB  
Article
Smart Grid Strategies for Tackling the Duck Curve: A Qualitative Assessment of Digitalization, Battery Energy Storage, and Managed Rebound Effects Benefits
by Joseph Nyangon
Energies 2025, 18(15), 3988; https://doi.org/10.3390/en18153988 - 25 Jul 2025
Viewed by 394
Abstract
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the [...] Read more.
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the U.S. electricity market, triggering significant changes in electricity production, transmission, and consumption. Utilities are embracing digital twins and repurposed Utility 2.0 concepts—distributed energy resources, microgrids, innovative electricity market designs, real-time automated monitoring, smart meters, machine learning, artificial intelligence, and advanced data and predictive analytics—to foster operational flexibility and market efficiency. This analysis qualitatively evaluates how digitalization, Battery Energy Storage Systems (BESSs), and adaptive strategies to mitigate rebound effects collectively advance smart duck curve management. By leveraging digital platforms for real-time monitoring and predictive analytics, utilities can optimize energy flows and make data-driven decisions. BESS technologies capture surplus renewable energy during off-peak periods and discharge it when demand spikes, thereby smoothing grid fluctuations. This review explores the benefits of targeted digital transformation, BESSs, and managed rebound effects in mitigating the duck curve problem, ensuring that energy efficiency gains translate into actual savings. Furthermore, this integrated approach not only reduces energy wastage and lowers operational costs but also enhances grid resilience, establishing a robust framework for sustainable energy management in an evolving market landscape. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
Show Figures

Figure 1

15 pages, 1256 KiB  
Article
A New Method for Quantitative Evaluation Concentration Polarization Under Different Conditions for the Forward Osmosis Process
by Ping Xiao and Liang Liu
Membranes 2025, 15(8), 223; https://doi.org/10.3390/membranes15080223 - 25 Jul 2025
Viewed by 287
Abstract
Concentration polarization (CP) is one of the inherent problems that lowers the operating performance of forward osmosis (FO) membranes. Therefore, a quantitative evaluation of CP is vital to understand its impact on the FO process. This study systematically investigated the influences of different [...] Read more.
Concentration polarization (CP) is one of the inherent problems that lowers the operating performance of forward osmosis (FO) membranes. Therefore, a quantitative evaluation of CP is vital to understand its impact on the FO process. This study systematically investigated the influences of different CPs on the osmotic pressure drop across the membrane under different conditions by using the water transmission coefficient, ηWT, defined as the ratio of the measured water flux to the theoretical water flux. The results showed that ηWT decreased with an increase in the concentration gradient between the draw solution (DS) and the feed solution (FS) under different conditions. The proportions of osmotic pressure drop caused by dilutive internal concentration polarization (ICP) increased, while those caused by concentrative external concentration polarization (ECP) decreased, in different types of DSs in FO mode. Both ECP and ICP were found to be capable of reducing osmotic pressure. However, the internal CP had the dominant influence. To better understand the adverse effects of CP, using an organic FS provided greater insight than using deionized (DI) water as the FS. As the FS concentration increased, the water flux reduced, and the adverse effects of CP worsened. CaCl2 led to a greater reduction in water transfer efficiency than NaCl when used as the DS. In comparison to FO mode, pressure-retarded osmosis (PRO) mode led to greater pure water flux and flux decline. In FO mode, both the proportion of dilutive ICP and the ηWT decreased, while the proportion of concentrative ECP increased over time. However, in PRO mode, the proportions of dilutive ECP and concentrative ICP increased, and ηWT gradually decreased. Dilutive ICP had a significant negative effect on osmotic pressure in the former, while dilutive ECP was dominant in the latter. Full article
(This article belongs to the Special Issue Membrane Separation and Water Treatment: Modeling and Application)
Show Figures

Figure 1

22 pages, 12545 KiB  
Article
Denoised Improved Envelope Spectrum for Fault Diagnosis of Aero-Engine Inter-Shaft Bearing
by Danni Li, Longting Chen, Hanbin Zhou, Jinyuan Tang, Xing Zhao and Jingsong Xie
Appl. Sci. 2025, 15(15), 8270; https://doi.org/10.3390/app15158270 - 25 Jul 2025
Viewed by 233
Abstract
The inter-shaft bearing is an important component of aero-engine rotor systems. It works between a high-pressure rotor and a low-pressure rotor. Effective fault diagnosis of it is significant for an aero-engine. The casing vibration signals can promptly and intuitively reflect changes in the [...] Read more.
The inter-shaft bearing is an important component of aero-engine rotor systems. It works between a high-pressure rotor and a low-pressure rotor. Effective fault diagnosis of it is significant for an aero-engine. The casing vibration signals can promptly and intuitively reflect changes in the operational health status of an aero-engine’s support system. However, affected by a complex vibration transmission path and vibration of the dual-rotor, the intrinsic vibration information of the inter-shaft bearing is faced with strong noise and a dual-frequency excitation problem. This excitation is caused by the wide span of vibration source frequency distribution that results from the quite different rotational speeds of the high-pressure rotor and low-pressure rotor. Consequently, most existing fault diagnosis methods cannot effectively extract inter-shaft bearing characteristic frequency information from the casing signal. To solve this problem, this paper proposed the denoised improved envelope spectrum (DIES) method. First, an improved envelope spectrum generated by a spectrum subtraction method is proposed. This method is applied to solve the multi-source interference with wide-band distribution problem under dual-frequency excitation. Then, an improved adaptive-thresholding approach is subsequently applied to the resultant subtracted spectrum, so as to eliminate the influence of random noise in the spectrum. An experiment on a public run-to-failure bearing dataset validates that the proposed method can effectively extract an incipient bearing fault characteristic frequency (FCF) from strong background noise. Furthermore, the experiment on the inter-shaft bearing of an aero-engine test platform validates the effectiveness and superiority of the proposed DIES method. The experimental results demonstrate that this proposed method can clearly extract fault-related information from dual-frequency excitation interference. Even amid strong background noise, it precisely reveals the inter-shaft bearing’s fault-related spectral components. Full article
Show Figures

Figure 1

Back to TopTop