A New Method for Quantitative Evaluation Concentration Polarization Under Different Conditions for the Forward Osmosis Process
Abstract
1. Introduction
2. Materials and Methods
2.1. FO Membrane
2.2. Feed and Draw Solution
2.3. Experimental Setup and Method
2.4. Analytical Method
2.4.1. Experimental Water Flux
2.4.2. Definition of
3. Results and Discussion
3.1. Relationship Between and CP, and Their Implications
3.2. Influence of Organic Matter on and CP
3.2.1. Influence of Organic Concentration
3.2.2. Influence of DS Types
3.2.3. Effect of Membrane Orientation
4. Conclusions
- (a)
- ηWT decreased with the increase in CD-CF in the FO system under the influence of different DS types and membrane orientations. Both ECP and ICP were capable of reducing osmotic pressure. However, ICP was dominant when DI water was used as the FS in FO mode.
- (b)
- With the increased concentration of organic compounds in the FS, the reduction in water flux and the adverse effect of CP increased in FO mode. CaCl2, when used as the DS, resulted in a higher osmotic pressure and a higher ηWT compared to NaCl. A high reduction in water transfer efficiency over filtration time was also obtained. A higher pure water flux and water flux decline were observed in PRO mode than in FO mode. In FO mode, both the proportion of dilutive ICP and ηWT decreased, while the proportion of concentrative ECP increased over time. However, in PRO mode, the proportions of dilutive ECP and concentrative ICP increased, while ηWT decreased. Dilutive ICP was observed to have a significant negative effect on osmotic pressure in FO mode, while dilutive ECP was dominant in PRO mode.
- (c)
- The FO water transmission coefficient, ηWT, defined as Jw, exp/Jw, theoretical, provided a simpler way to understand and compare the efficiency of FO systems. In particular, it has more practical value in predicting FO water flux and performance under different conditions. In addition, model optimization to enhance its reliability and applicability will be studied in the future.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yong, J.S.; Phillip, W.A.; Elimelech, M. Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes. J. Membr. Sci. 2012, 392, 9–17. [Google Scholar] [CrossRef]
- Chae, S.H.; Rho, H.; Moon, S. Modeling study of the effects of intrinsic membrane parameters on dilutive external concentration polarization occurring during forward and pressure-retarded osmosis. Desalination 2024, 569, 117043. [Google Scholar] [CrossRef]
- Almansouri, H.E.; Edokali, M.; Abu Seman, M.N. Flat sheet thin film composite forward osmosis membranes for water treatment and purification: A review on modification techniques and concepts. Desalination Water Treat. 2024, 320, 100815. [Google Scholar] [CrossRef]
- Tang, C.Y.; She, Q.; Lay, W.C.L.; Wang, R.; Fane, A.G. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration. J. Membr. Sci. 2010, 354, 123–133. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, X.; Tang, C.Y.; Fu, Q.S.; Nie, S.Z. Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module. J. Membr. Sci. 2010, 348, 298–309. [Google Scholar] [CrossRef]
- Su, J.; Chung, T.S.; Helmer, B.J.; Wit, J.S. Understanding of low osmotic efficiency in forward osmosis: Experiments and modeling. Desalination 2013, 313, 156–165. [Google Scholar] [CrossRef]
- Nguyen, A.V.; Youhei, N.; Taira, H.; Taku, F. Forward osmosis membrane process: A review of temperature effects on system performance and membrane parameters from experimental studies. J. Environ. Chem. Eng. 2024, 12, 113429. [Google Scholar] [CrossRef]
- Gray, G.T.; McCutcheon, J.R.; Elimelech, M. Internal concentration polarization in forward osmosis” role of membrane orientation. Desalination 2006, 197, 1–8. [Google Scholar] [CrossRef]
- Tiraferri, A.; Malaguti, M.; Mohamed, M.; Giagnorio, M.; Aschmoneit, F.J. Stadardizing practices and flux predictions in membrane science via simplified equations and membrane characterization. Npj Clean Water 2023, 6, 58. [Google Scholar] [CrossRef]
- Rufuss, D.D.W.; Kapoor, V.; Arulvel, S.; Davies, P.A. Advances in forward osmosis (FO) technology for enhanced efficiency and output: A critical review. J. Clean. Prod. 2022, 356, 131769. [Google Scholar] [CrossRef]
- Suwaileh, W.; Zargar, M.; Abdala, A.; Siddiqui, F.A.; Khiadani, M.; Abdel-Wahab, A. Concentration polarization control in stand-alone and hybrid forward osmosis systems: Recent technological advancements and future directions. Chem. Eng. Res. Des. 2022, 178, 199–223. [Google Scholar] [CrossRef]
- Achilli, A.; Cath, T.Y.; Childress, A.E. Selection of inorganic-based draw solutions for forward osmosis applications. J. Membr. Sci. 2010, 364, 233–241. [Google Scholar] [CrossRef]
- Giagnorio, M.; Tanis, B.; Helix-Nielsen, C.; Aschmeneit, F.J. Influence of porous support structure and the possible presence of active layer defects on FO membrane behavior. Sep. Purif. Technol. 2024, 330, 125182. [Google Scholar] [CrossRef]
- Alihemati, Z.; Hashemifard, S.A.; Matsuura, T.; Ismail, A.F. On performance and anti-fouling properties of double-skinned thin film nanocomposite hollow fiber membranes in forward osmosis system. Chem. Eng. Res. Des. 2023, 193, 340–352. [Google Scholar] [CrossRef]
- Zhao, L.H.; Liu, Z.Y.; Soyekwo, F.; Liu, C.K.; Hu, Y.X.; Shan, Q.; Niu, J. Exploring the feasibility of novel double-skinned forward osmosis membranes with higher flux and superior anti-fouling properties for sludge thickening. Desalination 2022, 523, 115410. [Google Scholar] [CrossRef]
- Zhou, Z.Z.; Lee, J.Y. Evaluating the viability of double-skin thin film composite membranes in forward osmosis processes. J. Membr. Sci. 2016, 502, 65–75. [Google Scholar] [CrossRef]
- Wang, J.Y.; Tong, Z.Q.; Zhang, B.Q. Preparation of double-skinned polyamide composite membranes for enhanced forward osmosis desalination. Desalination Water Treat. 2020, 193, 159–168. [Google Scholar] [CrossRef]
- Edokali, M.; Mehrabi, M.; Cespedes, O.; Sun, C.; Collins, S.M.; Harbottle, D.; Menzel, R.; Hassanpour, A. Antifouling and stability enhancement of electrochemically modified reduced graphene oxide membranes for water desalination by forward osmosis. J. Water Process Eng. 2024, 59, 104809. [Google Scholar] [CrossRef]
- Wen, H.; Liu, C.K. Effect of the interlayer construction on the performances of the TFC-FO membranes: A review from materials perspective. Desalination 2022, 541, 116033. [Google Scholar] [CrossRef]
- Ibrar, I.; Yadav, S.; Altaee, A.; Hawari, A.; Nguyen, V.; Zhou, J. A novel empirical method for predicting concentration polarization in forward osmosis for single and multicomponent draw solutions. Desalination 2020, 494, 114668. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.K.; Liu, Y.Q.; Xiao, Q.Q.; Xu, S.C. Quantitative evaluation of concentration polarization under different operating conditions for forward osmosis process. Desalination 2016, 398, 106–113. [Google Scholar] [CrossRef]
- Ruiz-Garcíaa, A.; Tadeo, F.; Nuez, I. Role of permeability coefficients in salinity gradient energy generation by PRO systems with spiral wound membrane modules. Renew. Energy 2023, 215, 118954. [Google Scholar] [CrossRef]
- Tan, C.H.; Ng, H.Y. Revised external and internal concentration polarization models to improve flux prediction in forward osmosis process. Desalination 2013, 309, 125–140. [Google Scholar] [CrossRef]
- Rong, K.; Zhang, T.C.; Li, T. Forward osmosis: Definition and evaluation of FO water transmission coefficient. J. Water Process Eng. 2017, 20, 106–112. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Wang, X.; Ren, Y.W.; Pei, D.S. Preparation, Characterization and performance of fabric-reinforced FO composite membrane (in Chinese). New Chem. Mater. 2020, 48, 97–102. [Google Scholar]
- Zhou, A.; Zhang, T.C.; Yuan, Y. Performance of forward osmosis processes under different operating conditions and draw solutes. In Proceedings of the World Environmental and Water Resources Congress Crossing Boundaries 2012, Albuquerque, NM, USA, 20 May 2012; pp. 808–817. [Google Scholar]
- Opong, W.S.; Zydney, A.L. Effect of membrane structure and protein concentration on the osmotic reflection coefficient. J. Membr. Sci. 1992, 72, 277–292. [Google Scholar] [CrossRef]
- Staverman, A.J. The theory of measurement of osmotic pressure. Recl. Des Trav. Chim. Des Pays-Bas 1951, 70, 344–352. [Google Scholar] [CrossRef]
- Phillip, W.A.; Yong, J.S.; Elimelech, M. Reverse draw solute permeation in forward osmosis: Modeling and experiments. Environ. Sci. Technol. 2010, 44, 5170–5176. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, J.R.; Elimelech, M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J. Membr. Sci. 2006, 284, 237–247. [Google Scholar] [CrossRef]
- Kong, F.X.; Yang, H.W.; Wang, X.M.; Xie, Y.F. Rejection of nine haloacetic acids and coupled reverse draw solute permeation in forward osmosis. Desalination 2014, 314, 1–9. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, Z.N.; Yu, H.J.; Kang, G.D.; Jie, X.M.; Jin, Y.; Cao, Y.M. Investigation of internal concentration polarization reduction in forward osmosis membrane using nano-CaCO3 particles as sacrificial component. J. Membr. Sci. 2016, 497, 485–493. [Google Scholar] [CrossRef]
- Sani, A.G.; Najafi, H.; Azimi, S.S. CFD simulation of air-sparged slug flow in the flat-sheet membrane: A concentration polarization study. Sep. Purif. Technol. 2021, 270, 118816. [Google Scholar] [CrossRef]
- Bui, N.N.; Arena, J.T.; McCutcheon, J.R. Proper accounting of mass transfer resistances in forward osmosis: Improving the accuracy of model predictions of structural parameter. J. Membr. Sci. 2015, 492, 289–302. [Google Scholar] [CrossRef]
- Tan, J.X.; Ahmad, A.L.; Li, M.; Lau, W.J.; Rahim, M.H.A.; Weihs, G.A.F.; Liang, Y.Y. Modeling water flux in forward osmosis and pressure retarded osmosis accounting for reverse solute flux. J. Environ. Chem. Eng. 2025, 13, 115871. [Google Scholar] [CrossRef]
- Golgoli, M.; Khiadani, M.; Sen, T.K.; Razmjou, A.; Johns, M.L.; Zargar, M. Synergistic effects of microplastics and organic foulants on the performance of forward osmosis membranes. Chemosphere 2023, 311, 136906. [Google Scholar] [CrossRef] [PubMed]
- Arkhangelsky, E.; Wicaksana, F.; Al-Rabiah, A.A.; Al-Zahrani, S.M.; Wang, R. Understanding the interaction between biomacromolecules and their influence on forward osmosis process. Desalination 2016, 385, 12–23. [Google Scholar] [CrossRef]
- Xiao, P.; Li, J.; Ren, Y.W.; Wang, X. A comprehensive study of factors affecting fouling behavior in forward osmosis, Colloids and Surfaces A: Physicochem. Eng. Asp. 2016, 499, 163–172. [Google Scholar] [CrossRef]
- Huang, L.W.; McCutcheon, J.R. Impact of support layer pore size on performance of thin film composite membranes for forward osmosis. J. Membr. Sci. 2015, 483, 25–33. [Google Scholar] [CrossRef]
- Wei, J.; Qiu, C.Q.; Tang, C.Y.; Wang, R.; Fane, A.G. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes. J. Membr. Sci. 2011, 372, 292–302. [Google Scholar] [CrossRef]
- Lei, Z.; Wang, J.; Leng, L.W.; Yang, S.M.; Dzakpasu, M.; Li, Q.; Li, Y.Y.; Wang, X.C.; Chen, R. New insight into the membrane fouling of anaerobic membrane bioreactors treating sewage: Physicochemical and biological characterization of cake and gel layers. J. Membr. Sci. 2021, 632, 119383. [Google Scholar] [CrossRef]
- Lee, S.; Boo, C.; Elimelech, M.; Hong, S. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). J. Membr. Sci. 2010, 365, 34–39. [Google Scholar] [CrossRef]
- Boo, C.; Lee, S.; Elimelech, M.; Meng, Z.Y.; Hong, S. Colloidal fouling in forward osmosis: Role of reverse salt diffusion. J. Membr. Sci. 2012, 390–391, 277–284. [Google Scholar] [CrossRef]
Type of DS | DS Concentration (mol/L) | ∆πthe (bar) | Jexp (LMH) |
---|---|---|---|
NaCl | 0.5 | 24.78 | 9.75 |
0.75 | 37.16 | 12.18 | |
1 | 49.55 | 13.84 | |
1.25 | 61.94 | 15.25 | |
1.5 | 74.33 | 16.61 | |
2 | 99.1 | 16.83 | |
CaCl2 | 0.2 | 14.57 | 9.4 |
0.3 | 21.86 | 12.57 | |
0.5 | 36.44 | 15.24 | |
1 | 72.88 | 17.53 | |
1.5 | 109.32 | 20.24 | |
2 | 145.75 | 24.48 | |
MgCl2 | 0.2 | 14.81 | 8.88 |
0.3 | 22.22 | 9.29 | |
0.5 | 37.03 | 11.93 | |
1 | 74.07 | 17.88 | |
1.5 | 111.10 | 18.78 | |
2 | 148.13 | 20.98 | |
2.5 | 185.17 | 24.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, P.; Liu, L. A New Method for Quantitative Evaluation Concentration Polarization Under Different Conditions for the Forward Osmosis Process. Membranes 2025, 15, 223. https://doi.org/10.3390/membranes15080223
Xiao P, Liu L. A New Method for Quantitative Evaluation Concentration Polarization Under Different Conditions for the Forward Osmosis Process. Membranes. 2025; 15(8):223. https://doi.org/10.3390/membranes15080223
Chicago/Turabian StyleXiao, Ping, and Liang Liu. 2025. "A New Method for Quantitative Evaluation Concentration Polarization Under Different Conditions for the Forward Osmosis Process" Membranes 15, no. 8: 223. https://doi.org/10.3390/membranes15080223
APA StyleXiao, P., & Liu, L. (2025). A New Method for Quantitative Evaluation Concentration Polarization Under Different Conditions for the Forward Osmosis Process. Membranes, 15(8), 223. https://doi.org/10.3390/membranes15080223