Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (573)

Search Parameters:
Keywords = prefabricated structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8222 KiB  
Article
Structural Health Monitoring of Defective Carbon Fiber Reinforced Polymer Composites Based on Multi-Sensor Technology
by Wuyi Li, Heng Huang, Boli Wan, Xiwen Pang and Guang Yan
Sensors 2025, 25(17), 5259; https://doi.org/10.3390/s25175259 (registering DOI) - 24 Aug 2025
Abstract
Carbon fiber reinforced polymer (CFRP) composites are prone to developing localized material loss defects during long-term service, which can severely degrade their mechanical properties and structural reliability. To address this issue, this study proposes a multi-sensor synchronous monitoring method combining embedded fiber Bragg [...] Read more.
Carbon fiber reinforced polymer (CFRP) composites are prone to developing localized material loss defects during long-term service, which can severely degrade their mechanical properties and structural reliability. To address this issue, this study proposes a multi-sensor synchronous monitoring method combining embedded fiber Bragg grating (FBG) sensors and surface-mounted electrical resistance strain gauges. First, finite element simulations based on the three-dimensional Hashin damage criterion were performed to simulate the damage initiation and propagation processes in CFRP laminates, revealing the complete damage evolution mechanism from initial defect formation to progressive failure. The simulations were also used to determine the optimal sensor placement strategy. Subsequently, tensile test specimens with prefabricated defects were prepared in accordance with ASTM D3039, and multi-sensor monitoring techniques were employed to capture multi-parameter, dynamic data throughout the damage evolution process. The experimental results indicate that embedded FBG sensors and surface-mounted strain gauges can effectively monitor localized material loss defects within composite laminate structures. Strain gauge measurements showed uniform strain distribution at all measuring points in intact specimens (with deviations less than 5%). In contrast, in defective specimens, strain values at measurement points near the notch edge were significantly higher than those in regions farther from the notch, indicating that the prefabricated defect disrupted fiber continuity and induced stress redistribution. The combined use of surface-mounted strain gauges and embedded FBG sensors was demonstrated to accurately and reliably track the damage evolution behavior of defective CFRP laminates. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

21 pages, 7107 KiB  
Article
Study on Mesoscopic Evolution Mechanism and Influencing Factors of Concrete Blasting Damage Based on PFC
by Xueying Hu, Shuyang Yu, Yifei Li, Yihan Tang, Ying Sun and Pingping Gu
Buildings 2025, 15(17), 3000; https://doi.org/10.3390/buildings15173000 (registering DOI) - 23 Aug 2025
Abstract
In urban construction, the efficient demolition of concrete structures imposes high-precision requirements on blasting technology. The mesoscopic evolution mechanism of concrete blasting damage is the key to optimizing blasting parameters. In this study, a numerical model of concrete blasting is established using Particle [...] Read more.
In urban construction, the efficient demolition of concrete structures imposes high-precision requirements on blasting technology. The mesoscopic evolution mechanism of concrete blasting damage is the key to optimizing blasting parameters. In this study, a numerical model of concrete blasting is established using Particle Flow Code (PFC). By comparing it with an experimental model containing a blast hole and a horizontal single fissure, the rationality and reliability of the model in simulating blasting damage evolution are verified. On this basis, four groups of control variable schemes are designed (concrete particle size distribution, aggregate content, prefabricated fissure inclination angle, and fissure length) to systematically explore the effects of mesoscopic structures and macroscopic defects on blasting damage. The results show that larger concrete particles make it easier for damage cracks to avoid large particles, forming sparse and irregular crack networks. A higher aggregate content enhances the “obstruction-guidance” effect of aggregate distribution on damage. When the aggregate content is 40%, the vertical damage expansion is the most prominent, reaching up to 3.05 cm. Fissure inclination angle affects the damage direction by guiding the propagation path of stress waves. Fissures inclined at 30°~60° serve as preferential damage channels, while 90° vertical fissures make vertical damage more significant. An increased fissure length expands the damage range, and the damage degree is the highest for a 40 mm long fissure, being 1.29 times that of a 30 mm fissure. The research results reveal the mesoscopic evolution laws of concrete blasting damage, providing a theoretical basis for the optimization of engineering blasting parameters and safety control. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 11628 KiB  
Article
Optimized Mix Proportion and Microstructural Mechanism of Foamed Concrete for Internal Molds in Hollow Concrete Components
by Bing Luo, Xu Dong, Rong Li, Dunlei Su, Yuanhui Qiao, Lingqiang Meng and Chenhao Zhang
Coatings 2025, 15(8), 976; https://doi.org/10.3390/coatings15080976 - 21 Aug 2025
Viewed by 180
Abstract
To address the issues of numerous influencing factors on material quality, difficulty in determining the optimal mix proportion, and the need to clarify the formation mechanism when foam concrete is used as an internal mold for prefabricated components, this study conducted orthogonal tests [...] Read more.
To address the issues of numerous influencing factors on material quality, difficulty in determining the optimal mix proportion, and the need to clarify the formation mechanism when foam concrete is used as an internal mold for prefabricated components, this study conducted orthogonal tests to investigate the influence laws of fly ash content, foam content, foaming agent dilution ratio, and water–binder ratio on the dry density and compressive strength of foam concrete, and determined the optimal mix proportion via analysis of variance (ANOVA). Additionally, scanning electron microscopy (SEM) tests were performed to analyze the effects of these four factors on the microscopic pore morphology of foam concrete from a microscopic perspective, thereby revealing its formation mechanism, and engineering applications were carried out. The results show that the primary-to-secondary order of factors affecting the dry density and compressive strength of foam concrete is as follows: foam content (B) > water–binder ratio (D) > foaming agent dilution ratio (C) > fly ash content (A). The optimal mix proportion is 5% fly ash content, 18% foam content, a 30-fold foaming agent dilution ratio, and a water–binder ratio of 0.55. Under this mix proportion, the pore size of foam concrete ranges from 200 μm to 500 μm with uniform distribution, and the pore spacing is between 20 μm and 30 μm, with almost no connected pores. When the foam concrete slurry sets and hardens, hydration products such as calcium silicate hydrate (C-S-H) gel, calcium hydroxide, ettringite (AFt), and monosulfate aluminate (AFm) are generated around the bubbles. The mechanical properties of foam concrete are afforded by the combined action of these hydration products and the pore structure. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

13 pages, 2082 KiB  
Article
Comparison of Fracture Resistance and Microleakage Properties of Two Different Prefabricated Zirconia Crowns After Thermocycling: An In Vitro Study
by Nazile Pehlivan, Nurhan Öztaş Kırmızı and Menekşe Alim
Biomimetics 2025, 10(8), 538; https://doi.org/10.3390/biomimetics10080538 - 16 Aug 2025
Viewed by 332
Abstract
Biomimetic restorative treatments in pediatric dentistry increase the longevity of the restoration compared to traditional methods and aim to preserve the natural tooth structure. Prefabricated zirconia crowns have been developed as aesthetic alternatives to stainless steel crowns for full-coronal restorations of primary teeth. [...] Read more.
Biomimetic restorative treatments in pediatric dentistry increase the longevity of the restoration compared to traditional methods and aim to preserve the natural tooth structure. Prefabricated zirconia crowns have been developed as aesthetic alternatives to stainless steel crowns for full-coronal restorations of primary teeth. This study aimed to compare the fracture resistance and microleakage of two different posterior zirconia crown brands—NuSmile® (USA) and ProfZrCrown® (Turkey)—cemented with either conventional glass ionomer cement (GIC) or resin-modified glass ionomer cement (RMGIC). Eighty extracted primary molars were divided into four groups (n = 20). Crowns were cemented with Ketac™ Cem Radiopaque (GIC) or Ketac™ Cem Plus (RMGIC), in accordance with the manufacturers’ instructions, and then subjected to thermocycling. Fracture resistance was tested on 40 samples by applying an increasing compressive load until failure, with values recorded in Newtons (N). The remaining 40 samples were immersed in basic fuchsin dye for microleakage testing and evaluated under a stereomicroscope at 30× magnification. The results revealed that the ProfZrCrown®/RMGIC group exhibited significantly higher fracture resistance compared to the NuSmile®/RMGIC group (p < 0.05). No statistically significant differences were found among the other groups. Although no significant differences in microleakage were observed among the groups (p > 0.05), crowns cemented with GIC demonstrated higher microleakage levels. Within the limitations of this in vitro study, ProfZrCrown® may be considered a promising alternative for aesthetic posterior restorations in pediatric dentistry. Full article
(This article belongs to the Special Issue Biomimetic Bonded Restorations for Dental Applications: 2nd Edition)
Show Figures

Figure 1

20 pages, 6960 KiB  
Article
Silicon-Based Solar Brick for Textile Ceramic Technology
by P. Casariego, V. Sarrablo, R. Barrientos and S. Santamaria-Fernandez
Ceramics 2025, 8(3), 106; https://doi.org/10.3390/ceramics8030106 - 15 Aug 2025
Viewed by 283
Abstract
Recent advances in prefabricated construction have enabled modular systems offering structural performance, rapid assembly, and design flexibility. Textile Ceramic Technology (TCT) integrates ceramic elements within a stainless-steel mesh, creating versatile architectural envelopes for façades, roofs, and pavements. This study investigates the integration of [...] Read more.
Recent advances in prefabricated construction have enabled modular systems offering structural performance, rapid assembly, and design flexibility. Textile Ceramic Technology (TCT) integrates ceramic elements within a stainless-steel mesh, creating versatile architectural envelopes for façades, roofs, and pavements. This study investigates the integration of silicon photovoltaic (PV) modules into TCT to develop an industrialized Building-Integrated Photovoltaics (BIPV) system that maintains energy efficiency and visual coherence. Three full-scale solar brick prototypes are presented, detailing design objectives, experimental results, and conclusions. The first prototype demonstrated the feasibility of scaling small silicon PV units with good efficiency but limited aesthetic integration. The second embedded PV cells within ceramic bricks, improving aesthetics while maintaining electrical performance. Durability tests—including humidity, temperature cycling, wind, and hail impact—confirmed system stability, though structural reinforcement is needed for impact resistance. The third prototype outlines future work focusing on modularity and industrial scalability. Results confirm the technical viability of silicon PV integration in TCT, enabling active façades that generate renewable energy without compromising architectural freedom or aesthetics. This research advances industrialized, sustainable building envelopes that reduce environmental impact through distributed energy generation. Full article
Show Figures

Figure 1

23 pages, 1493 KiB  
Review
Prefabricated and Modularized Residential Construction: A Review of Present Status, Opportunities, and Future Challenges
by Sunai Kim
Buildings 2025, 15(16), 2889; https://doi.org/10.3390/buildings15162889 - 15 Aug 2025
Viewed by 576
Abstract
Many countries worldwide are facing a housing crisis, marked by a shortage of affordable housing. To respond to this growing crisis, prefabricated residential construction is gaining popularity due to cost savings in mass production, faster construction times, improved quality control, and sustainability considerations. [...] Read more.
Many countries worldwide are facing a housing crisis, marked by a shortage of affordable housing. To respond to this growing crisis, prefabricated residential construction is gaining popularity due to cost savings in mass production, faster construction times, improved quality control, and sustainability considerations. This study provides a critical review of the available literature within the prefabricated and modular residential construction industry to assess its present status and to identify opportunities and challenges. The literature was categorized into the subfields of architecture, sustainability, structural, energy, environment, factory build, installation, policy, possibilities and challenges, and case studies. A detailed summary is provided for each subfield. This study aims to provide insights into the prefabricated and modular residential construction industry to fill the knowledge gap, discover possibilities, and address any challenges to create a clear pathway for implementation. Full article
Show Figures

Figure 1

25 pages, 5273 KiB  
Article
Advanced Simulation System for Orbitozygomatic Fracture Reconstruction: Multicenter Validation of a Novel Training and Objective Assessment Platform
by Enrique Vargas, Rodrigo Díaz, Juan Pablo Vargas, Andrés Campolo, Rodrigo Villanueva, Carlos Cortéz and Salvador Valladares-Pérez
Craniomaxillofac. Trauma Reconstr. 2025, 18(3), 34; https://doi.org/10.3390/cmtr18030034 - 14 Aug 2025
Viewed by 201
Abstract
Orbitozygomatic fractures represent a complex surgical challenge. Given the urgent need for validated educational tools that surpass traditional learning models, this multicenter study developed and validated a novel synthetic advanced simulation model for the reconstruction of these fractures. The model integrates platinum-cured silicones [...] Read more.
Orbitozygomatic fractures represent a complex surgical challenge. Given the urgent need for validated educational tools that surpass traditional learning models, this multicenter study developed and validated a novel synthetic advanced simulation model for the reconstruction of these fractures. The model integrates platinum-cured silicones and 3D-printed bony structures with prefabricated fractures, accurately replicating the anatomy and tactile properties of soft and hard tissues, including simulated herniation of orbital contents. To our knowledge, it is the only available synthetic model combining both tissue types for this training. Ten participants (faculty and residents) completed simulated procedures. Technical performance was assessed using a hand motion tracking system, the global OSATS (Objective Structured Assessment of Technical Skills) scale, and a task-specific error measurement (Specific Fault Measurement, SFM) scale. Statistically significant differences (p = 0.021) were observed in operative time and error count between novices and experts, confirming the model’s construct validity. Faculty completed the surgery in significantly less time (mean 18.16 min vs. 37.01 min for residents) and made fewer errors (mean 12.25 vs. 53.25). Face and content validity were strongly supported by participant surveys, with 100% stating they would use the simulator to practice before real surgery. A strong inverse correlation (r = –0.786, p = 0.021) between OSATS and SFM scores demonstrated concurrent validity. This model enables ethical, repeatable, and cost-effective training, supporting its implementation into surgical curricula to enhance competence and provide objective skill assessment in orbitozygomatic trauma surgery. Full article
(This article belongs to the Special Issue Innovation in Oral- and Cranio-Maxillofacial Reconstruction)
Show Figures

Figure 1

22 pages, 13829 KiB  
Article
MBAV: A Positional Encoding-Based Lightweight Network for Detecting Embedded Parts in Prefabricated Composite Slabs
by Fei Yu, Liangyu Yuan, Qiang Jin and Di Hu
Buildings 2025, 15(16), 2850; https://doi.org/10.3390/buildings15162850 - 12 Aug 2025
Viewed by 284
Abstract
The accurate detection of embedded parts and truss rebars in prefabricated concrete composite slabs before casting is essential in ensuring structural safety and reliability. However, traditional inspection methods are time-consuming and lack real-time monitoring capabilities, limiting their suitability for modern prefabrication workflows. To [...] Read more.
The accurate detection of embedded parts and truss rebars in prefabricated concrete composite slabs before casting is essential in ensuring structural safety and reliability. However, traditional inspection methods are time-consuming and lack real-time monitoring capabilities, limiting their suitability for modern prefabrication workflows. To address these challenges, this study proposes MBAV, a lightweight object detection model for the quality inspection of prefabricated concrete composite slabs. A dedicated dataset was built to compensate for the absence of public data and to provide sufficient training samples. The proposed model integrates positional encoding into a lightweight architecture to enhance its ability to capture multiscale features in complex environments. Ablation and comparative experiments on the self-constructed dataset show that MBAV achieves an mAP50 of 91% with a model size of only 5.7 MB—8% smaller than comparable models. These results demonstrate that MBAV is accurate and efficient, with its lightweight design showing strong potential for real-time quality inspection in prefabricated concrete production. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 9395 KiB  
Article
Experimental Investigation of the Seismic Behavior of a Multi-Story Steel Modular Building Using Shaking Table Tests
by Xinxin Zhang, Yucong Nie, Kehao Qian, Xinyu Xie, Mengyang Zhao, Zhan Zhao and Xiang Yuan Zheng
Buildings 2025, 15(15), 2661; https://doi.org/10.3390/buildings15152661 - 28 Jul 2025
Viewed by 363
Abstract
A steel modular building is a highly prefabricated form of steel construction. It offers rapid assembly, a high degree of industrialization, and an environmentally friendly construction site. To promote the application of multi-story steel modular buildings in earthquake fortification zones, it is imperative [...] Read more.
A steel modular building is a highly prefabricated form of steel construction. It offers rapid assembly, a high degree of industrialization, and an environmentally friendly construction site. To promote the application of multi-story steel modular buildings in earthquake fortification zones, it is imperative to conduct in-depth research on their seismic behavior. In this study, a seven-story modular steel building is investigated using shaking table tests. Three seismic waves (artificial ground motion, Tohoku wave, and Tianjin wave) are selected and scaled to four intensity levels (PGA = 0.035 g, 0.1 g, 0.22 g, 0.31 g). It is found that no residual deformation of the structure is observed after tests, and its stiffness degradation ratio is 7.65%. The largest strains observed during the tests are 540 × 10−6 in beams, 1538 × 10−6 in columns, and 669 × 10−6 in joint regions, all remaining below a threshold value of 1690 × 10−6. Amplitudes and frequency characteristics of the acceleration responses are significantly affected by the characteristics of the seismic waves. However, the acceleration responses at higher floors are predominantly governed by the structure’s low-order modes (first-mode and second-mode), with the corresponding spectra containing only a single peak. When the predominant frequency of the input ground motion is close to the fundamental natural frequency of the modular steel structure, the acceleration responses will be significantly amplified. Overall, the structure demonstrates favorable seismic resistance. Full article
Show Figures

Figure 1

24 pages, 5578 KiB  
Article
Simplified Frequency Estimation of Prefabricated Electric Poles Through Regression-Based Modal Analysis
by Hakan Erkek, Ibrahim Karataş, Doğucan Resuloğulları, Emriye Çınar Resuloğullari and Şahin Tolga Güvel
Appl. Sci. 2025, 15(15), 8179; https://doi.org/10.3390/app15158179 - 23 Jul 2025
Viewed by 332
Abstract
Prefabricated construction elements are widely used in both large- and small-scale projects, serving structural and infrastructural purposes. One notable application is in power transmission poles, which ensure the safe and efficient delivery of electricity. Despite their importance, limited research exists on the structural [...] Read more.
Prefabricated construction elements are widely used in both large- and small-scale projects, serving structural and infrastructural purposes. One notable application is in power transmission poles, which ensure the safe and efficient delivery of electricity. Despite their importance, limited research exists on the structural and modal behavior of reinforced concrete power poles. This study presents a comprehensive modal analysis of such poles, focusing on how factors like modulus of elasticity, height, and lower/upper inner and outer diameters influence dynamic performance. A total of 3240 finite element models were created, with reinforced concrete poles partially embedded in the ground. Modal analyses were performed to evaluate natural frequencies, mode shapes, and modal mass participation ratios. Results showed that increasing the modulus of elasticity raised frequency values, while greater pole height decreased them. Enlarging the lower inner and upper outer radii also led to higher frequencies. Regression analysis yielded high accuracy, with R2 values exceeding 90% and an average error rate of about 6%. The study provides empirical formulas that allow for quick frequency estimations without the need for detailed finite element modeling, as long as the material and geometric properties remain consistent. The approach can be extended to other prefabricated structural elements. Full article
Show Figures

Figure 1

18 pages, 4910 KiB  
Article
Experiment and Numerical Study on the Flexural Behavior of a 30 m Pre-Tensioned Concrete T-Beam with Polygonal Tendons
by Bo Yang, Chunlei Zhang, Hai Yan, Ding-Hao Yu, Yaohui Xue, Gang Li, Mingguang Wei, Jinglin Tao and Huiteng Pei
Buildings 2025, 15(15), 2595; https://doi.org/10.3390/buildings15152595 - 22 Jul 2025
Viewed by 395
Abstract
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical [...] Read more.
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical simulation research on a 30 m pre-tensioned, prestressed concrete T-beam with polygonal tendons practically used in engineering. The full-scale experiment applied symmetrical four-point bending to create a pure bending region and used embedded strain gauges, surface sensors, and optical 3D motion capture systems to monitor the beam’s internal strain, surface strain distribution, and three-dimensional displacement patterns during loading. The experiment observed that the test beam underwent elastic, crack development, and failure phases. The design’s service-load bending moment induced a deflection of 18.67 mm (below the 47.13 mm limit). Visible cracking initiated under a bending moment of 7916.85 kN·m, which exceeded the theoretical cracking moment of 5928.81 kN·m calculated from the design parameters. Upon yielding of the bottom steel reinforcement, the maximum of the crack width reached 1.00 mm, the deflection in mid-span measured 148.61 mm, and the residual deflection after unloading was 10.68 mm. These results confirmed that the beam satisfied design code requirements for serviceability stiffness and crack control, exhibiting favorable elastic recovery characteristics. Numerical simulations using ABAQUS further verified the structural performance of the T-beam. The finite element model accurately captured the beam’s mechanical response and verified its satisfactory ductility, highlighting the applicability of this beam type in bridge engineering. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

22 pages, 3746 KiB  
Article
Shear Performance of UHPC-NC Composite Structure Interface Treated with Retarder: Quantification by Fractal Dimension and Optimization of Process Parameters
by Runcai Weng, Zhaoxiang He, Jiajie Liu, Bin Lei, Linhai Huang, Jiajing Xu, Lingfei Liu and Jie Xiao
Buildings 2025, 15(15), 2591; https://doi.org/10.3390/buildings15152591 - 22 Jul 2025
Cited by 5 | Viewed by 402
Abstract
Prefabricated Ultra-High-Performance Concrete (UHPC) and cast-in-place Normal Concrete (NC) composite members are increasingly used in bridge engineering because they combine high performance with cost-effectiveness. The bond at the UHPC-NC interface is critical as it directly impacts the composite structure’s safety. This study employed [...] Read more.
Prefabricated Ultra-High-Performance Concrete (UHPC) and cast-in-place Normal Concrete (NC) composite members are increasingly used in bridge engineering because they combine high performance with cost-effectiveness. The bond at the UHPC-NC interface is critical as it directly impacts the composite structure’s safety. This study employed 3D laser scanning acquired the UHPC substrate geometry, utilized fractal dimension analysis to quantify the interface roughness, and adopted the slant shear test to evaluate the effects of retarder application mass and hydration delay duration on roughness and bond strength. The research results indicate that the failure modes of UHPC-NC specimens can be categorized into interface shear failure and NC splitting tensile failure. With the extension of hydration delay duration, both the interface roughness and bond strength show a decreasing trend. The influence of retarder dosage on interface roughness and bond strength exhibits a threshold effect. This study also confirms the effectiveness of fractal dimension as a quantitative tool for characterizing the macroscopic roughness features of the bonding interface. The findings of this paper provide a solid theoretical basis and quantitative support for optimizing key process parameters such as retarder dosage and precisely controlling hydration delay duration, offering significant engineering guidance for enhancing the interface bonding performance of UHPC-NC composite structures. Full article
(This article belongs to the Special Issue Low Carbon and Green Materials in Construction—3rd Edition)
Show Figures

Figure 1

19 pages, 2239 KiB  
Article
Experimental Study on Mechanical Differences Between Prefabricated and Cast-In Situ Tunnel Linings Based on a Load-Structure Model
by Li-Ming Wu, Hong-Kun Li, Feng Gao, Zi-Jian Wang, Bin Zhang, Wen-Jie Luo and Jun-Jie Li
Buildings 2025, 15(14), 2522; https://doi.org/10.3390/buildings15142522 - 18 Jul 2025
Viewed by 301
Abstract
With the accelerated development of urban underground spaces, prefabricated tunnel linings have become a research focus due to their advantages in construction efficiency and cost effectiveness. However, issues such as stress concentration at joints and insufficient overall stability hinder their broader application. This [...] Read more.
With the accelerated development of urban underground spaces, prefabricated tunnel linings have become a research focus due to their advantages in construction efficiency and cost effectiveness. However, issues such as stress concentration at joints and insufficient overall stability hinder their broader application. This study investigates a cut-and-cover prefabricated tunnel project in the Chongqing High-Tech Zone through scale model tests and numerical simulations to systematically compare the mechanical behaviors of cast-in situ linings and three-segment prefabricated linings under surrounding rock loads. The experimental results show that the ultimate bearing capacity of the prefabricated lining is 15.3% lower than that of the cast-in situ lining, with asymmetric failure modes and cracks concentrated near joint regions. Numerical simulations further reveal the influence of joint stiffness on structural performance: when the joint stiffness is 30 MN·m/rad, the bending moment of the segmented lining decreases by 37.7% compared to the cast-in situ lining, while displacement increments remain controllable. By optimising joint pre-tightening forces and stiffness parameters, prefabricated linings can achieve stability comparable to cast-in situ structures while retaining construction efficiency. This research provides theoretical and technical references for the design and construction of open-cut prefabricated tunnel linings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

29 pages, 7122 KiB  
Article
Experimental Study on Two Types of Novel Prefabricated Counterfort Retaining Wall: Performance Characteristics and Earth Pressure Reduction Effect of Geogrids
by Ao Luo, Yutao Feng, Detan Liu, Junjie Wang, Shi Wang, Huikun Ling and Shiyuan Huang
Coatings 2025, 15(7), 841; https://doi.org/10.3390/coatings15070841 - 18 Jul 2025
Viewed by 364
Abstract
Conventional cast-in-place counterfort retaining walls, while widely used to support the fill body in geotechnical engineering cases, suffer from extended construction cycles and environmental impacts that constrain their usage more widely. In this study, in order to overcome these limitations, the performance of [...] Read more.
Conventional cast-in-place counterfort retaining walls, while widely used to support the fill body in geotechnical engineering cases, suffer from extended construction cycles and environmental impacts that constrain their usage more widely. In this study, in order to overcome these limitations, the performance of two types of innovative prefabricated counterfort retaining wall system—a monolithic design and a modular design—was investigated through physical modeling. The results reveal that failure mechanisms are fundamentally governed by the distribution of stress at the connection interfaces. The monolithic system, with fewer connections, concentrates stress and is more vulnerable to cracking at the primary joints. In contrast, the modular system disperses loads across numerous connections, reducing localized stress. Critically, this analysis identified a construction-dependent failure mode: incomplete contact between the foundation and the base slab induces severe bending moments that can lead to catastrophic failure. Furthermore, this study shows that complex stress states due to backfill failure can induce detrimental tensile forces on the wall structure. To address this, a composite soil material–wall structure system incorporating geogrid reinforcement was developed. This system significantly enhances the backfill’s bearing capacity and mitigates adverse loading. Based on the comprehensive analysis of settlement and structural performance, the optimal configuration involves concentrating geogrid layers in the upper third of section of the backfill, with sparser distribution below. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

17 pages, 678 KiB  
Article
The Influence Mechanisms of Carbon Emissions for Prefabricated Buildings in the Context of China’s Urban Renewal
by Shuyan Zhao, Xinru Qu, Xiaojing Zhao and Yongwei Zhang
Buildings 2025, 15(14), 2508; https://doi.org/10.3390/buildings15142508 - 17 Jul 2025
Viewed by 396
Abstract
Prefabricated buildings, known for their energy efficiency, environmental benefits, and industrial advantages, play a crucial role in urban renewal. Previous studies on the carbon emissions of prefabricated buildings mainly concentrate on the assessment and auditing of carbon emissions at the materialization and construction [...] Read more.
Prefabricated buildings, known for their energy efficiency, environmental benefits, and industrial advantages, play a crucial role in urban renewal. Previous studies on the carbon emissions of prefabricated buildings mainly concentrate on the assessment and auditing of carbon emissions at the materialization and construction phase. Few of them have analyzed the carbon emissions at the operational phase or the influence mechanisms of prefabricated buildings on carbon emissions in urban renewal. Thus, this paper explored the factors and mechanisms that influence carbon emissions in prefabricated buildings in China’s urban renewal. Firstly, the factors that influence the carbon emissions of prefabricated buildings in China’s urban renewal were identified through meta-analysis. Secondly, the theoretical model was developed to illustrate the influence paths of prefabricated buildings on the carbon emissions of urban renewal. Finally, the structural equation model (SEM) was used to test the hypotheses in the theoretical model using data collected from questionnaires. The results show that the carbon emission reduction potential of prefabricated buildings is influenced by four aspects, namely, socioeconomic factors, policy regulations, building operation, and materialization. Policy regulations have the greatest impact on the carbon emissions of prefabricated buildings. They not only directly affect the carbon emissions of urban renewal but also influence carbon emissions indirectly through the social economy aspect. The direct impact of social economy on the carbon emissions of prefabricated buildings is insignificant, while it can indirectly affect the carbon emission reduction in prefabricated buildings by influencing building operations and the materialization stage. The findings could help provide strategies for prefabrication and enhance the reduction potential of urban renewal. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop