Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,096)

Search Parameters:
Keywords = power quality improvement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3543 KiB  
Review
Enhancing the Performance of Active Distribution Grids: A Review Using Metaheuristic Techniques
by Jesús Daniel Dávalos Soto, Daniel Guillen, Luis Ibarra, José Ezequiel Santibañez-Aguilar, Jesús Elias Valdez-Resendiz, Juan Avilés, Meng Yen Shih and Antonio Notholt
Energies 2025, 18(15), 4180; https://doi.org/10.3390/en18154180 (registering DOI) - 6 Aug 2025
Abstract
The electrical power system is composed of three essential sectors, generation, transmission, and distribution, with the latter being crucial for the overall efficiency of the system. Enhancing the capabilities of active distribution networks involves integrating various advanced technologies such as distributed generation units, [...] Read more.
The electrical power system is composed of three essential sectors, generation, transmission, and distribution, with the latter being crucial for the overall efficiency of the system. Enhancing the capabilities of active distribution networks involves integrating various advanced technologies such as distributed generation units, energy storage systems, banks of capacitors, and electric vehicle chargers. This paper provides an in-depth review of the primary strategies for incorporating these technologies into the distribution network to improve its reliability, stability, and efficiency. It also explores the principal metaheuristic techniques employed for the optimal allocation of distributed generation units, banks of capacitors, energy storage systems, electric vehicle chargers, and network reconfiguration. These techniques are essential for effectively integrating these technologies and optimizing the active distribution network by enhancing power quality and voltage level, reducing losses, and ensuring operational indices are maintained at optimal levels. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

32 pages, 1435 KiB  
Review
Smart Safety Helmets with Integrated Vision Systems for Industrial Infrastructure Inspection: A Comprehensive Review of VSLAM-Enabled Technologies
by Emmanuel A. Merchán-Cruz, Samuel Moveh, Oleksandr Pasha, Reinis Tocelovskis, Alexander Grakovski, Alexander Krainyukov, Nikita Ostrovenecs, Ivans Gercevs and Vladimirs Petrovs
Sensors 2025, 25(15), 4834; https://doi.org/10.3390/s25154834 - 6 Aug 2025
Abstract
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused [...] Read more.
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused inspection platforms, highlighting how modern helmets leverage real-time visual SLAM algorithms to map environments and assist inspectors. A systematic literature search was conducted targeting high-impact journals, patents, and industry reports. We classify helmet-integrated camera systems into monocular, stereo, and omnidirectional types and compare their capabilities for infrastructure inspection. We examine core VSLAM algorithms (feature-based, direct, hybrid, and deep-learning-enhanced) and discuss their adaptation to wearable platforms. Multi-sensor fusion approaches integrating inertial, LiDAR, and GNSS data are reviewed, along with edge/cloud processing architectures enabling real-time performance. This paper compiles numerous industrial use cases, from bridges and tunnels to plants and power facilities, demonstrating significant improvements in inspection efficiency, data quality, and worker safety. Key challenges are analyzed, including technical hurdles (battery life, processing limits, and harsh environments), human factors (ergonomics, training, and cognitive load), and regulatory issues (safety certification and data privacy). We also identify emerging trends, such as semantic SLAM, AI-driven defect recognition, hardware miniaturization, and collaborative multi-helmet systems. This review finds that VSLAM-equipped smart helmets offer a transformative approach to infrastructure inspection, enabling real-time mapping, augmented awareness, and safer workflows. We conclude by highlighting current research gaps, notably in standardizing systems and integrating with asset management, and provide recommendations for industry adoption and future research directions. Full article
Show Figures

Figure 1

29 pages, 3371 KiB  
Article
The Impact of a Mobile Laboratory on Water Quality Assessment in Remote Areas of Panama
by Jorge E. Olmos Guevara, Kathia Broce, Natasha A. Gómez Zanetti, Dina Henríquez, Christopher Ellis and Yazmin L. Mack-Vergara
Sustainability 2025, 17(15), 7096; https://doi.org/10.3390/su17157096 - 5 Aug 2025
Abstract
Monitoring water quality is crucial for achieving clean water and sanitation goals, particularly in remote areas. The project “Morbidity vs. Water Quality for Human Consumption in Tonosí: A Pilot Study” aimed to enhance water quality assessments in Panama using advanced analytical techniques to [...] Read more.
Monitoring water quality is crucial for achieving clean water and sanitation goals, particularly in remote areas. The project “Morbidity vs. Water Quality for Human Consumption in Tonosí: A Pilot Study” aimed to enhance water quality assessments in Panama using advanced analytical techniques to assess volatile organic compounds, heavy metals, and microbiological pathogens. To support this, the Technical Unit for Water Quality (UTECH) was established, featuring a novel mobile laboratory with cutting-edge technology for accurate testing, minimal chemical reagent use, reduced waste generation, and equipped with a solar-powered battery system. The aim of this paper is to explore the design, deployment, and impact of the UTECH. Furthermore, this study presents results from three sampling points in Tonosí, where several parameters exceeded regulatory limits, demonstrating the capabilities of the UTECH and highlighting the need for ongoing monitoring and intervention. The study also assesses the environmental, social, and economic impacts of the UTECH in alignment with the Sustainable Development Goals and national initiatives. Finally, a SWOT analysis illustrates the UTECH’s potential to improve water quality assessments in Panama while identifying areas for sustainable growth. The study showcases the successful integration of advanced mobile laboratory technologies into water quality monitoring, contributing to sustainable development in Panama and offering a replicable model for similar initiatives in other regions. Full article
Show Figures

Figure 1

22 pages, 3601 KiB  
Article
Support-Vector-Regression-Based Intelligent Control Strategy for DFIG Wind Turbine Systems
by Farhat Nasim, Shahida Khatoon, Ibraheem Nasiruddin, Mohammad Shahid, Shabana Urooj and Basel Bilal
Machines 2025, 13(8), 687; https://doi.org/10.3390/machines13080687 - 5 Aug 2025
Abstract
Achieving sustainable energy goals requires efficient integration of renewables like wind energy. Doubly fed induction generator (DFIG)-based wind turbine systems (WTSs) operate efficiently across a range of speeds, making them well-suited for modern renewable energy systems. However, sudden wind speed variations can cause [...] Read more.
Achieving sustainable energy goals requires efficient integration of renewables like wind energy. Doubly fed induction generator (DFIG)-based wind turbine systems (WTSs) operate efficiently across a range of speeds, making them well-suited for modern renewable energy systems. However, sudden wind speed variations can cause power oscillations, rotor speed fluctuations, and voltage instability. Traditional proportional–integral (PI) controllers struggle with such nonlinear, rapidly changing scenarios. A control approach utilizing support vector regression (SVR) is proposed for the DFIG wind turbine system. The SVR controller manages both active and reactive power by simultaneously controlling the rotor- and grid-side converters (RSC and GSC). Simulations under a sudden wind speed variation from 10 to 12 m per second show the SVR approach reduces settling time significantly (up to 70.3%), suppresses oscillations in rotor speed, torque, and power output, and maintains over 97% DC-link voltage stability. These improvements enhance power quality, reliability, and system performance, demonstrating the SVR controller’s superiority over conventional PI methods for variable-speed wind energy systems. Full article
(This article belongs to the Special Issue Modelling, Design and Optimization of Wind Turbines)
Show Figures

Figure 1

21 pages, 5391 KiB  
Article
Application of Computer Simulation to Evaluate Performance Parameters of the Selective Soldering Process
by Maciej Dominik and Marek Kęsek
Appl. Sci. 2025, 15(15), 8649; https://doi.org/10.3390/app15158649 (registering DOI) - 5 Aug 2025
Abstract
The growing complexity of production systems in the technology sector demands advanced tools to ensure efficiency, flexibility, and cost-effectiveness. This study presents the development of a simulation model for a selective soldering line at a technology manufacturing company in Poland, created during an [...] Read more.
The growing complexity of production systems in the technology sector demands advanced tools to ensure efficiency, flexibility, and cost-effectiveness. This study presents the development of a simulation model for a selective soldering line at a technology manufacturing company in Poland, created during an engineering internship. Using FlexSim 24.2 software, the real production process was replicated, including input/output queues, manual insertion (MI) stations, soldering machines, and quality control points. Special emphasis was placed on implementing dynamic process logic via ProcessFlow, enabling detailed modeling of token flow and system behavior. Through experimentation, various configurations were tested to optimize process time and the number of soldering pallets in circulation. The results revealed that reducing pallets from 12 to 8 maintains process continuity while offering cost savings without impacting performance. An intuitive operator panel was also developed, allowing users to adjust parameters and monitor outcomes in real time. The project demonstrates that simulation not only supports operational decision-making and resource planning but also enhances interdisciplinary communication by visually conveying complex workflows. Ultimately, the study confirms that simulation modeling is a powerful and adaptable approach to production optimization, contributing to long-term strategic improvements and innovation in technologically advanced manufacturing environments. Full article
(This article belongs to the Special Issue Integration of Digital Simulation Models in Smart Manufacturing)
Show Figures

Figure 1

36 pages, 5151 KiB  
Article
Flexibility Resource Planning and Stability Optimization Methods for Power Systems with High Penetration of Renewable Energy
by Haiteng Han, Xiangchen Jiang, Yang Cao, Xuanyao Luo, Sheng Liu and Bei Yang
Energies 2025, 18(15), 4139; https://doi.org/10.3390/en18154139 - 4 Aug 2025
Abstract
With the accelerating global transition toward sustainable energy systems, power grids with a high share of renewable energy face increasing challenges due to volatility and uncertainty, necessitating advanced flexibility resource planning and stability optimization strategies. This paper presents a comprehensive distribution network planning [...] Read more.
With the accelerating global transition toward sustainable energy systems, power grids with a high share of renewable energy face increasing challenges due to volatility and uncertainty, necessitating advanced flexibility resource planning and stability optimization strategies. This paper presents a comprehensive distribution network planning framework that coordinates and integrates multiple types of flexibility resources through joint optimization and network reconfiguration to enhance system adaptability and operational resilience. A novel virtual network coupling modeling approach is proposed to address topological constraints during network reconfiguration, ensuring radial operation while allowing rapid topology adjustments to isolate faults and restore power supply. Furthermore, to mitigate the uncertainty and fault risks associated with extreme weather events, a CVaR-based risk quantification framework is incorporated into a bi-level optimization model, effectively balancing investment costs and operational risks under uncertainty. In this model, the upper-level planning stage optimizes the siting and sizing of flexibility resources, while the lower-level operational stage coordinates real-time dispatch strategies through demand response, energy storage operation, and dynamic network reconfiguration. Finally, a hybrid SA-PSO algorithm combined with conic programming is employed to enhance computational efficiency while ensuring high solution quality for practical system scales. Case study analyses demonstrate that, compared to single-resource configurations, the proposed coordinated planning of multiple flexibility resources can significantly reduce the total system cost and markedly improve system resilience under fault conditions. Full article
(This article belongs to the Special Issue Analysis and Control of Power System Stability)
22 pages, 2103 KiB  
Article
Air-STORM: Informed Decision Making to Improve the Success of Solar-Powered Air Quality Samplers in Challenging Environments
by Kyan Kuo Shlipak, Julian Probsdorfer and Christian L’Orange
Sensors 2025, 25(15), 4798; https://doi.org/10.3390/s25154798 - 4 Aug 2025
Abstract
Outdoor air pollution poses a major global health risk, yet monitoring remains insufficient, especially in regions with limited infrastructure. Solar-powered monitors could allow for increased coverage in regions lacking robust connectivity. However, reliable sample collection can be challenging with these systems due to [...] Read more.
Outdoor air pollution poses a major global health risk, yet monitoring remains insufficient, especially in regions with limited infrastructure. Solar-powered monitors could allow for increased coverage in regions lacking robust connectivity. However, reliable sample collection can be challenging with these systems due to extreme temperatures and insufficient solar energy. Proper planning can help overcome these challenges. Air Sampler Solar and Thermal Optimization for Reliable Monitoring (Air-STORM) is an open-source tool that uses meteorological and solar radiation data to identify temperature and solar charging risks for air pollution monitors based on the target deployment area. The model was validated experimentally, and its utility was demonstrated through illustrative case studies. Air-STORM simulations can be customized for specific locations, seasons, and monitor configurations. This capability enables the early detection of potential sampling risks and provides opportunities to optimize monitor design, proactively mitigate temperature and power failures, and increase the likelihood of successful sample collection. Ultimately, improving sampling success will help increase the availability of high-quality outdoor air pollution data necessary to reduce global air pollution exposure. Full article
(This article belongs to the Special Issue Recent Trends in Air Quality Sensing)
Show Figures

Figure 1

18 pages, 1156 KiB  
Review
Increased Velocity (INVELOX) Wind Delivery System: A Review of Performance Enhancement Advances
by Anesu Godfrey Chitura, Patrick Mukumba and Ngwarai Shambira
Wind 2025, 5(3), 19; https://doi.org/10.3390/wind5030019 - 4 Aug 2025
Abstract
Residential areas are characterized by closely packed buildings which disturb wind flow resulting in low wind speeds (below 2 m/s) with a high turbulence intensity (above 20%). In order to interface between off-the-shelf wind turbines and low-quality wind, the Increased velocity (INVELOX) wind [...] Read more.
Residential areas are characterized by closely packed buildings which disturb wind flow resulting in low wind speeds (below 2 m/s) with a high turbulence intensity (above 20%). In order to interface between off-the-shelf wind turbines and low-quality wind, the Increased velocity (INVELOX) wind delivery system is an attractive wind augmentation option for such regions. The INVELOX setup can harness more energy than conventional bare wind turbines under the same incident wind conditions. However, these systems also have drawbacks and challenges that they face in their operation, which amplify the need to review, understand, and expose gaps and flaws in pursuit of increased power production in low wind quality environments. This paper seeks to review and simplify the advances done by various scholars towards improving the INVELOX delivery system. It provides the mathematical foundation on which these advances are rooted and gives an understanding of how the improvements better the geometric properties of INVELOX. The article concludes by proposing future research directions. Full article
Show Figures

Figure 1

17 pages, 6882 KiB  
Article
Development and Evaluation of a Solar Milk Pasteurizer for the Savanna Ecological Zones of West Africa
by Iddrisu Ibrahim, Paul Tengey, Kelci Mikayla Lawrence, Joseph Atia Ayariga, Fortune Akabanda, Grace Yawa Aduve, Junhuan Xu, Robertson K. Boakai, Olufemi S. Ajayi and James Owusu-Kwarteng
Solar 2025, 5(3), 38; https://doi.org/10.3390/solar5030038 - 4 Aug 2025
Abstract
In many developing African countries, milk safety is often managed through traditional methods such as fermentation or boiling over firewood. While these approaches reduce some microbial risks, they present critical limitations. Firewood dependency contributes to deforestation, depletion of agricultural residues, and loss of [...] Read more.
In many developing African countries, milk safety is often managed through traditional methods such as fermentation or boiling over firewood. While these approaches reduce some microbial risks, they present critical limitations. Firewood dependency contributes to deforestation, depletion of agricultural residues, and loss of soil fertility, which, in turn, compromise environmental health and food security. Solar pasteurization provides a reliable and sustainable method for thermally inactivating pathogenic microorganisms in milk and other perishable foods at sub-boiling temperatures, preserving its nutritional quality. This study aimed to evaluate the thermal and microbial performance of a low-cost solar milk pasteurization system, hypothesized to effectively reduce microbial contaminants and retain milk quality under natural sunlight. The system was constructed using locally available materials and tailored to the climatic conditions of the Savanna ecological zone in West Africa. A flat-plate glass solar collector was integrated with a 0.15 cm thick stainless steel cylindrical milk vat, featuring a 2.2 cm hot water jacket and 0.5 cm thick aluminum foil insulation. The system was tested in Navrongo, Ghana, under ambient temperatures ranging from 30 °C to 43 °C. The pasteurizer successfully processed up to 8 L of milk per batch, achieving a maximum milk temperature of 74 °C by 14:00 GMT. Microbial analysis revealed a significant reduction in bacterial load, from 6.6 × 106 CFU/mL to 1.0 × 102 CFU/mL, with complete elimination of coliforms. These results confirmed the device’s effectiveness in achieving safe pasteurization levels. The findings demonstrate that this locally built solar pasteurization system is a viable and cost-effective solution for improving milk safety in arid, electricity-limited regions. Its potential scalability also opens avenues for rural entrepreneurship in solar-powered food and water treatment technologies. Full article
Show Figures

Figure 1

37 pages, 3005 KiB  
Review
Printed Sensors for Environmental Monitoring: Advancements, Challenges, and Future Directions
by Amal M. Al-Amri
Chemosensors 2025, 13(8), 285; https://doi.org/10.3390/chemosensors13080285 - 4 Aug 2025
Viewed by 28
Abstract
Environmental monitoring plays a key role in understanding and mitigating the effects of climate change, pollution, and resource mismanagement. The growth of printed sensor technologies offers an innovative approach to addressing these challenges due to their low cost, flexibility, and scalability. Printed sensors [...] Read more.
Environmental monitoring plays a key role in understanding and mitigating the effects of climate change, pollution, and resource mismanagement. The growth of printed sensor technologies offers an innovative approach to addressing these challenges due to their low cost, flexibility, and scalability. Printed sensors enable the real-time monitoring of air, water, soil, and climate, providing significant data for data-driven decision-making technologies and policy development to improve the quality of the environment. The development of new materials, such as graphene, conductive polymers, and biodegradable substrates, has significantly enhanced the environmental applications of printed sensors by improving sensitivity, enabling flexible designs, and supporting eco-friendly and disposable solutions. The development of inkjet, screen, and roll-to-roll printing technologies has also contributed to the achievement of mass production without sacrificing quality or performance. This review presents the current progress in printed sensors for environmental applications, with a focus on technological advances, challenges, applications, and future directions. Moreover, the paper also discusses the challenges that still exist due to several issues, e.g., sensitivity, stability, power supply, and environmental sustainability. Printed sensors have the potential to revolutionize ecological monitoring, as evidenced by recent innovations such as Internet of Things (IoT) integration, self-powered designs, and AI-enhanced data analytics. By addressing these issues, printed sensors can develop a better understanding of environmental systems and help promote the UN sustainable development goals. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

18 pages, 674 KiB  
Article
Oil Extraction Systems Influence the Techno-Functional and Nutritional Properties of Pistachio Processing By-Products
by Rito J. Mendoza-Pérez, Elena Álvarez-Olmedo, Ainhoa Vicente, Felicidad Ronda and Pedro A. Caballero
Foods 2025, 14(15), 2722; https://doi.org/10.3390/foods14152722 - 4 Aug 2025
Viewed by 42
Abstract
Low-commercial-value natural pistachios (broken, closed, or immature) can be revalorised through oil extraction, obtaining a high-quality oil and partially defatted flour as by-product. This study evaluated the techno-functional and nutritional properties of the flours obtained by hydraulic press (HP) and single-screw press (SSP) [...] Read more.
Low-commercial-value natural pistachios (broken, closed, or immature) can be revalorised through oil extraction, obtaining a high-quality oil and partially defatted flour as by-product. This study evaluated the techno-functional and nutritional properties of the flours obtained by hydraulic press (HP) and single-screw press (SSP) systems, combined with pretreatment at 25 °C and 60 °C. The extraction method significantly influenced flour’s characteristics, underscoring the need to tailor processing conditions to the specific technological requirements of each food application. HP-derived flours presented lighter colour, greater tocopherol content, and higher water absorption capacity (up to 2.75 g/g), suggesting preservation of hydrophilic proteins. SSP-derived flours showed higher concentration of protein (44 g/100 g), fibre (12 g/100 g), and minerals, and improved emulsifying properties, enhancing their suitability for emulsified products. Pretreatment at 25 °C enhanced functional properties such as swelling power (~7.0 g/g) and water absorption index (~5.7 g/g). The SSP system achieved the highest oil extraction yield, with no significant effect of pretreatment temperature. The oils extracted showed high levels of unsaturated fatty acids, particularly oleic acid (~48% of ω-9), highlighting their nutritional and industrial value. The findings support the valorisation of pistachio oil extraction by-products as functional food ingredients, offering a promising strategy for reducing food waste and promoting circular economy approaches in the agri-food sector. Full article
Show Figures

Figure 1

12 pages, 1178 KiB  
Systematic Review
Exploring the Preventive Effects of Omega-3 Polyunsaturated Fatty Acids Supplementation on Global Cognition: A Systematic Review and Meta-Analysis of Cognitively Unimpaired Older Adults
by Roberta Mulargia, Federica Ribaldi, Sophie Mutel, Ozge Sayin, Giorgi Khachvani, Gabriele Volpara, Giulia Remoli, Umberto Nencha, Stefano Gianonni-Luza, Stefano Cappa, Giovanni B. Frisoni and Augusto J. Mendes
Clin. Transl. Neurosci. 2025, 9(3), 34; https://doi.org/10.3390/ctn9030034 - 4 Aug 2025
Viewed by 38
Abstract
Dementia prevention is a global public health priority, and lifestyle interventions, including nutrition, have gained interest for their potential to maintain cognitive health. Among nutritional interventions, omega-3 polyunsaturated fatty acids (n-3 FA), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been widely [...] Read more.
Dementia prevention is a global public health priority, and lifestyle interventions, including nutrition, have gained interest for their potential to maintain cognitive health. Among nutritional interventions, omega-3 polyunsaturated fatty acids (n-3 FA), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been widely studied for their potential to support cognitive health. This systematic review evaluated whether n-3 FA supplementation improves global cognition in cognitively unimpaired older adults. Nineteen randomized controlled trials (RCTs) met inclusion criteria, of which five reported significant improvements in global cognition. A random-effects meta-analysis of 11 placebo-controlled RCTs showed no significant effect (SMD = −0.02, 95% CI: −0.07 to 0.04). Heterogeneity in supplement type, dosage, duration, and outcome measures may have contributed to inconsistent findings and limited comparability. Furthermore, methodological quality of the trials was generally low. While current evidence does not demonstrate a significant effect of n-3 FA supplementation on global cognition, future research should prioritize well-powered, longer-duration RCTs that incorporate biomarker monitoring and more appropriate doses. Clarifying the role of n-3 FA in cognitive aging remains essential for informing nutrition-based dementia prevention strategies. Full article
(This article belongs to the Special Issue Brain Health)
Show Figures

Figure 1

23 pages, 2295 KiB  
Review
Advances in Interfacial Engineering and Structural Optimization for Diamond Schottky Barrier Diodes
by Shihao Lu, Xufang Zhang, Shichao Wang, Mingkun Li, Shuopei Jiao, Yuesong Liang, Wei Wang and Jing Zhang
Materials 2025, 18(15), 3657; https://doi.org/10.3390/ma18153657 - 4 Aug 2025
Viewed by 52
Abstract
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant [...] Read more.
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant attention due to their simple architecture and superior rectifying characteristics. This review systematically summarizes recent advances in diamond SBDs, focusing on both metal–semiconductor (MS) and metal–interlayer–semiconductor (MIS) configurations. For MS structures, we critically analyze the roles of single-layer metals (including noble metals, transition metals, and other metals) and multilayer metals in modulating Schottky barrier height (SBH) and enhancing thermal stability. However, the presence of interface-related issues such as high densities of surface states and Fermi level pinning often leads to poor control of the SBH, limiting device performance and reliability. To address these challenges and achieve high-quality metal/diamond interfaces, researchers have proposed various interface engineering strategies. In particular, the introduction of interfacial layers in MIS structures has emerged as a promising approach. For MIS architectures, functional interlayers—including high-k materials (Al2O3, HfO2, SnO2) and low-work-function materials (LaB6, CeB6)—are evaluated for their efficacy in interface passivation, barrier modulation, and electric field control. Terminal engineering strategies, such as field-plate designs and surface termination treatments, are also highlighted for their role in improving breakdown voltage. Furthermore, we emphasize the limitations in current parameter extraction from current–voltage (I–V) properties and call for a unified new method to accurately determine SBH. This comprehensive analysis provides critical insights into interface engineering strategies and evaluation protocols for high-performance diamond SBDs, paving the way for their reliable deployment in extreme conditions. Full article
Show Figures

Graphical abstract

18 pages, 3091 KiB  
Article
Construction of Typical Scenarios for Multiple Renewable Energy Plant Outputs Considering Spatiotemporal Correlations
by Yuyue Zhang, Yan Wen, Nan Wang, Zhenhua Yuan, Lina Zhang and Runjia Sun
Symmetry 2025, 17(8), 1226; https://doi.org/10.3390/sym17081226 - 3 Aug 2025
Viewed by 160
Abstract
A high-quality set of typical scenarios is significant for power grid planning. Existing construction methods for typical scenarios do not account for the spatiotemporal correlations among renewable energy plant outputs, failing to adequately reflect the distribution characteristics of original scenarios. To address the [...] Read more.
A high-quality set of typical scenarios is significant for power grid planning. Existing construction methods for typical scenarios do not account for the spatiotemporal correlations among renewable energy plant outputs, failing to adequately reflect the distribution characteristics of original scenarios. To address the issues mentioned above, this paper proposes a construction method for typical scenarios considering spatiotemporal correlations, providing high-quality typical scenarios for power grid planning. Firstly, a symmetric spatial correlation matrix and a temporal autocorrelation matrix are defined, achieving quantitative representation of spatiotemporal correlations. Then, distributional differences between typical and original scenarios are quantified from multiple dimensions, and a scenario reduction model considering spatiotemporal correlations is established. Finally, the genetic algorithm is improved by incorporating adaptive parameter adjustment and an elitism strategy, which can efficiently obtain high-quality typical scenarios. A case study involving five wind farms and fourteen photovoltaic plants in Belgium is presented. The rate of error between spatial correlation matrices of original and typical scenario sets is lower than 2.6%, and the rate of error between temporal autocorrelations is lower than 2.8%. Simulation results demonstrate that typical scenarios can capture the spatiotemporal correlations of original scenarios. Full article
(This article belongs to the Special Issue New Power System and Symmetry)
Show Figures

Figure 1

26 pages, 2221 KiB  
Article
Effects of ε-Poly-L-Lysine/Chitosan Composite Coating on the Storage Quality, Reactive Oxygen Species Metabolism, and Membrane Lipid Metabolism of Tremella fuciformis
by Junzheng Sun, Yingying Wei, Longxiang Li, Mengjie Yang, Yusha Liu, Qiting Li, Shaoxiong Zhou, Chunmei Lai, Junchen Chen and Pufu Lai
Int. J. Mol. Sci. 2025, 26(15), 7497; https://doi.org/10.3390/ijms26157497 - 3 Aug 2025
Viewed by 111
Abstract
This study aimed to investigate the efficacy of a composite coating composed of 150 mg/L ε-Poly-L-lysine (ε-PL) and 5 g/L chitosan (CTS) in extending the shelf life and maintaining the postharvest quality of fresh Tremella fuciformis. Freshly harvested T. fuciformis were treated [...] Read more.
This study aimed to investigate the efficacy of a composite coating composed of 150 mg/L ε-Poly-L-lysine (ε-PL) and 5 g/L chitosan (CTS) in extending the shelf life and maintaining the postharvest quality of fresh Tremella fuciformis. Freshly harvested T. fuciformis were treated by surface spraying, with distilled water serving as the control. The effects of the coating on storage quality, physicochemical properties, reactive oxygen species (ROS) metabolism, and membrane lipid metabolism were evaluated during storage at (25 ± 1) °C. The results showed that the ε-PL/CTS composite coating significantly retarded quality deterioration, as evidenced by reduced weight loss, maintained whiteness and color, and higher retention of soluble sugars, soluble solids, and soluble proteins. The coating also effectively limited water migration and loss. Mechanistically, the coated T. fuciformis exhibited enhanced antioxidant capacity, characterized by increased superoxide anion (O2) resistance capacity, higher activities of antioxidant enzymes (SOD, CAT, APX), and elevated levels of non-enzymatic antioxidants (AsA, GSH). This led to a significant reduction in malondialdehyde (MDA) accumulation, alongside improved DPPH radical scavenging activity and reducing power. Furthermore, the ε-PL/CTS coating preserved cell membrane integrity by inhibiting the activities of lipid-degrading enzymes (lipase, LOX, PLD), maintaining higher levels of key phospholipids (phosphatidylinositol and phosphatidylcholine), delaying phosphatidic acid accumulation, and consequently reducing cell membrane permeability. In conclusion, the ε-PL/CTS composite coating effectively extends the shelf life and maintains the quality of postharvest T. fuciformis by modulating ROS metabolism and preserving membrane lipid homeostasis. This study provides a theoretical basis and a practical approach for the quality control of fresh T. fuciformis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop