Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (869)

Search Parameters:
Keywords = power law distributions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 7941 KiB  
Article
A Numerical Investigation of Plastic Energy Dissipation Patterns of Circular and Non-Circular Metal Thin-Walled Rings Under Quasi-Static Lateral Crushing
by Shunsong Guo, Sunting Yan, Ping Tang, Chenfeng Guan and Wei Zhang
Mathematics 2025, 13(15), 2527; https://doi.org/10.3390/math13152527 - 6 Aug 2025
Abstract
This paper presents a combined theoretical, numerical, and experimental analysis to investigate the lateral plastic crushing behavior and energy absorption of circular and non-circular thin-walled rings between two rigid plates. Theoretical solutions incorporating both linear material hardening and power-law material hardening models are [...] Read more.
This paper presents a combined theoretical, numerical, and experimental analysis to investigate the lateral plastic crushing behavior and energy absorption of circular and non-circular thin-walled rings between two rigid plates. Theoretical solutions incorporating both linear material hardening and power-law material hardening models are solved via numerical shooting methods. The theoretically predicted force-denting displacement relations agree excellently with both FEA and experimental results. The FEA simulation clearly reveals the coexistence of an upper moving plastic region and a fixed bottom plastic region. A robust automatic extraction method of the fully plastic region at the bottom from FEA is proposed. A modified criterion considering the unloading effect based on the resultant moment of cross-section is proposed to allow accurate theoretical estimation of the fully plastic region length. The detailed study implies an abrupt and almost linear drop of the fully plastic region length after the maximum value by the proposed modified criterion, while the conventional fully plastic criterion leads to significant over-estimation of the length. Evolution patterns of the upper and lower plastic regions in FEA are clearly illustrated. Furthermore, the distribution of plastic energy dissipation is compared in the bottom and upper regions through FEA and theoretical results. Purely analytical solutions are formulated for linear hardening material case by elliptical integrals. A simple algebraic function solution is derived without necessity of solving differential equations for general power-law hardening material case by adopting a constant curvature assumption. Parametric analyses indicate the significant effect of ovality and hardening on plastic region evolution and crushing force. This paper should enhance the understanding of the crushing behavior of circular and non-circular rings applicable to the structural engineering and impact of the absorption domain. Full article
(This article belongs to the Special Issue Numerical Modeling and Applications in Mechanical Engineering)
58 pages, 10593 KiB  
Article
Statistical Physics of Fissure Swarms and Dike Swarms
by Agust Gudmundsson
Geosciences 2025, 15(8), 301; https://doi.org/10.3390/geosciences15080301 - 4 Aug 2025
Viewed by 81
Abstract
Fissure swarms and dike swarms in Iceland constitute the main parts of volcanic systems that are 40–150 km long, 5–20 km wide, extend to depths of 10–20 km, and contain 2 × 1014 outcrop-scale (≥0.1 m) and 1022–23 down to grain-scale [...] Read more.
Fissure swarms and dike swarms in Iceland constitute the main parts of volcanic systems that are 40–150 km long, 5–20 km wide, extend to depths of 10–20 km, and contain 2 × 1014 outcrop-scale (≥0.1 m) and 1022–23 down to grain-scale (≥1 mm) fractures, suggesting that statistical physics is an appropriate method of analysis. Length-size distributions of 565 outcrop-scale Holocene fissures (tension fractures and normal faults) and 1041 Neogene dikes show good to excellent fits with negative power laws and exponential laws. Here, the Helmholtz free energy is used to represent the energy supplied to the swarms and to derive the Gibbs–Shannon entropy formula. The calculated entropies of 12 sets and subsets of fissures and 3 sets and subsets of dikes all show strong positive correlations with sets/subsets length ranges and scaling exponents. Statistical physics considerations suggest that, at a given time, the probability of the overall state of stress in a crustal segment being heterogeneous is much greater than the state of stress being homogeneous and favourable to the propagation of a fissure or a dike. In a heterogeneous stress field, most fissures/dikes become arrested after a short propagation—which is a formal explanation of the observed statistical size-length distributions. As the size of the stress-homogenised rock volume increases larger fissures/dikes can form, increasing the length range of the distribution (and its entropy) which may, potentially, transform from an exponential distribution into a power-law distribution. Full article
Show Figures

Figure 1

17 pages, 3995 KiB  
Article
Nonlinear Vibration and Post-Buckling Behaviors of Metal and FGM Pipes Transporting Heavy Crude Oil
by Kamran Foroutan, Farshid Torabi and Arth Pradeep Patel
Appl. Sci. 2025, 15(15), 8515; https://doi.org/10.3390/app15158515 (registering DOI) - 31 Jul 2025
Viewed by 102
Abstract
Functionally graded materials (FGMs) have the potential to revolutionize the oil and gas transportation sector, due to their increased strengths and efficiencies as pipelines. Conventional pipelines frequently face serious problems such as extreme weather, pressure changes, corrosion, and stress-induced pipe bursts. By analyzing [...] Read more.
Functionally graded materials (FGMs) have the potential to revolutionize the oil and gas transportation sector, due to their increased strengths and efficiencies as pipelines. Conventional pipelines frequently face serious problems such as extreme weather, pressure changes, corrosion, and stress-induced pipe bursts. By analyzing the mechanical and thermal performance of FGM-based pipes under various operating conditions, this study investigates the possibility of using them as a more reliable substitute. In the current study, the post-buckling and nonlinear vibration behaviors of pipes composed of FGMs transporting heavy crude oil were examined using a Timoshenko beam framework. The material properties of the FGM pipe were observed to change gradually across the thickness, following a power-law distribution, and were influenced by temperature variations. In this regard, two types of FGM pipes are considered: one with a metal-rich inner surface and ceramic-rich outer surface, and the other with a reverse configuration featuring metal on the outside and ceramic on the inside. The nonlinear governing equations (NGEs) describing the system’s nonlinear dynamic response were formulated by considering nonlinear strain terms through the von Kármán assumptions and employing Hamilton’s principle. These equations were then discretized using Galerkin’s method to facilitate the analytical investigation. The Runge–Kutta method was employed to address the nonlinear vibration problem. It is concluded that, compared with pipelines made from conventional materials, those constructed with FGMs exhibit enhanced thermal resistance and improved mechanical strength. Full article
Show Figures

Figure 1

11 pages, 2887 KiB  
Article
INTEGRAL/ISGRI Post 2024-Periastron View of PSR B1259-63
by Aleksei Kuzin, Denys Malyshev, Maria Chernyakova, Brian van Soelen and Andrea Santangelo
Universe 2025, 11(8), 254; https://doi.org/10.3390/universe11080254 - 31 Jul 2025
Viewed by 125
Abstract
PSR B1259-63/LS 2883 is a well-studied gamma-ray binary hosting a pulsar in a 3.4-year eccentric orbit around a Be-type star. Its non-thermal emission spans from radio to TeV energies, exhibiting a significant increase near the periastron passage. This paper is dedicated to the [...] Read more.
PSR B1259-63/LS 2883 is a well-studied gamma-ray binary hosting a pulsar in a 3.4-year eccentric orbit around a Be-type star. Its non-thermal emission spans from radio to TeV energies, exhibiting a significant increase near the periastron passage. This paper is dedicated to the analysis of INTEGRAL observations of the system following its last periastron passage in June 2024. We aim to study the spectral evolution of this gamma-ray binary in the soft (0.3–10 keV) and hard (30–300 keV) X-ray energy bands. We performed a joint analysis of the data taken by INTEGRAL/ISGRI in July–August 2024 and quasi-simultaneous Swift/XRT observations. The spectrum of the system in the 0.3–300 keV band is well described by an absorbed power law with a photon index of Γ=1.42±0.03. We place constraints on potential spectral curvature, limiting the break energy Eb>30 keV for ΔΓ>0.3 and cutoff energy Ecutoff>150 keV at a 95% confidence level. For one-zone leptonic emission models, these values correspond to electron distribution spectral parameters of Eb,e>0.8 TeV and Ecutoff,e>1.7 TeV, consistent with previous constraints derived by H.E.S.S. Full article
(This article belongs to the Section Compact Objects)
Show Figures

Figure 1

22 pages, 645 KiB  
Article
Asymptotic Solution for Skin Heating by an Electromagnetic Beam at an Incident Angle
by Hongyun Wang, Shannon E. Foley and Hong Zhou
Electronics 2025, 14(15), 3061; https://doi.org/10.3390/electronics14153061 - 31 Jul 2025
Viewed by 202
Abstract
We investigate the temperature evolution in the three-dimensional skin tissue exposed to a millimeter-wave electromagnetic beam that is not necessarily perpendicular to the skin surface. This study examines the effect of the beam’s incident angle. The incident angle influences the thermal heating in [...] Read more.
We investigate the temperature evolution in the three-dimensional skin tissue exposed to a millimeter-wave electromagnetic beam that is not necessarily perpendicular to the skin surface. This study examines the effect of the beam’s incident angle. The incident angle influences the thermal heating in two aspects: (i) the beam spot projected onto the skin is elongated compared to the intrinsic beam spot in a perpendicular cross-section, resulting in a lower power per skin area; and (ii) inside the tissue, the beam propagates at the refracted angle relative to the depth direction. At millimeter-wavelength frequencies, the characteristic penetration depth is sub-millimeter, whereas the lateral extent of the beam spans at least several centimeters in applications. We explore the small ratio of the penetration depth to the lateral length scale in a nondimensional formulation and derive a leading-term asymptotic solution for the temperature distribution. This analysis does not rely on a small incident angle and is therefore applicable to arbitrary angles of incidence. Based on the asymptotic solution, we establish scaling laws for the three-dimensional skin temperature, the skin surface temperature, and the skin volume in which thermal nociceptors are activated. Full article
Show Figures

Figure 1

19 pages, 1297 KiB  
Article
The Genghis Khan Effect
by Sergio Da Silva, Raul Matsushita and Sergio Bonini
Humans 2025, 5(3), 19; https://doi.org/10.3390/humans5030019 - 30 Jul 2025
Viewed by 271
Abstract
This study examines the impact of reproductive inequality on the long-term survival of Homo sapiens by comparing two reproductive models: the Pareto (power-law) distribution of unequal reproduction and the Gaussian (normal) distribution of equal reproduction. We conducted simulations to explore how genetic diversity, [...] Read more.
This study examines the impact of reproductive inequality on the long-term survival of Homo sapiens by comparing two reproductive models: the Pareto (power-law) distribution of unequal reproduction and the Gaussian (normal) distribution of equal reproduction. We conducted simulations to explore how genetic diversity, measured by heterozygosity, evolves over time. The results predict population crashes due to genetic bottlenecks under both models, but with large differences in timing. We refer to Pareto reproductive inequality as the Genghis Khan effect. This effect accelerates the loss of genetic diversity, increasing the species’ vulnerability to environmental stressors, resource depletion, and genetic drift, and thereby raising the risk of an earlier population collapse. Our findings showcase the importance of reproductive balance for the prolonged presence of Homo sapiens on this planet. Full article
Show Figures

Figure 1

11 pages, 2348 KiB  
Article
Study on Smoke Flow and Temperature Distribution Patterns in Fires at Deeply Buried Subway Stations
by Huailin Yan, Heng Liu, Yongchang Zhao and Zirui Bian
Fire 2025, 8(8), 296; https://doi.org/10.3390/fire8080296 - 28 Jul 2025
Viewed by 387
Abstract
To enhance the fire safety protection level of deeply buried metro stations, this study conducted full-scale fire experiments based on Wulichong Station of Guiyang Metro Line 3. It systematically investigated the laws of smoke movement and temperature distribution under the coupled effects of [...] Read more.
To enhance the fire safety protection level of deeply buried metro stations, this study conducted full-scale fire experiments based on Wulichong Station of Guiyang Metro Line 3. It systematically investigated the laws of smoke movement and temperature distribution under the coupled effects of different fire source powers and smoke extraction system states. Through the set up of multiple sets of comparative test conditions, the study focused on analyzing the influence mechanism of the operation (on/off) of the smoke extraction system on smoke spread characteristics and temperature field distribution. The results indicate that under the condition where the smoke extraction system is turned off, the smoke exhibits typical stratified spread characteristics driven by thermal buoyancy, with the temperature rising significantly as the vertical height increases. When the smoke extraction system is activated, the horizontal airflow generated by mechanical smoke extraction significantly alters the flame morphology (with an inclination angle exceeding 45°), effectively extracting and discharging the hot smoke and leading to a more uniform temperature distribution within the space. Full article
(This article belongs to the Special Issue Advances in Fire Science and Fire Protection Engineering)
Show Figures

Figure 1

20 pages, 1676 KiB  
Article
Data-Driven Distributionally Robust Optimization for Solar-Powered EV Charging Under Spatiotemporal Uncertainty in Urban Distribution Networks
by Tianhao Wang, Xuejiao Zhang, Xiaolin Zheng, Jian Wang, Shiqian Ma, Jian Chen, Mengyu Liu and Wei Wei
Energies 2025, 18(15), 4001; https://doi.org/10.3390/en18154001 - 27 Jul 2025
Viewed by 375
Abstract
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially [...] Read more.
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially and temporally variable solar generation, presents a profound challenge to existing scheduling frameworks. This paper proposes a novel data-driven distributionally robust optimization (DDRO) framework for solar-powered EV charging coordination under spatiotemporal uncertainty. Leveraging empirical datasets of EV usage and solar irradiance from a smart city deployment, the framework constructs Wasserstein ambiguity sets around historical distributions, enabling worst-case-aware decision-making without requiring the assumption of probability laws. The problem is formulated as a two-stage optimization model. The first stage determines day-ahead charging schedules, solar utilization levels, and grid allocations across an urban-scale distribution feeder. The second stage models real-time recourse actions—such as dynamic curtailment or demand reshaping—after uncertainties are realized. Physical grid constraints are modeled using convexified LinDistFlow equations, while EV behavior is segmented into user classes with individualized uncertainty structures. The model is evaluated on a modified IEEE 123-bus feeder with 52 EV-PV nodes, using 15 min resolution over a 24 h horizon and 12 months of real-world data. Comparative results demonstrate that the proposed DDRO method reduces total operational costs by up to 15%, eliminates voltage violations entirely, and improves EV service satisfaction by more than 30% relative to deterministic and stochastic baselines. This work makes three primary contributions: it introduces a robust, tractable optimization architecture that captures spatiotemporal uncertainty using empirical Wasserstein sets; it integrates behavioral and physical modeling within a unified dispatch framework for urban energy-mobility systems; and it demonstrates the value of robust coordination in simultaneously improving grid resilience, renewable utilization, and EV user satisfaction. The results offer practical insights for city-scale planners seeking to enable the reliable and efficient electrification of mobility infrastructure under uncertainty. Full article
Show Figures

Figure 1

25 pages, 3279 KiB  
Review
Current State of Development of Demand-Driven Biogas Plants in Poland
by Aleksandra Łukomska, Kamil Witaszek and Jacek Dach
Processes 2025, 13(8), 2369; https://doi.org/10.3390/pr13082369 - 25 Jul 2025
Viewed by 474
Abstract
Renewable energy sources (RES) are the foundation of the ongoing energy transition in Poland and worldwide. However, increased use of RES has brought several challenges, as most of these sources are dependent on weather conditions. The instability and lack of control over electricity [...] Read more.
Renewable energy sources (RES) are the foundation of the ongoing energy transition in Poland and worldwide. However, increased use of RES has brought several challenges, as most of these sources are dependent on weather conditions. The instability and lack of control over electricity production lead to both overloads and power shortages in transmission and distribution networks. A significant advantage of biogas plants over sources such as photovoltaics or wind turbines is their ability to control electricity generation and align it with actual demand. Biogas produced during fermentation can be temporarily stored in a biogas tank above the digester and later used in an enlarged CHP unit to generate electricity and heat during peak demand periods. While demand-driven biogas plants operate similarly to traditional installations, their development requires navigating regulatory and administrative procedures, particularly those related to the grid connection of the generated electricity. In Poland, it has only recently become possible to obtain grid connection conditions for such installations, following the adoption of the Act of 28 July 2023, which amended the Energy Law and certain other acts. However, the biogas sector still faces challenges, particularly the need for effective incentive mechanisms and the removal of regulatory and economic barriers, especially given its estimated potential of up to 7.4 GW. Full article
Show Figures

Figure 1

34 pages, 5784 KiB  
Article
A Method for Assessment of Power Consumption Change in Distribution Grid Branch After Consumer Load Change
by Marius Saunoris, Julius Šaltanis, Robertas Lukočius, Vytautas Daunoras, Kasparas Zulonas, Evaldas Vaičiukynas and Žilvinas Nakutis
Appl. Sci. 2025, 15(15), 8299; https://doi.org/10.3390/app15158299 - 25 Jul 2025
Viewed by 158
Abstract
This research targets prediction of power consumption change (PCC) in the branch of electrical distribution grid between a sum meter and consumer meter in response to consumer load change. The problem is relevant for power preservation law-based event-driven methods aiming for detection of [...] Read more.
This research targets prediction of power consumption change (PCC) in the branch of electrical distribution grid between a sum meter and consumer meter in response to consumer load change. The problem is relevant for power preservation law-based event-driven methods aiming for detection of anomalies like meter errors, electricity thefts, etc. The PCC in the branch is due to the change of technical (wiring) losses as well as change of power consumption of loads connected to the same distribution branch. Using synthesized dataset set a data-driven model is built to predict PCC in the branch. Model performance is assessed using root mean squared error (RMSE), mean absolute, and mean relative error, together with their standard deviations. The preliminary experimental verification using a test bed confirmed the potential of the method. The accuracy of the PCC in the branch prediction is influenced by the systematic error of the meters. Therefore, the error of the consumer meter and the PCC in the branch cannot be evaluated separately. It was observed that the absolute error of the estimate of power measurement gain error was observed to be within ±0.3% and the relative error of PCC in the branch prediction was within ±10%. Full article
Show Figures

Figure 1

27 pages, 3280 KiB  
Article
Design and Implementation of a Robust Hierarchical Control for Sustainable Operation of Hybrid Shipboard Microgrid
by Arsalan Rehmat, Farooq Alam, Mohammad Taufiqul Arif and Syed Sajjad Haider Zaidi
Sustainability 2025, 17(15), 6724; https://doi.org/10.3390/su17156724 - 24 Jul 2025
Viewed by 424
Abstract
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, [...] Read more.
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, reduce greenhouse gas emissions, and support operational flexibility. However, integrating renewable energy into shipboard microgrids introduces challenges, such as power fluctuations, varying line impedances, and disturbances caused by AC/DC load transitions, harmonics, and mismatches in demand and supply. These issues impact system stability and the seamless coordination of multiple distributed generators. To address these challenges, we proposed a hierarchical control strategy that supports sustainable operation by improving the voltage and frequency regulation under dynamic conditions, as demonstrated through both MATLAB/Simulink simulations and real-time hardware validation. Simulation results show that the proposed controller reduces the frequency deviation by up to 25.5% and power variation improved by 20.1% compared with conventional PI-based secondary control during load transition scenarios. Hardware implementation on the NVIDIA Jetson Nano confirms real-time feasibility, maintaining power and frequency tracking errors below 5% under dynamic loading. A comparative analysis of the classical PI and sliding mode control-based designs is conducted under various grid conditions, such as cold ironing mode of the shipboard microgrid, and load variations, considering both the AC and DC loads. The system stability and control law formulation are verified through simulations in MATLAB/SIMULINK and practical implementation. The experimental results demonstrate that the proposed secondary control architecture enhances the system robustness and ensures sustainable operation, making it a viable solution for modern shipboard microgrids transitioning towards green energy. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

20 pages, 3164 KiB  
Review
Is Hydra Axis Definition a Fluctuation-Based Process Picking Up External Cues?
by Mikhail A. Zhukovsky, Si-Eun Sung and Albrecht Ott
J. Dev. Biol. 2025, 13(3), 24; https://doi.org/10.3390/jdb13030024 - 17 Jul 2025
Viewed by 384
Abstract
Axis definition plays a key role in the establishment of animal body plans, both in normal development and regeneration. The cnidarian Hydra can re-establish its simple body plan when regenerating from a random cell aggregate or a sufficiently small tissue fragment. At the [...] Read more.
Axis definition plays a key role in the establishment of animal body plans, both in normal development and regeneration. The cnidarian Hydra can re-establish its simple body plan when regenerating from a random cell aggregate or a sufficiently small tissue fragment. At the beginning of regeneration, a hollow cellular spheroid forms, which then undergoes symmetry breaking and de novo body axis definition. In the past, we have published related work in a physics journal, which is difficult to read for scientists from other disciplines. Here, we review our work for readers not so familiar with this type of approach at a level that requires very little knowledge in mathematics. At the same time, we present a few aspects of Hydra biology that we believe to be linked to our work. These biological aspects may be of interest to physicists or members of related disciplines to better understand our approach. The proposed theoretical model is based on fluctuations of gene expression that are triggered by mechanical signaling, leading to increasingly large groups of cells acting in sync. With a single free parameter, the model quantitatively reproduces the experimentally observed expression pattern of the gene ks1, a marker for ‘head forming potential’. We observed that Hydra positions its axis as a function of a weak temperature gradient, but in a non-intuitive way. Supposing that a large fluctuation including ks1 expression is locked to define the head position, the model reproduces this behavior as well—without further changes. We explain why we believe that the proposed fluctuation-based symmetry breaking process agrees well with recent experimental findings where actin filament organization or anisotropic mechanical stimulation act as axis-positioning events. The model suggests that the Hydra spheroid exhibits huge sensitivity to external perturbations that will eventually position the axis. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Developmental Biology 2025)
Show Figures

Figure 1

16 pages, 862 KiB  
Article
Random Search Walks Inside Absorbing Annuli
by Anderson S. Bibiano-Filho, Jandson F. O. de Freitas, Marcos G. E. da Luz, Gandhimohan M. Viswanathan and Ernesto P. Raposo
Entropy 2025, 27(7), 758; https://doi.org/10.3390/e27070758 - 15 Jul 2025
Viewed by 249
Abstract
We revisit the problem of random search walks in the two-dimensional (2D) space between concentric absorbing annuli, in which a searcher performs random steps until finding either the inner or the outer ring. By considering step lengths drawn from a power-law distribution, we [...] Read more.
We revisit the problem of random search walks in the two-dimensional (2D) space between concentric absorbing annuli, in which a searcher performs random steps until finding either the inner or the outer ring. By considering step lengths drawn from a power-law distribution, we obtain the exact analytical result for the search efficiency η in the ballistic limit, as well as an approximate expression for η in the regime of searches starting far away from both rings, and the scaling behavior of η for very small initial distances to the inner ring. Our numerical results show good overall agreement with the theoretical findings. We also analyze numerically the absorbing probabilities related to the encounter of the inner and outer rings and the associated Shannon entropy. The power-law exponent marking the crossing of such probabilities (equiprobability) and the maximum entropy condition grows logarithmically with the starting distance. Random search walks inside absorbing annuli are relevant, since they represent a mean-field approach to conventional random searches in 2D, which is still an open problem with important applications in various fields. Full article
(This article belongs to the Special Issue Transport in Complex Environments)
Show Figures

Figure 1

24 pages, 4085 KiB  
Article
A Joint Optimization Method for Power and Array of Multi-Point Sources System
by Zhihao Cai, Shiqi Xing, Xinyuan Su, Junpeng Wang, Weize Meng and Ziwen Xiao
Remote Sens. 2025, 17(14), 2445; https://doi.org/10.3390/rs17142445 - 14 Jul 2025
Viewed by 263
Abstract
In a multi-point source system, increasing the jamming power can expand the distribution area of the equivalent radiation center, but significantly increases the system exposure risk. Therefore, in order to achieve an optimal balance between the two, this paper proposes a joint optimization [...] Read more.
In a multi-point source system, increasing the jamming power can expand the distribution area of the equivalent radiation center, but significantly increases the system exposure risk. Therefore, in order to achieve an optimal balance between the two, this paper proposes a joint optimization method for jamming power and an array of multi-point source systems. First, based on determining the spatial geometric relationship between the triplet antenna and the target, the distribution law of the equivalent radiation center of the triplet antenna under the condition of the target echo is derived. Second, by introducing the angle factor, the jamming power and equivalent radiation center distribution area are combined to construct the joint optimization model of jamming power and array in omnidirectional and non-omnidirectional situations. Third, based on the non-dominated sorting whale optimization algorithm (NSWOA), an adaptive inertia weight based on the cosine function and logistic chaotic map is introduced to obtain the optimal arrangement. The experimental results show that in the omnidirectional case, when the average jamming-to-signal ratio is 13.83 dB, the equilateral triangle array can achieve the goal of protecting the target while avoiding the exposure of the triplet antenna position. In the non-omnidirectional case, when the average jamming-to-signal ratio is 13.90 dB, the equilateral triangle array can achieve the optimal balance between the jamming power and the area of the distribution area of the equivalent radiation center, and control the distribution of the equivalent radiation center to strictly meet the preset angular domain constraints. Furthermore, the optimal JSR value was reduced by an average of 1.14 dB compared with that of the conventional selection scheme. Full article
Show Figures

Figure 1

19 pages, 3731 KiB  
Article
Electric Field Measurement in Radiative Hyperthermia Applications
by Marco Di Cristofano, Luca Lalli, Giorgia Paglialunga and Marta Cavagnaro
Sensors 2025, 25(14), 4392; https://doi.org/10.3390/s25144392 - 14 Jul 2025
Viewed by 420
Abstract
Oncological hyperthermia (HT) is a medical technique aimed at heating a specific region of the human body containing a tumour. The heat makes the tumour cells more sensitive to the cytotoxic effects of radiotherapy and chemotherapy. Electromagnetic (EM) HT devices radiate a single-frequency [...] Read more.
Oncological hyperthermia (HT) is a medical technique aimed at heating a specific region of the human body containing a tumour. The heat makes the tumour cells more sensitive to the cytotoxic effects of radiotherapy and chemotherapy. Electromagnetic (EM) HT devices radiate a single-frequency EM field that induces a temperature increase in the treated region of the body. The typical radiative HT frequencies are between 60 and 150 MHz for deep HT applications, while 434 MHz and 915 MHz are used for superficial HT. The input EM power can reach up to 2000 W in deep HT and 250 W in superficial applications, and the E-field should be linearly polarized. This study proposes the development and use of E-field sensors to measure the distribution and evaluate the polarization of the E-field radiated by HT devices inside equivalent phantoms. This information is fundamental for the validation and assessment of HT systems. The sensor is constituted by three mutually orthogonal probes. Each probe is composed of a dipole, a diode, and a high-impedance transmission line. The fundamental difference in the operability of this sensor with respect to the standard E-field square-law detectors lies in the high-power values of the considered EM sources. Numerical analyses were performed to optimize the design of the E-field sensor in the whole radiative HT frequency range and to characterize the sensor behaviour at the power levels of HT. Then the sensor was realized, and measurements were carried out to evaluate the E-field radiated by commercial HT systems. The results show the suitability of the developed sensor to measure the E-field radiated by HT applicators. Additionally, in the measured devices, the linear polarization is evidenced. Accordingly, the work shows that in these devices, a single probe can be used to completely characterize the field distribution. Full article
(This article belongs to the Special Issue Microwaves for Biomedical Applications and Sensing)
Show Figures

Figure 1

Back to TopTop