A Joint Optimization Method for Power and Array of Multi-Point Sources System
Abstract
1. Introduction
- (1)
- Establishment of the spatial geometric relationship between the triplet antenna and the target and derivation of the distribution law of the equivalent radiation center of the triplet antenna under the condition of the target echo.
- (2)
- Construction of the angle factor and modeling of a joint optimization model of jamming power and array.
- (3)
- Incorporation of an adaptive inertia weight based on the cosine function and logistic chaos mapping, and proposition of a non-dominated sorting cosine mapping strategy, whale optimization algorithm.
2. Materials and Methods
2.1. The Geometry of Multi-Point Source System
2.2. The Power-Array Joint Optimization Model
- (a)
- The joint optimization model of jamming power and array in the omnidirectional case
- (b)
- The joint optimization model of jamming power and array in the non-omnidirectional case
2.3. Non-Dominated Sorting Whale Optimization with Cosine Mapping Strategy
- ✧
- If and , the offspring population is generated by the surrounding prey operation, as shown in Equation (18):
- ✧
- If and , the offspring population is generated by the random search operation, as shown in Equation (19):
- ✧
- If , the offspring population is generated by the bubble net feeding operation, as shown in Equation (20):
Algorithm 1: NSCWOA algorithm |
Input: Objective function: , ; population size: ; maximum number of iterations: Output: Pareto optimal solution set: |
1. Logistic chaotic map initializes population: , and 2. Calculate the objective function value: 3. Initialize the iterative counter: 4. while do 5. Sort the population based on the non-dominated sorting principle to obtain the Pareto front set: 6. Calculate the crowding distance for each individual in every front 7. Select the first N individuals from the front set as the parent population 8. Generate offspring population: 9. for each in do 10. Execute the three-stage operations 11. Add to 12. end 13. Merged populations: 14. Non-dominated sorting and congestion calculation are performed on . 15. The first N individuals are selected from as the next generation population 16. Update the iterative counter: 17. end 18. return a Pareto optimal solution set |
3. Simulation Results and Analysis
3.1. Simulation Experiment Parameters
3.2. Solution of Joint Optimization Model in Omnidirectional Case
3.3. Solution of Joint Optimization Model in Non-Omnidirectional Case
4. Discussion
4.1. The Distribution Uniformity of Solution Set
4.2. The Convergence Speed of Each Algorithm
4.3. The Influence of Power and Array Parameters
4.4. The Influence of Phase Error
4.5. The Computational Complexity of the NSCWOA Algorithm
5. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Wang, J.; Liu, X.; Feng, D.; Sun, G. A Flexible Range-Doppler Modulation Method for Pulse-Doppler Radar Using Phase-Switched Screen. IEEE Trans. Antennas Propag. 2025. early access. [Google Scholar] [CrossRef]
- Plessis, W.D. Cross-eye gain in multiloop retrodirective cross-eye jamming. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 875–882. [Google Scholar] [CrossRef]
- Huang, J.; Yin, J.; An, M.; Li, Y. Azimuth Pointing Calibration for Rotating Phased Array Radar Based on Ground Clutter Correlation. IEEE Trans. Geosci. Remote Sens. 2025, 63, 1000315. [Google Scholar] [CrossRef]
- Plessis, W.P.d. Path-Length Compensation in Multiloop Retrodirective Cross-Eye Jamming. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 397–406. [Google Scholar] [CrossRef]
- Chen, J.; Shi, Q.; Huang, Z.; Wang, Q.; Yuan, N. Performance Analysis of Multi-Group Three-Tuple Cross-Eye Jamming. J. Syst. Eng. Electron. 2022, 33, 80–90. [Google Scholar] [CrossRef]
- Liu, T.; Wei, X.; Liu, Z. Overview of cross-eye jamming research. J. Radars 2019, 8, 140–153. [Google Scholar] [CrossRef]
- Zhou, L.; Meng, J.; Liu, Y. Design and analysis of non-retrodirective cross-eye interference experiment based on non-pulse vector network analyzer. Syst. Eng. Electron. 2024, 46, 62–70. [Google Scholar]
- Cai, Z.; Xing, S.; Meng, W.; Wang, J.; Su, X.; Quan, S. Fusion Unbiased Pseudo-Linear Kalman Filter-Based Bearings-Only Target Tracking. Remote Sens. 2024, 16, 4536. [Google Scholar] [CrossRef]
- Li, D.; Meng, J.; Liu, Y. Effect of cross-eye jamming on the active-passive composite monopulse radar. J. Radars 2022, 11, 705–712. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, B.; Wu, C. Anti-cross-eye jamming method based on monopulse radar 3-D imaging. Syst. Eng. Electron. 2022, 44, 1188–1194. [Google Scholar] [CrossRef]
- Lee, J.H.; Jo, J.; Ryu, H.-K. Experimental approach to estimate cross-eye gain for a nonretrodirective cross-eye jamming system. IEEE Antennas Wirel. Propag. Lett. 2022, 6, 1120–1123. [Google Scholar] [CrossRef]
- Chen, Z.; Ning, Y.; He, S.; Yu, M. Experimental Study on Multiantenna Interference Technology. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 7878–7889. [Google Scholar] [CrossRef]
- Ning, Y.; Yu, M. Performance Analysis of Multiple Antennas Synthetic False Target Jamming. IEEE Access 2022, 10, 16178–16187. [Google Scholar] [CrossRef]
- Ma, J.; Shi, L.; Xu, Z. Overview of multi-source parameter estimation and jamming mitigation for monopulse radars. J. Radars 2019, 8, 125–139. [Google Scholar] [CrossRef]
- Xing, S.; Song, S.; Quan, S.; Sun, D.; Wang, J.; Li, Y. Near-Field 3D Sparse SAR Direct Imaging with Irregular Samples. Remote Sens. 2022, 14, 6321. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Q.; Ye, Y. Analysis on wave-front phase distortion characteristics based on NSGA-II. Syst. Eng. Electron. 2022, 44, 1439–1446. [Google Scholar] [CrossRef]
- Liu, S.; Dong, C.; Dong, Y. Analysis of rotating orthogonal multiple elements retrodirective cross-eye jamming. J. Electron. Inf. Technol. 2016, 38, 1424–1430. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G.; Liu, Q. An implementation method of multiple-element retrodirective cross-eye jamming. Aerosp. Electron. Warf. 2023, 39, 48–53. [Google Scholar] [CrossRef]
- Song, S.; Dai, Y.; Sun, S.; Jin, T. Efficient Image Reconstruction Methods Based on Structured Sparsity for Short-Range Radar. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5212615. [Google Scholar] [CrossRef]
- Liu, F.; Chen, J.; Lyu, H. Analysis of multi-loop reverse cross-eye jamming in new configuration. Chin. J. Radio Sci. 2020, 35, 603–613. [Google Scholar] [CrossRef]
- Liu, W.; Meng, J.; Zhou, L. Interference modeling of rectangular array retrodirective cross-eye method. Syst. Eng. Electron. 2019, 41, 2453–2459. [Google Scholar]
- Miao, X. A concealed Jamming Method Based on Radar Target Detection Mechanism. J. China Acad. Electron. 2022, 17, 972–976. [Google Scholar] [CrossRef]
- Wang, J.; Quan, S.; Xing, S. PSO-based Fine Polarimetric Decomposition for Ship Scattering Characterization. ISPRS J. Photogramm. Remote Sens. 2025, 220, 18–31. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, Y.; Meng, J. Interference Performance Analysis of Two Source Retro-Directive Cross-Eye Jamming and Multi-Source Linear Array Retro- Directive Cross-Eye Jamming. Acta Electron. Sin. 2021, 49, 2289–2298. [Google Scholar] [CrossRef]
- Liu, D.; Wang, X.; Chen, Y. Adaptive scheduling method of joint multi-resource for cooperative interference of networked radar system. Syst. Eng. Electron. 2023, 45, 2744–2754. [Google Scholar]
- Zhou, C.; Lin, Q.; Ma, C. Intelligent Decision-making for Selection of Communication Jamming Channel and Power. J. Electron. Inf. Technol. 2024, 46, 3957–3965. [Google Scholar] [CrossRef]
- Li, C.; Li, P. Anti-Jamming Technology of Adaptive Nulling Antenna of Satellite Navigation. J. Electron. Inf. Technol. 2020, 35, 59–63. [Google Scholar]
- Chen, J.; Xu, Z.; Xiao, S. Optimal subarray design method for sidelobe cancellation of wideband irregular subarrayed array. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 2793–2797. [Google Scholar] [CrossRef]
- Song, S.; Dai, Y.; Jin, T.; Wang, X.; Hua, Y.; Zhou, X. An Effective Image Reconstruction Enhancement Method with Convolutional Reweighting for Near-Field SAR. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 2486–2490. [Google Scholar] [CrossRef]
- Su, X.; Quan, S.; Cai, Z.; Meng, W.; Xing, S. An Adversarial Sample Generation Method Based on the Balance Between Aggression and Concealment. In Proceedings of the 2025 IEEE 6th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT), Shenzhen, China, 2025; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, R.; Wu, J. Research on multi-aircraft cooperative suppressing jamming embattling in electronic warfare planning. J. Syst. Eng. Electron. 2017, 39, 542–548. [Google Scholar] [CrossRef]
- Gao, S.; Shi, W.; Wang, Q. Research on ground-to-air radar jammer array and start-up timing control. J. Air Force Early Warn. Acad. 2020, 34, 346–350. [Google Scholar] [CrossRef]
- Nan, H.; Peng, S.; Liu, R. Research on the problem of high repetition frequency pulse interference array of passive seeker. J. Air Force Early Warn. Acad. 2018, 32, 430–434. [Google Scholar] [CrossRef]
- Herschfelt, A.; Chiriyath, A.; Molnar, A.C.; Landon, D.G.; Bliss, D.W. In-Band, Full-Duplex Self-Interference Mitigation Using Sparse Tap-Delay Models with Quantized and Power Constrained Weights. In Proceedings of the 2020 54th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 1–4 November 2020; pp. 1260–1264. [Google Scholar] [CrossRef]
- Naduvilpattu, S.; Mehta, N.B. Optimal Energy-Efficient Antenna Selection and Power Adaptation for Interference-Outage Constrained Underlay Spectrum Sharing. IEEE Trans. Commun. 2022, 70, 6341–6354. [Google Scholar] [CrossRef]
- Xi, X.; Liu, G.; Liu, Q. Distributed jamming optimal array method for sidelobe cancellation. J. Syst. Eng. Electron. 2024, 46, 2623–2628. [Google Scholar]
- Acharya, S.; Ghosh, S.; Gangopadhyaya, M. Performance Analysis of Interference Constrained NOMA in 5G Communication. In Proceedings of the 2025 8th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), Kolkata, India, 31 January–2 February 2025; pp. 1–5. [Google Scholar] [CrossRef]
- Zhao, K.; Song, H.; Liu, R. Distributed radar main-lobe interference suppression method via joint optimization of array configuration and subarray element number. J. Radars 2024, 13, 1355–1369. [Google Scholar] [CrossRef]
- Huang, Q.; Guo, Z.; Wang, H. A method of cross-eye robust angle deception with three-tuple antenna. Electron. Opt. Control 2024, 31, 94–98. [Google Scholar] [CrossRef]
- Sui, R.; Wang, J.; Sun, G.; Xu, Z.; Feng, D. A Dual-Polarimetric High Range Resolution Profile Modulation Method Based on Time-Modulated APCM. IEEE Trans. Antennas Propag. 2025, 73, 1007–1017. [Google Scholar] [CrossRef]
- Zheng, Y.; You, C.; Zhang, N. Wide-angle scanning thinned phased array synthesis based on improved multiobjective beluga whale optimization algorithm. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 3511–3515. [Google Scholar] [CrossRef]
- Chai, Y.; Zhu, Y.; Ren, S. An improved whale optimization algorithm based on multi-strategy coordination. Comput. Eng. Sci. 2023, 45, 1308–1319. [Google Scholar] [CrossRef]
- Zdiri, S.; Chrouta, J.; Zaafouri, A. Cooperative multi-swarm particle swarm optimization based on adaptive and time-varying inertia weights. In Proceedings of the 2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC), Tunis, Tunisia, 20–22 December 2021; pp. 200–207. [Google Scholar] [CrossRef]
- Li, C.; Feng, B.; Li, S.; Kurths, J.; Chen, G. Dynamic Analysis of Digital Chaotic Maps via State-Mapping Networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 2322–2335. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, S.; Chen, C.; Chen, X. MODA: Model Ownership Deprivation Attack in Asynchronous Federated Learning. IEEE Trans. Dependable Secur. Comput. 2024, 21, 4220–4235. [Google Scholar] [CrossRef]
- Bahrami, B.; Khayyambashi, M.R.; Mirjalili, S. Multiobjective Placement of Edge Servers in MEC Environment Using a Hybrid Algorithm Based on NSGA-II and MOPSO. IEEE Internet Things J. 2024, 11, 29819–29837. [Google Scholar] [CrossRef]
- Zhang, S.; Nie, Y.; Wang, S.; Zhang, X.; Wu, Q.; Wang, T. 3-D Path Planning for AUVs Based on Improved Exponential Distribution Optimizer. IEEE Internet Things J. 2024, 11, 28667–28679. [Google Scholar] [CrossRef]
- Yi, L.; Tan, J.; Wang, Y. Multi-objective pied kingfisher optimizer for optimal PV array reconfiguration under partial shading conditions. Opt. Laser Technol. 2025, 186, 112755. [Google Scholar] [CrossRef]
Index | MOPKO | MOEDO | NSGA-II | MOMVO | NSWOA | NSCWOA | Average Increase | |
---|---|---|---|---|---|---|---|---|
Omnidirectional case | Spatial measure | 0.0987 | 0.1022 | 0.2616 | 0.4536 | 0.1136 | 0.08431 | 41.41% |
Spatial measure error | 0.02521 | 0.02933 | 0.04567 | 0.03892 | 0.03226 | 0.02132 | 35.04% | |
Optimal JSR/dB | 13.95 | 14.03 | 14.31 | 15.15 | 14.08 | 13.83 | 3.23% | |
Non-omnidirectional case | Spatial measure | 0.0907 | 0.0989 | 0.27261 | 0.46347 | 0.12129 | 0.08035 | 43.42% |
Spatial measure error | 0.02431 | 0.02845 | 0.04012 | 0.0454 | 0.03413 | 0.02035 | 37.92% | |
Optimal JSR/dB | 13.97 | 14.05 | 14.44 | 15.27 | 14.11 | 13.90 | 3.15% |
Index | MOPKO | MOEDO | NSGA-II | MOMVO | NSWOA | NSCWOA | Average Increase | |
---|---|---|---|---|---|---|---|---|
Omnidirectional case | Average running time/s | 3.21224 | 4.87321 | 17.54763 | 10.24652 | 1.88432 | 0.79173 | 80.97% |
Average running time error/s | 0.31218 | 0.46312 | 0.82112 | 0.62013 | 0.25118 | 0.12324 | 69.99% | |
Non-omnidirectional case | Average running time/s | 3.02146 | 4.43862 | 18.37699 | 11.44774 | 1.95953 | 0.67239 | 83.75% |
Average running time error/s | 0.29688 | 0.42114 | 0.8233 | 0.67112 | 0.27357 | 0.11235 | 72.81% |
JSR | Angle Factor | JSR | Angle Factor | JSR | Angle Factor |
---|---|---|---|---|---|
−10 | 0.02264 | −5 | 0.07123 | 0 | 0.22173 |
5 | 0.66809 | 10 | 1.83849 | 15 | 4.12205 |
20 | 6.7884 | 25 | 8.53406 | 30 | 9.28948 |
Array Configuration | Protection Radius |
---|---|
General isosceles triangle | 2.99 |
Isosceles right triangle | 1.7321 |
Equilateral triangle | 3 |
Phase Error | RMSE | Phase Error | RMSE | Phase Error | RMSE | Phase Error | RMSE |
---|---|---|---|---|---|---|---|
0.5° | 1.0412 | 1° | 1.0425 | 1.5° | 1.0448 | 2° | 1.0715 |
2.5° | 1.0730 | 3° | 1.1025 | 3.5° | 1.1155 | 4° | 1.1628 |
4.5° | 1.1301 | 5° | 1.1338 | 5.5° | 1.1522 | 6° | 1.1557 |
6.5° | 1.1774 | 7° | 1.1966 | 7.5° | 1.2100 | 8° | 1.2326 |
8.5° | 1.2407 | 9° | 1.2500 | 9.5° | 1.2512 | 10° | 1.2714 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Xing, S.; Su, X.; Wang, J.; Meng, W.; Xiao, Z. A Joint Optimization Method for Power and Array of Multi-Point Sources System. Remote Sens. 2025, 17, 2445. https://doi.org/10.3390/rs17142445
Cai Z, Xing S, Su X, Wang J, Meng W, Xiao Z. A Joint Optimization Method for Power and Array of Multi-Point Sources System. Remote Sensing. 2025; 17(14):2445. https://doi.org/10.3390/rs17142445
Chicago/Turabian StyleCai, Zhihao, Shiqi Xing, Xinyuan Su, Junpeng Wang, Weize Meng, and Ziwen Xiao. 2025. "A Joint Optimization Method for Power and Array of Multi-Point Sources System" Remote Sensing 17, no. 14: 2445. https://doi.org/10.3390/rs17142445
APA StyleCai, Z., Xing, S., Su, X., Wang, J., Meng, W., & Xiao, Z. (2025). A Joint Optimization Method for Power and Array of Multi-Point Sources System. Remote Sensing, 17(14), 2445. https://doi.org/10.3390/rs17142445