Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,821)

Search Parameters:
Keywords = power coefficient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4301 KiB  
Article
Estimation of the Kinetic Coefficient of Friction of Asphalt Pavements Using the Top Topography Surface Roughness Power Spectrum
by Bo Sun, Haoyuan Luo, Yibo Rong and Yanqin Yang
Materials 2025, 18(15), 3643; https://doi.org/10.3390/ma18153643 (registering DOI) - 2 Aug 2025
Abstract
This study proposes a method for estimating the kinetic coefficient of friction (COF) for asphalt pavements by improving and applying Persson’s friction theory. The method utilizes the power spectral density (PSD) of the top surface topography instead of the full PSD to better [...] Read more.
This study proposes a method for estimating the kinetic coefficient of friction (COF) for asphalt pavements by improving and applying Persson’s friction theory. The method utilizes the power spectral density (PSD) of the top surface topography instead of the full PSD to better reflect the actual contact conditions. This approach avoids including deeper roughness components that do not contribute to real rubber–pavement contact due to surface skewness. The key aspect of the method is determining an appropriate cutting plane to isolate the top surface. Four cutting strategies were evaluated. Results show that the cutting plane defined at 0.5 times the root mean square (RMS) height exhibits the highest robustness across all pavement types, with the estimated COF closely matching the measured values for all four tested surfaces. This study presents an improved method for estimating the kinetic coefficient of friction (COF) of asphalt pavements by employing the power spectral density (PSD) of the top surface roughness, rather than the total surface profile. This refinement is based on Persson’s friction theory and aims to exclude the influence of deep surface irregularities that do not make actual contact with the rubber interface. The core of the method lies in defining an appropriate cutting plane to isolate the topographical features that contribute most to frictional interactions. Four cutting strategies were investigated. Among them, the cutting plane positioned at 0.5 times the root mean square (RMS) height demonstrated the best overall applicability. COF estimates derived from this method showed strong consistency with experimentally measured values across all four tested asphalt pavement surfaces, indicating its robustness and practical potential. Full article
(This article belongs to the Section Construction and Building Materials)
27 pages, 2072 KiB  
Article
Modeling and Characteristic Analysis of Mistuned Series–Series-Compensated Wireless Charging System for EVs
by Weihan Li, Yunhan Han and Chenxu Li
Energies 2025, 18(15), 4091; https://doi.org/10.3390/en18154091 (registering DOI) - 1 Aug 2025
Abstract
Cumulative mistuning effects in electric vehicle wireless charging systems, arising from component tolerances, coil misalignments, and aging-induced drifts, can significantly degrade system performance. To mitigate this issue, this work establishes an analysis model for mistuned series–series-compensated wireless power transfer (WPT) systems. Through equivalent [...] Read more.
Cumulative mistuning effects in electric vehicle wireless charging systems, arising from component tolerances, coil misalignments, and aging-induced drifts, can significantly degrade system performance. To mitigate this issue, this work establishes an analysis model for mistuned series–series-compensated wireless power transfer (WPT) systems. Through equivalent simplification of mistuned parameters, we systematically examine the effects of compensation capacitances and coil inductances on input impedance, output power, and efficiency in SS-compensated topologies across wide load ranges and different coupling coefficients. Results reveal that transmitter-side parameter deviations exert more pronounced impacts on input impedance and power gain than receiver-side variations. Remarkably, under receiver-side inductance mistuning of −20%, a significant 32° shift in the input impedance angle was observed. Experimental validation on a 500 W prototype confirms ≤5% maximum deviation between calculated and measured values for efficiency, input impedance angle, and power gain. Full article
(This article belongs to the Special Issue Wireless Charging Technologies for Electric Vehicles)
22 pages, 1287 KiB  
Article
Comparative Analysis of the Gardner Equation in Plasma Physics Using Analytical and Neural Network Methods
by Zain Majeed, Adil Jhangeer, F. M. Mahomed, Hassan Almusawa and F. D. Zaman
Symmetry 2025, 17(8), 1218; https://doi.org/10.3390/sym17081218 (registering DOI) - 1 Aug 2025
Abstract
In the present paper, a mathematical analysis of the Gardner equation with varying coefficients has been performed to give a more realistic model of physical phenomena, especially in regards to plasma physics. First, a Lie symmetry analysis was carried out, as a result [...] Read more.
In the present paper, a mathematical analysis of the Gardner equation with varying coefficients has been performed to give a more realistic model of physical phenomena, especially in regards to plasma physics. First, a Lie symmetry analysis was carried out, as a result of which a symmetry classification following the different representations of the variable coefficients was systematically derived. The reduced ordinary differential equation obtained is solved using the power-series method and solutions to the equation are represented graphically to give an idea of their dynamical behavior. Moreover, a fully connected neural network has been included as an efficient computation method to deal with the complexity of the reduced equation, by using traveling-wave transformation. The validity and correctness of the solutions provided by the neural networks have been rigorously tested and the solutions provided by the neural networks have been thoroughly compared with those generated by the Runge–Kutta method, which is a conventional and well-recognized numerical method. The impact of a variation in the loss function of different coefficients has also been discussed, and it has also been found that the dispersive coefficient affects the convergence rate of the loss contribution considerably compared to the other coefficients. The results of the current work can be used to improve knowledge on the nonlinear dynamics of waves in plasma physics. They also show how efficient it is to combine the approaches, which consists in the use of analytical and semi-analytical methods and methods based on neural networks, to solve nonlinear differential equations with variable coefficients of a complex nature. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

16 pages, 4508 KiB  
Article
Natural Kelp (Laminaria japonica) Hydrogel with Anisotropic Mechanical Properties, Low Friction and Self-Cleaning for Triboelectric Nanogenerator
by Dongnian Chen, Hui Yu, Jiajia Hao, Qiang Chen and Lin Zhu
Gels 2025, 11(8), 597; https://doi.org/10.3390/gels11080597 (registering DOI) - 1 Aug 2025
Abstract
Kelp is a natural hydrogel material, which has been widely used in food industry. However, as a natural material, its properties have not been well explored. In this work, the surface and mechanical properties of kelp were investigated. The surface of kelp exhibited [...] Read more.
Kelp is a natural hydrogel material, which has been widely used in food industry. However, as a natural material, its properties have not been well explored. In this work, the surface and mechanical properties of kelp were investigated. The surface of kelp exhibited superoleophobicity and a self-clean property. The friction coefficient (COF) of the kelp surface was also low (<0.1). Interestingly, kelp demonstrated anisotropic mechanical properties either with or without metal ions. The tensile strength and toughness of kelp along with the growth direction (H) were better than those at the direction vertical to the growth direction (V). The adsorption of metal ions would significantly enhance the mechanical properties and ionic conductivity. Triboelectric nanogenerator (TENG) was assembled using kelp with NaCl, which showed excellent output performance (open-circuit voltage of 30 V, short-circuit current of 0.73 μA and charge transfer on contact of 10.5 nC). A writing tablet was prepared to use as the kelp-based self-powered tactile sensor. This work provides a new insight into natural kelp, which may be used as a renewable material. Full article
(This article belongs to the Special Issue Applications of Gels in Energy Materials and Devices)
Show Figures

Figure 1

17 pages, 2404 KiB  
Article
Geographically Weighted Regression Enhances Spectral Diversity–Biodiversity Relationships in Inner Mongolian Grasslands
by Yu Dai, Huawei Wan, Longhui Lu, Fengming Wan, Haowei Duan, Cui Xiao, Yusha Zhang, Zhiru Zhang, Yongcai Wang, Peirong Shi and Xuwei Sun
Diversity 2025, 17(8), 541; https://doi.org/10.3390/d17080541 (registering DOI) - 1 Aug 2025
Abstract
The spectral variation hypothesis (SVH) posits that the complexity of spectral information in remote sensing imagery can serve as a proxy for regional biodiversity. However, the relationship between spectral diversity (SD) and biodiversity differs for different environmental conditions. Previous SVH studies often overlooked [...] Read more.
The spectral variation hypothesis (SVH) posits that the complexity of spectral information in remote sensing imagery can serve as a proxy for regional biodiversity. However, the relationship between spectral diversity (SD) and biodiversity differs for different environmental conditions. Previous SVH studies often overlooked these differences. We utilized species data from field surveys in Inner Mongolia and drone-derived multispectral imagery to establish a quantitative relationship between SD and biodiversity. A geographically weighted regression (GWR) model was used to describe the SD–biodiversity relationship and map the biodiversity indices in different experimental areas in Inner Mongolia, China. Spatial autocorrelation analysis revealed that both SD and biodiversity indices exhibited strong and statistically significant spatial autocorrelation in their distribution patterns. Among all spectral diversity indices, the convex hull area exhibited the best model fit with the Margalef richness index (Margalef), the coefficient of variation showed the strongest predictive performance for species richness (Richness), and the convex hull volume provided the highest explanatory power for Shannon diversity (Shannon). Predictions for Shannon achieved the lowest relative root mean square error (RRMSE = 0.17), indicating the highest predictive accuracy, whereas Richness exhibited systematic underestimation with a higher RRMSE (0.23). Compared to the commonly used linear regression model in SVH studies, the GWR model exhibited a 4.7- to 26.5-fold improvement in goodness-of-fit. Despite the relatively low R2 value (≤0.59), the model yields biodiversity predictions that are broadly aligned with field observations. Our approach explicitly considers the spatial heterogeneity of the SD–biodiversity relationship. The GWR model had significantly higher fitting accuracy than the linear regression model, indicating its potential for remote sensing-based biodiversity assessments. Full article
(This article belongs to the Special Issue Ecology and Restoration of Grassland—2nd Edition)
Show Figures

Figure 1

20 pages, 3380 KiB  
Article
The Effect of Airfoil Geometry Variation on the Efficiency of a Small Wind Turbine
by José Rafael Dorrego Portela, Orlando Lastres Danguillecurt, Víctor Iván Moreno Oliva, Eduardo Torres Moreno, Cristofer Aguilar Jimenez, Liliana Hechavarría Difur, Quetzalcoatl Hernandez-Escobedo and Jesus Alejandro Franco
Technologies 2025, 13(8), 328; https://doi.org/10.3390/technologies13080328 (registering DOI) - 1 Aug 2025
Abstract
This study analyzes the impact of geometric variations induced by the manufacturing process on the aerodynamic efficiency of an airfoil used in the design of a 3 kW wind turbine blade. For this purpose, a computational fluid dynamics (CFD) analysis was implemented, and [...] Read more.
This study analyzes the impact of geometric variations induced by the manufacturing process on the aerodynamic efficiency of an airfoil used in the design of a 3 kW wind turbine blade. For this purpose, a computational fluid dynamics (CFD) analysis was implemented, and the results were compared with those obtained using QBlade software. After blade fabrication, experimental evaluation was performed using the laser triangulation technique, enabling the reconstruction of the deformed airfoils and their comparison with the original geometry. Additional CFD simulations were carried out on the manufactured airfoil to quantify the loss of aerodynamic efficiency due to geometrical deformations. The results show that the geometric deviations significantly affect the aerodynamic coefficients, generating a decrease in the lift coefficient and an increase in the drag coefficient, which negatively impacts the airfoil aerodynamic efficiency. A 14.9% reduction in the rotor power coefficient was observed with the deformed airfoils compared to the original design. This study emphasizes the importance of quality control in wind turbine blade manufacturing processes and its impact on turbine power performance. In addition, the findings can contribute to the development of design compensation strategies to mitigate the adverse effects of geometric imperfections on the aerodynamic performance of wind turbines. Full article
Show Figures

Figure 1

18 pages, 1583 KiB  
Article
Heat Transfer Characteristics of Thermosyphons Used in Vacuum Water Heaters
by Zied Lataoui, Adel M. Benselama and Abdelmajid Jemni
Fluids 2025, 10(8), 199; https://doi.org/10.3390/fluids10080199 - 31 Jul 2025
Abstract
A two-phase closed thermosyphon (TPCT), a gravity-assisted heat pipe, is a highly efficient heat transmitter involving liquid–vapor phase change. It is used in many applications, including heat spreading, thermal management and control, and energy saving. The main objective of this study is to [...] Read more.
A two-phase closed thermosyphon (TPCT), a gravity-assisted heat pipe, is a highly efficient heat transmitter involving liquid–vapor phase change. It is used in many applications, including heat spreading, thermal management and control, and energy saving. The main objective of this study is to investigate the effects of the operating conditions for a thermosyphon used in solar water heaters. The study particularly focuses on the influence of the inclination angle. Thus, a comprehensive simulation model is developed using the volume of fluid (VOF) approach. Complex and related phenomena, including two-phase flow, phase change, and heat exchange, are taken into account. To implement the model, an open-source CFD toolbox based on finite volume formulation, OpenFOAM, is used. The model is then validated by comparing numerical results to the experimental data from the literature. The obtained results show that the simulation model is reliable for investigating the effects of various operating conditions on the transient and steady-state behavior of the thermosyphon. In fact, bubble creation, growth, and advection can be tracked correctly in the liquid pool at the evaporator. The effects of the designed operating conditions on the heat transfer parameters are also discussed. In particular, the optimal tilt angle is shown to be 60° for the intermediate saturation temperature (<50 °C) and 90° for the larger saturation temperature (>60 °C). Full article
(This article belongs to the Special Issue Convective Flows and Heat Transfer)
Show Figures

Figure 1

22 pages, 6436 KiB  
Article
Low-Resolution ADCs Constrained Joint Uplink/Downlink Channel Estimation for mmWave Massive MIMO
by Songxu Wang, Yinyuan Wang and Congying Hu
Electronics 2025, 14(15), 3076; https://doi.org/10.3390/electronics14153076 (registering DOI) - 31 Jul 2025
Abstract
The use of low-resolution analog-to-digital converters (ADCs) in receivers has emerged as an effective solution for reducing power consumption in millimeter-wave (mmWave) massive multiple-input–multiple-output (MIMO) systems. However, low-resolution ADCs also pose significant challenges for channel estimation. To address this issue, we propose a [...] Read more.
The use of low-resolution analog-to-digital converters (ADCs) in receivers has emerged as an effective solution for reducing power consumption in millimeter-wave (mmWave) massive multiple-input–multiple-output (MIMO) systems. However, low-resolution ADCs also pose significant challenges for channel estimation. To address this issue, we propose a joint uplink/downlink (UL/DL) channel estimation algorithm that utilizes the spatial reciprocity of frequency division duplex (FDD) to improve the estimation of quantized UL channels. Quantified UL/DL channels are concentrated at the BS for joint estimation. This estimation problem is regarded as a compressed sensing problem with finite bits, which has led to the development of expectation-maximization-based quantitative generalized approximate messaging (EM-QGAMP) algorithms. In the expected step, QGAMP is used for posterior estimation of sparse channel coefficients, and the block maximization minimization (MM) algorithm is introduced in the maximization step to improve the estimation accuracy. Finally, simulation results verified the robustness of the proposed EM-QGAMP algorithm, and the proposed algorithm’s NMSE (normalized mean squared error) outperforms traditional methods by over 90% and recent state-of-the-art techniques by 30%. Full article
Show Figures

Figure 1

14 pages, 863 KiB  
Article
The Effect of the Extraction Temperature on the Colligative, Hydrodynamic and Rheological Properties of Psyllium Husk Mucilage Raw Solutions
by Anna Ptaszek, Marta Liszka-Skoczylas and Urszula Goik
Molecules 2025, 30(15), 3219; https://doi.org/10.3390/molecules30153219 (registering DOI) - 31 Jul 2025
Abstract
The aim of the research was to analyse the effect of different extraction temperatures on the colligative, hydrodynamic, and rheological properties of a water-soluble AXs fractions. The research material consisted of raw water extracts of arabinoxylans obtained from the husk at the following [...] Read more.
The aim of the research was to analyse the effect of different extraction temperatures on the colligative, hydrodynamic, and rheological properties of a water-soluble AXs fractions. The research material consisted of raw water extracts of arabinoxylans obtained from the husk at the following temperatures: 40 °C (AX40), 60 °C (AX60), 80 °C (AX80), and 100 °C (AX100). These were characterised in terms of their hydrodynamic, osmotic, and rheological properties, as well as the average molecular mass of the polysaccharide fractions. An increase in extraction temperature resulted in an increase in weight-average molecular mass, from 2190 kDa (AX40) to 3320 kDa (AX100). The values of the osmotic average molecular mass were higher than those obtained from GPC, and decreased with increasing extraction temperature. The dominance of biopolymer–biopolymer interactions was evident in the shape of the autocorrelation function, which did not disappear as the extraction temperature and concentration increased. Furthermore, the values of the second virial coefficient were negative, which is indicative of the tendency of biopolymer chains to aggregate. The rheological properties of the extracts changed from being described by a power-law model (AX40 and AX60) to being described by the full non-linear De Kee model (AX80 and AX100). Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

79 pages, 12542 KiB  
Article
Evolutionary Game-Theoretic Approach to Enhancing User-Grid Cooperation in Peak Shaving: Integrating Whole-Process Democracy (Deliberative Governance) in Renewable Energy Systems
by Kun Wang, Lefeng Cheng and Ruikun Wang
Mathematics 2025, 13(15), 2463; https://doi.org/10.3390/math13152463 - 31 Jul 2025
Viewed by 78
Abstract
The integration of renewable energy into power grids is imperative for reducing carbon emissions and mitigating reliance on depleting fossil fuels. In this paper, we develop symmetric and asymmetric evolutionary game-theoretic models to analyze how user–grid cooperation in peak shaving can be enhanced [...] Read more.
The integration of renewable energy into power grids is imperative for reducing carbon emissions and mitigating reliance on depleting fossil fuels. In this paper, we develop symmetric and asymmetric evolutionary game-theoretic models to analyze how user–grid cooperation in peak shaving can be enhanced by incorporating whole-process democracy (deliberative governance) into decision-making. Our framework captures excess returns, cooperation-driven profits, energy pricing, participation costs, and benefit-sharing coefficients to identify equilibrium conditions under varied subsidy, cost, and market scenarios. Furthermore, this study integrates the theory, path, and mechanism of deliberative procedures under the perspective of whole-process democracy, exploring how inclusive and participatory decision-making processes can enhance cooperation in renewable energy systems. We simulate seven scenarios that systematically adjust subsidy rates, cost–benefit structures, dynamic pricing, and renewable-versus-conventional competitiveness, revealing that robust cooperation emerges only under well-aligned incentives, equitable profit sharing, and targeted financial policies. These scenarios systematically vary these key parameters to assess the robustness of cooperative equilibria under diverse economic and policy conditions. Our findings indicate that policy efficacy hinges on deliberative stakeholder engagement, fair profit allocation, and adaptive subsidy mechanisms. These results furnish actionable guidelines for regulators and grid operators to foster sustainable, low-carbon energy systems and inform future research on demand response and multi-source integration. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

18 pages, 1332 KiB  
Article
Optimization of Anthocyanin Extraction from Purple Sweet Potato Peel (Ipomea batata) Using Sonotrode Ultrasound-Assisted Extraction
by Raquel Lucas-González, Mirian Pateiro, Rubén Domínguez-Valencia, Celia Carrillo and José M. Lorenzo
Foods 2025, 14(15), 2686; https://doi.org/10.3390/foods14152686 - 30 Jul 2025
Viewed by 163
Abstract
Sweet potato is a valuable root due to its nutritional benefits, health-promoting properties, and technological applications. The peel, often discarded during food processing, can be employed in the food industry, supporting a circular economy. Purple sweet potato peel (PSPP) is rich in anthocyanins, [...] Read more.
Sweet potato is a valuable root due to its nutritional benefits, health-promoting properties, and technological applications. The peel, often discarded during food processing, can be employed in the food industry, supporting a circular economy. Purple sweet potato peel (PSPP) is rich in anthocyanins, which can be used as natural colourants and antioxidants. Optimising their extraction can enhance yield and reduce costs. The current work aimed to optimize anthocyanin and antioxidant recovery from PSPP using a Box-Behnken design and sonotrode ultrasound-assisted extraction (sonotrode-UAE). Three independent variables were analysed: extraction time (2–6 min), ethanol concentration (35–85%), and liquid-to-solid ratio (10–30 mL/g). The dependent variables included total monomeric anthocyanin content (TMAC), individual anthocyanins, and antioxidant activity. TMAC in 15 extracts ranged from 0.16 to 2.66 mg/g PSPP. Peonidin-3-caffeoyl-p-hydroxybenzoyl sophoroside-5-glucoside was the predominant anthocyanin. Among four antioxidant assays, Ferric-reducing antioxidant power (FRAP) showed the highest value. Ethanol concentration significantly influenced anthocyanin and antioxidant recovery (p < 0.05). The model demonstrated adequacy based on the coefficient of determination and variation. Optimal extraction conditions were 6 min with 60% ethanol at a 30 mL/g ratio. Predicted values were validated experimentally (coefficient of variation <10%). In conclusion, PSPP is a promising matrix for obtaining anthocyanin-rich extracts with antioxidant activity, offering potential applications in the food industry. Full article
Show Figures

Figure 1

12 pages, 3668 KiB  
Article
The Study on the Electrochemical Efficiency of Yttrium-Doped High-Entropy Perovskite Cathodes for Proton-Conducting Fuel Cells
by Bingxue Hou, Xintao Wang, Rui Tang, Wenqiang Zhong, Meiyu Zhu, Zanxiong Tan and Chengcheng Wang
Materials 2025, 18(15), 3569; https://doi.org/10.3390/ma18153569 - 30 Jul 2025
Viewed by 173
Abstract
The commercialization of proton-conducting fuel cells (PCFCs) is hindered by the limited electroactivity and durability of cathodes at intermediate temperatures ranging from 400 to 700 °C, a challenge exacerbated by an insufficient understanding of high-entropy perovskite (HEP) materials for oxygen reduction reaction (ORR) [...] Read more.
The commercialization of proton-conducting fuel cells (PCFCs) is hindered by the limited electroactivity and durability of cathodes at intermediate temperatures ranging from 400 to 700 °C, a challenge exacerbated by an insufficient understanding of high-entropy perovskite (HEP) materials for oxygen reduction reaction (ORR) optimization. This study introduces an yttrium-doped HEP to address these limitations. A comparative analysis of Ce0.2−xYxBa0.2Sr0.2La0.2Ca0.2CoO3−δ (x = 0, 0.2; designated as CBSLCC and YBSLCC) revealed that yttrium doping enhanced the ORR activity, reduced the thermal expansion coefficient (19.9 × 10−6 K−1, 30–900 °C), and improved the thermomechanical compatibility with the BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolytes. Electrochemical testing demonstrated a peak power density equal to 586 mW cm−2 at 700 °C, with a polarization resistance equaling 0.3 Ω cm2. Yttrium-induced lattice distortion promotes proton adsorption while suppressing detrimental Co spin-state transitions. These findings advance the development of durable, high-efficiency PCFC cathodes, offering immediate applications in clean energy systems, particularly for distributed power generation. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

27 pages, 10182 KiB  
Article
Storage Life Prediction of High-Voltage Diodes Based on Improved Artificial Bee Colony Algorithm Optimized LSTM-Transformer Framework
by Zhongtian Liu, Shaohua Yang and Bin Suo
Electronics 2025, 14(15), 3030; https://doi.org/10.3390/electronics14153030 - 30 Jul 2025
Viewed by 131
Abstract
High-voltage diodes, as key devices in power electronic systems, have important significance for system reliability and preventive maintenance in terms of storage life prediction. In this paper, we propose a hybrid modeling framework that integrates the Long Short-Term Memory Network (LSTM) and Transformer [...] Read more.
High-voltage diodes, as key devices in power electronic systems, have important significance for system reliability and preventive maintenance in terms of storage life prediction. In this paper, we propose a hybrid modeling framework that integrates the Long Short-Term Memory Network (LSTM) and Transformer structure, and is hyper-parameter optimized by the Improved Artificial Bee Colony Algorithm (IABC), aiming to realize the high-precision modeling and prediction of high-voltage diode storage life. The framework combines the advantages of LSTM in time-dependent modeling with the global feature extraction capability of Transformer’s self-attention mechanism, and improves the feature learning effect under small-sample conditions through a deep fusion strategy. Meanwhile, the parameter type-aware IABC search mechanism is introduced to efficiently optimize the model hyperparameters. The experimental results show that, compared with the unoptimized model, the average mean square error (MSE) of the proposed model is reduced by 33.7% (from 0.00574 to 0.00402) and the coefficient of determination (R2) is improved by 3.6% (from 0.892 to 0.924) in 10-fold cross-validation. The average predicted lifetime of the sample was 39,403.3 h, and the mean relative uncertainty of prediction was 12.57%. This study provides an efficient tool for power electronics reliability engineering and has important applications for smart grid and new energy system health management. Full article
Show Figures

Figure 1

9 pages, 651 KiB  
Article
Intracycle Velocity Variation During a Single-Sculling 2000 m Rowing Competition
by Joana Leão, Ricardo Cardoso, Jose Arturo Abraldes, Susana Soares, Beatriz B. Gomes and Ricardo J. Fernandes
Sensors 2025, 25(15), 4696; https://doi.org/10.3390/s25154696 - 30 Jul 2025
Viewed by 182
Abstract
Rowing is a cyclic sport that consists of repetitive biomechanical actions, with performance being influenced by the balance between propulsive and resistive forces. The current study aimed to assess the relationships between intracycle velocity variation (IVV) and key biomechanical and performance variables in [...] Read more.
Rowing is a cyclic sport that consists of repetitive biomechanical actions, with performance being influenced by the balance between propulsive and resistive forces. The current study aimed to assess the relationships between intracycle velocity variation (IVV) and key biomechanical and performance variables in male and female single scullers. Twenty-three experienced rowers (10 females) completed a 2000 m rowing competition, during which boat position and velocity were measured using a 15 Hz GPS, while cycle rate was derived from the integrated triaxial accelerometer sampling at 100 Hz. From these data, it was possible to calculate distance per cycle, IVV, the coefficient of velocity variation (CVV), and technical index values. Males presented higher mean, maximum and minimum velocity, distance per cycle, CVV, and technical index values than females (15.40 ± 0.81 vs. 13.36 ± 0.88 km/h, d = 0.84; 21.39 ± 1.68 vs. 18.77 ± 1.52 km/h, d = 1.61; 11.15 ± 1.81 vs. 9.03 ± 0.85 km/h, d = 1.45; 7.68 ± 0.32 vs. 6.89 ± 0.97 m, d = 0.69; 14.13 ± 2.02 vs. 11.64 ± 1.93%, d = 2.06; and 34.25 ± 4.82 vs. 26.30 ± 4.23 (m2/s·cycle), d = 4.56, respectively). An association between mean velocity and intracycle IVV, CVV, and cycle rate (r = 0.68, 0.74 and 0.65, respectively) was observed in males but not in female single scullers (which may be attributed to anthropometric specificities). In female single scullers, mean velocity was related with distance per cycle and was associated with technical index in both males and females (r = 0.76 and 0.66, respectively). Despite these differences, male and female single scullers adopted similar pacing strategies and CVV remained constant throughout the 2000 m race (indicating that this variable might not be affected by fatigue). Differences were also observed in the velocity–time profile, with men reaching peak velocity first and having a faster propulsive phase. Data provided new information on how IVV and CVV relate to commonly used biomechanical variables in rowing. Technical index (r = 0.87): distance per cycle was associated with technical index in both males and females (r = 0.76 and 0.66, respectively). Future studies should include other boat classes and other performance variables such as the power output and arc length. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

22 pages, 4318 KiB  
Article
Artificial Intelligence Prediction Analysis of Daily Power Photovoltaic Bifacial Modules in Two Moroccan Cities
by Salma Riad, Naoual Bekkioui, Merlin Simo-Tagne, Ndukwu Macmanus Chinenye and Hamid Ez-Zahraouy
Sustainability 2025, 17(15), 6900; https://doi.org/10.3390/su17156900 - 29 Jul 2025
Viewed by 258
Abstract
This study aimed to train and validate two artificial neural network (ANN) models, one with four hidden layers and the other with five hidden layers, to predict the daily photovoltaic power output of a 20 Kw photovoltaic power plant with bifacial photovoltaic modules [...] Read more.
This study aimed to train and validate two artificial neural network (ANN) models, one with four hidden layers and the other with five hidden layers, to predict the daily photovoltaic power output of a 20 Kw photovoltaic power plant with bifacial photovoltaic modules with tilt angle variation from 0° to 90° in two Moroccan cities, Ouarzazate and Oujda. To validate the two proposed models, photovoltaic power data calculated using the System Advisor Model (SAM) software version 2023.12.17 were employed to predict the average daily power of the photovoltaic plant for December, utilizing MATLAB software Version R2020a 9.8, and for the tilt angles corresponding to the latitudes of the two cities studied. The results differ from one model to another according to their mean absolute error (MAE), root mean squared error (RMSE), and coefficient of determination (R2) values. The artificial neural network model with five hidden layers obtained better results with a R2 value of 0.99354 for Ouarzazate and 0.99836 for Oujda. These two proposed models are trained using the Levenberg Marquardt (LM) optimizer, which is proven to be the best training procedure. Full article
Show Figures

Figure 1

Back to TopTop