Intracycle Velocity Variation During a Single-Sculling 2000 m Rowing Competition
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Warmenhoven, J.; Smith, R.; Draper, C.; Harrison, A.J.; Bargary, N.; Cobley, S. Force coordination strategies in on-water single sculling: Are asymmetries related to better rowing performance? Scand. J. Med. Sci. Sports 2018, 28, 1379–1388. [Google Scholar] [CrossRef]
- Warmenhoven, J.; Cobley, S.; Draper, C.; Smith, R. Over 50 Years of Researching Force Profiles in Rowing: What Do We Know? Sports Med. 2018, 48, 2703–2714. [Google Scholar] [CrossRef]
- Cardoso, R.; Rios, M.; Cardoso, F.; Bouicher, S.; Abraldes, J.A.; Gomes, B.; Vilas-Boas, J.P.; Fernandes, R. Randall Foils Versus Big Blades: Comparative Analysis in On-Water Sprint Rowing. Int. J. Sports Physiol. Perform. 2025, 20, 678–683. [Google Scholar] [CrossRef]
- Cardoso, R.; Fonseca, P.; Goethel, M.; Abraldes, J.A.; Gomes, B.B.; Vilas-Boas, J.P.; Fernandes, R.J. Effect of Randall foils on the rowing propulsive cycle. Sports Biomech. 2024, 18, 1–10. [Google Scholar] [CrossRef]
- Baudouin, A.; Hawkins, D. A biomechanical review of factors affecting rowing performance. Br. J. Sports Med. 2002, 36, 396–402. [Google Scholar] [CrossRef]
- Cardoso, R.; Rios, M.; Carvalho, D.D.; Monteiro, A.S.; Soares, S.; Arturo Abraldes, J.; Gomes, B.B.; Vilas Boas, J.P.; Fernandes, R.J. Mechanics and energetic analysis of rowing with Big blades with Randall foils. Int. J. Sports Med. 2022, 44, 1043–1048. [Google Scholar] [CrossRef]
- Smith, T.B.; Hopkins, W.G. Measures of Rowing Performance. Sports Med. 2012, 42, 343–358. [Google Scholar] [CrossRef]
- Ingham, S.A.; Whyte, G.P.; Jones, K.; Nevill, A.M. Determinants of 2000 m rowing ergometer performance in elite rowers. Eur. J. Appl. Physiol. 2002, 88, 243–246. [Google Scholar] [CrossRef]
- Mäestu, J.; Jürimäe, J.; Jürimäe, T. Monitoring of performance and training in rowing. Sports Med. 2005, 35, 597–617. [Google Scholar] [CrossRef]
- Soper, C.; Hume, P.A. Rowing: Reliability of power output during Rowing changes with Ergometer type and race distance. Sports Biomech. 2004, 3, 237–248. [Google Scholar] [CrossRef]
- Legge, N.; Draper, C.; Slattery, K.; O’Meara, D.; Watsford, M. On-water Rowing Biomechanical Assessment: A Systematic Scoping Review. Sports Med.-Open 2024, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Holt, A.C.; Aughey, R.J.; Ball, K.; Hopkins, W.G.; Siegel, R. Technical Determinants of On-Water Rowing Performance. Front. Sports Act. Living 2020, 2, 589013. [Google Scholar] [CrossRef] [PubMed]
- Sperlich, J.; Baker, J. Biomechanical Testing in Elite Canoeing. In Proceedings of the ISBS 2002, Caceres, Spain, 1–5 July 2002. [Google Scholar]
- Vaquero-Cristóbal, R.; Alacid, F.; López-Plaza, D.; Muyor, J.M.; López-Miñarro, P.A. Kinematic Variables Evolution During a 200-m Maximum Test in Young Paddlers. J. Hum. Kinet. 2013, 38, 15–22. [Google Scholar] [CrossRef]
- Michael, J.S.; Smith, R.; Rooney, K.B. Determinants of kayak paddling performance. Sports Biomech. 2009, 8, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Costill, D.; Kovaleski, J.; Porter, D.; Kirwan, J.; Fielding, R.; King, D. Energy Expenditure During Front Crawl Swimming: Predicting Success in Middle-Distance Events. Int. J. Sports Med. 1985, 6, 266–270. [Google Scholar] [CrossRef]
- Sánchez, J.A.; Arellano, R. Stroke index values according to level, gender, swimming style and event race distance. In Proceedings of the 20 International Symposium on Biomechanics in Sports 2002, Cáceres, Spain, 1–5 July 2002. [Google Scholar]
- Figueiredo, P.; Kjendlie, P.L.; Vilas-Boas, J.P.; Fernandes, R.J. Intracycle velocity variation of the body centre of mass in front crawl. Int. J. Sports Med. 2012, 33, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.; Afonso, J.; Noronha, F.; Mezêncio, B.; Vilas-Boas, J.P.; Fernandes, R.J. Intracycle Velocity Variation in Swimming: A Systematic Scoping Review. Bioengineering 2023, 10, 308. [Google Scholar] [CrossRef]
- Hill, H.; Fahrig, S. The impact of fluctuations in boat velocity during the rowing cycle on race time. Scand. J. Med. Sci. Sports 2009, 19, 585–594. [Google Scholar] [CrossRef]
- Fernandes, R.A.; Alacid, F.; Gomes, A.B.; Gomes, B.B. Validation of a global positioning system with accelerometer for canoe/kayak sprint kinematic analysis. Sports Biomech. 2021, 23, 2168–2179. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Morais, J.E.; Marinho, D.A.; Oliveira, J.P.; Sampaio, T.; Lopes, T.; Barbosa, T.M. Using Statistical Parametric Mapping to Compare the Propulsion of Age-Group Swimmers in Front Crawl Acquired with the Aquanex System. Sensors 2022, 22, 8549. [Google Scholar] [CrossRef]
- Warmenhoven, J.; Harrison, A.; Robinson, M.A.; Vanrenterghem, J.; Bargary, N.; Smith, R.; Cobley, S.; Draper, C.; Donnelly, C.; Pataky, T. A force profile analysis comparison between functional data analysis, statistical parametric mapping and statistical non-parametric mapping in on-water single sculling. J. Sci. Med. Sport 2018, 21, 1100–1105. [Google Scholar] [CrossRef]
- McGregor, A.H.; Patankar, Z.S.; Bull, A.M.J. Do men and women row differently? a spinal kinematic and force perspective. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2008, 222, 77–83. [Google Scholar] [CrossRef]
- Podstawski, R.; Borysławski, K.; Katona, Z.B.; Alföldi, Z.; Boraczyński, M.; Jaszczur-Nowicki, J.; Gronek, P. Sex Differences in Anthropometric and Physiological Profiles of Hungarian Rowers of Different Ages. Int. J. Environ. Res. Public Health 2022, 19, 8115. [Google Scholar] [CrossRef]
- Smith, R.M.; Spinks, W.L. Discriminant analysis of biomechanical differences between novice, good and elite rowers. J. Sports Sci. 1995, 13, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Kleshnev, V. Boat acceleration, temporal structure of the stroke cycle, and effectiveness in rowing. Proc. Inst. Mech. Eng. Part P-J. Sports Eng. Technol. 2010, 224, 63–74. [Google Scholar] [CrossRef]
- Kleshnev, V. Estimation of biomechanical parameters and propulsive efficiency of rowing. Aust. Inst. Sport 1998, 1–17. [Google Scholar]
- Warmenhoven, J.; Cobley, S.; Draper, C.; Harrison, A.; Bargary, N.; Smith, R. How gender and boat-side affect shape characteristics of force-angle profiles in single sculling: Insights from functional data analysis. J. Sci. Med. Sport 2018, 21, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Attenborough, A.S.; Smith, R.M.; Sinclair, P.J. Effect of gender and stroke rate on joint power characteristics of the upper extremity during simulated rowing. J. Sports Sci. 2012, 30, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Seifert, L.; Lardy, J.; Bourbousson, J.; Adé, D.; Nordez, A.; Thouvarecq, R.; Saury, J. Interpersonal Coordination and Individual Organization Combined with Shared Phenomenological Experience in Rowing Performance: Two Case Studies. Front. Psychol. 2017, 8, 75. [Google Scholar] [CrossRef]
- Ng, L.; Campbell, A.; Burnett, A.; O’Sullivan, P. Gender Differences in Trunk and Pelvic Kinematics During Prolonged Ergometer Rowing in Adolescents. J. Appl. Biomech. 2013, 29, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Warden, S.J.; Gutschlag, F.R.; Wajswelner, H.; Crossley, K.M. Aetiology of rib stress fractures in rowers. Sports Med. 2002, 32, 819–836. [Google Scholar] [CrossRef]
- McDonnell, K.L.; Hume, A.P.; Nolte, V. Place time consistency and stroke rates required for success in K1 200-m sprint kayaking elite competition. Int. J. Perform. Anal. Sport 2013, 13, 38–50. [Google Scholar] [CrossRef]
- Bompa, T.O. Technique and muscle force. Can. J. Appl. Sport Sci. J. Can. Des Sci. Appl. Au Sport 1980, 5, 245–249. [Google Scholar]
- Garland, S.W. An analysis of the pacing strategy adopted by elite competitors in 2000 m rowing. Br. J. Sports Med. 2005, 39, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.; Rios, M.; Fonseca, P.; Leão, J.; Cardoso, F.; Abraldes, J.A.; Gomes, B.; Vilas-Boas, J.P.; Fernandes, R. Assessment of Angular and Straight Linear Rowing Ergometers at Different Intensities of Exercise. Sensors 2024, 24, 5686. [Google Scholar] [CrossRef] [PubMed]
- Soper, C.; Hume, P.A. Towards an ideal rowing technique for performance—The contributions from biomechanics. Sports Med. 2004, 34, 825–848. [Google Scholar] [CrossRef] [PubMed]
Variables | Males | Females | p | Effect Size (Cohen’s d) |
---|---|---|---|---|
Mean velocity (km/h) | 15.40 ± 0.81 | 13.36 ± 0.88 | <0.001 | 0.84 |
Maximum velocity (km/h) | 21.39 ± 1.68 | 18.77 ± 1.52 | <0.001 | 1.61 |
Minimum velocity (km/h) | 11.15 ± 1.81 | 9.03 ± 0.85 | 0.002 | 1.45 |
Cycle rate (cycles.min−1) | 33.65 ± 1.63 | 32.40 ± 4.09 | 0.343 | 0.30 |
Distance per cycle (m) | 7.68 ± 0.32 | 6.89 ± 0.97 | 0.015 | 0.69 |
IVV (km/h) | 5.78 ± 1.05 | 5.50 ± 1.11 | 0.521 | 1.08 |
CVV (%) | 14.13 ± 2.02 | 11.64 ± 1.93 | 0.010 | 2.06 |
Technical Index (m2/s·cycle) | 34.25 ± 4.82 | 26.30 ± 4.23 | <0.001 | 4.56 |
Variables | Mean Velocity | Maximum Velocity | Minimum Velocity | Cycle Rate | Distance Per Cycle | Intracycle Velocity Variation (IVV) | Coefficient of Velocity Variation (CVV) |
---|---|---|---|---|---|---|---|
M/F | M/F | M/F | M/F | M/F | M/F | M/F | |
Mean velocity | - | ||||||
Maximum velocity | 0.59 */0.55 * | ||||||
Minimum velocity | 0.64 */0.74 * | −0.03/0.66 * | |||||
Cycle rate | 0.65 */0.37 | 0.28/0.21 | 0.49/0.20 | ||||
Distance per cycle | 0.40/0.42 | 0.4/0.024 | 0.17/0.21 | −0.41/−0.56 * | |||
Intracycle velocity variation (IVV) | 0.68 */0.17 | 0.61 */0.72 * | 0.27/0.28 | 0.63 */0.09 | 0.13/−0.01 | ||
Coefficient of velocity variation (CVV) | 0.74 */0.34 | 0.70 */0.32 | 0.40/−0.11 | 0.68 */0.19 | 0.15/−0.11 | 0.59 */0.77 * | |
Technical index | 0.35/0.87 * | 0.62 */0.58 * | 0.03/0.76 * | −0.22/−0.11 | 0.76 */0.66 * | 0.09/0.19 | 0.09/−0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leão, J.; Cardoso, R.; Abraldes, J.A.; Soares, S.; Gomes, B.B.; Fernandes, R.J. Intracycle Velocity Variation During a Single-Sculling 2000 m Rowing Competition. Sensors 2025, 25, 4696. https://doi.org/10.3390/s25154696
Leão J, Cardoso R, Abraldes JA, Soares S, Gomes BB, Fernandes RJ. Intracycle Velocity Variation During a Single-Sculling 2000 m Rowing Competition. Sensors. 2025; 25(15):4696. https://doi.org/10.3390/s25154696
Chicago/Turabian StyleLeão, Joana, Ricardo Cardoso, Jose Arturo Abraldes, Susana Soares, Beatriz B. Gomes, and Ricardo J. Fernandes. 2025. "Intracycle Velocity Variation During a Single-Sculling 2000 m Rowing Competition" Sensors 25, no. 15: 4696. https://doi.org/10.3390/s25154696
APA StyleLeão, J., Cardoso, R., Abraldes, J. A., Soares, S., Gomes, B. B., & Fernandes, R. J. (2025). Intracycle Velocity Variation During a Single-Sculling 2000 m Rowing Competition. Sensors, 25(15), 4696. https://doi.org/10.3390/s25154696