Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = powder rheology analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4063 KiB  
Article
Influence of Clinker and Cinder Particle Gradation on the Properties of Blended Cement and Associated Mortars
by Runze Shang, Dexiang Huang, Wenju Cai, Longlong Niu, Bi Chen, Xinyu Zhang, Wei Li and Min Deng
Materials 2025, 18(12), 2864; https://doi.org/10.3390/ma18122864 - 17 Jun 2025
Viewed by 295
Abstract
The high-hydrolysis reactivity cement clinker powder in cement plays a major role in cement’s cementation, while low-hydrolysis reactivity mineral admixture powders, such as slag, m mainly serve as a filler. Through optimizing the particle matching of cement clinker powder and slag powder, the [...] Read more.
The high-hydrolysis reactivity cement clinker powder in cement plays a major role in cement’s cementation, while low-hydrolysis reactivity mineral admixture powders, such as slag, m mainly serve as a filler. Through optimizing the particle matching of cement clinker powder and slag powder, the mechanical properties of cement can be enhanced. In this study, clinker and slag with differing levels of fineness were obtained by separate grinding, and the particle gradation of clinker powder and slag powder in the cement was optimized. Fine clinker particles were mixed with coarse slag particles to systematically explore their effects on the rheology of cement paste, the formation of hydration products, the evolution of the pore structure, and the material’s mechanical properties. Through experimental tests and microscopic analysis, the mechanism whereby particle gradation is regulated by separate grinding was revealed. The findings of the study are as follows: with the same amount of cinder, finer clinker requires a higher water content of standard consistency. The addition of coarse cinder effectively reduces the standard-consistency water requirement of the blended cement. Fine grinding of coal cinder fails to enhance cement strength effectively but markedly raises the standard-consistency water demand. Thus, the specific surface area of coal cinder should be maintained at approximately 210 m2/kg. Full article
Show Figures

Figure 1

22 pages, 5676 KiB  
Article
Research on Rheological Behavior and Strength Characteristics of Cement-Based Grouting Materials
by Xuewei Liu, Hao Qu, Bin Liu, Yuan Zhou, Jinlan Li, Wei Deng and Weilong Tao
Buildings 2025, 15(11), 1796; https://doi.org/10.3390/buildings15111796 - 23 May 2025
Viewed by 393
Abstract
The mechanical properties of grouting materials and their cured grouts significantly impact the reinforcement effectiveness in deep coal mine roadways. This study employed shear rheology tests of slurry, structural tests, NMR (nuclear magnetic resonance), and uniaxial compression tests to comparatively analyze the mechanical [...] Read more.
The mechanical properties of grouting materials and their cured grouts significantly impact the reinforcement effectiveness in deep coal mine roadways. This study employed shear rheology tests of slurry, structural tests, NMR (nuclear magnetic resonance), and uniaxial compression tests to comparatively analyze the mechanical characteristics of a composite cement-based grouting material (HGC), ordinary Portland cement (OPC), and sulfated aluminum cement (SAC) slurry and their cured grouts. The HGC (High-performance Grouting Composite) slurry is formulated with 15.75% sulfated aluminum cement (SAC), 54.25% ordinary Portland cement (OPC), 10% fly ash, and 20% mineral powder, achieving a water/cement ratio of 0.26. The results indicate that HGC slurry more closely follows power-law flow characteristics, while OPC and SAC slurries fit better with the Bingham model. The structural recovery time for HGC slurry after high-strain disturbances is 52 s, significantly lower than the 312 s for OPC and 121 s for SAC, indicating that HGC can quickly produce hydration products that re-bond the flocculated structure. NMR T2 spectra show that HGC cured grouts have the lowest porosity, predominantly featuring inter-nanopores, whereas OPC and SAC have more super-nanopores. Uniaxial compression tests show that the uniaxial compressive strength of HGC, SAC, and OPC samples at various curing ages gradually decreases. Compared to traditional cementitious materials, HGC exhibits a rapid increase in uniaxial compressive strength within the first seven days, with an increase rate of approximately 77.97%. Finally, the relationship between micropore distribution and strength is analyzed, and the micro-mechanisms underlying the strength differences of different grouting materials are discussed. This study aids in developing a comparative analysis system of mechanical properties for deep surrounding rock grouting materials, providing a reference for selecting grouting materials for various engineering fractured rock masses. Full article
(This article belongs to the Special Issue Trends and Prospects in Cementitious Material)
Show Figures

Figure 1

22 pages, 11588 KiB  
Article
Seawater-Activated Mineral Synergy in Sulfoaluminate Cement: Corrosion Resistance Optimization via Orthogonal Design
by Chuanlin Wang, Shupeng Zhou, Qingyou Ou, Junkai Liu and Ming Wu
Materials 2025, 18(11), 2428; https://doi.org/10.3390/ma18112428 - 22 May 2025
Cited by 1 | Viewed by 346
Abstract
Mineral admixtures exhibit significant enhancement effects on the seawater corrosion resistance of sulfoaluminate cement (SAC). This study systematically investigates the influence mechanisms of fly ash (FA), silica fume (SF), and slag powder (SP) on the physicochemical properties of SAC-based materials. Experimental results demonstrate [...] Read more.
Mineral admixtures exhibit significant enhancement effects on the seawater corrosion resistance of sulfoaluminate cement (SAC). This study systematically investigates the influence mechanisms of fly ash (FA), silica fume (SF), and slag powder (SP) on the physicochemical properties of SAC-based materials. Experimental results demonstrate that FA effectively enhances the fluidity of fresh SAC paste while mitigating drying shrinkage. Under standard curing conditions, the compressive strength of SAC mortar decreases with increasing FA content, reaching optimal performance at a 5% replacement level. However, in seawater immersion environments, FA undergoes chemical activation induced by seawater ions, leading to a positive correlation between mortar strength and FA content, with the 10% replacement ratio demonstrating maximum efficacy. SF addition reduces workability but significantly suppresses shrinkage deformation. While exhibiting detrimental effects on flexural strength under standard curing (optimal dosage: 7.5%), a 5.0% SF content manifests superior seawater resistance in marine environments. SP incorporation minimally impacts mortar rheology but exacerbates shrinkage behavior, showing limited improvement in both standard-cured compressive strength and seawater corrosion resistance. Orthogonal experimental analysis reveals that SF exerts the most pronounced influence on SAC mortar fluidity. Both standard curing and seawater immersion conditions indicate FA as the dominant factor affecting mechanical strength parameters. The optimal composite formulation, determined through orthogonal combination testing, achieves peak compressive strength with 5% FA, 5% SF, and 5% SP synergistic incorporation. Full article
Show Figures

Figure 1

22 pages, 20398 KiB  
Article
Rheological and Microstructural Characterization of Steel Slag Powder-Modified Asphalt Mastics: Insights into High-Temperature Performance Enhancement
by Xiaodong Xie, Jie Gao, Zongjie Yu, Liang Song and Xuzhi Zhu
Materials 2025, 18(6), 1357; https://doi.org/10.3390/ma18061357 - 19 Mar 2025
Viewed by 401
Abstract
This study systematically investigates the rheological modification mechanism of steel slag powder (SSP) as an alternative filler in asphalt mastics, with comparative analysis against conventional limestone powder (LP). Four filler-to-asphalt (F/A) ratios (0.6–1.2) were employed to prepare modified mastics. Comprehensive characterization through laser [...] Read more.
This study systematically investigates the rheological modification mechanism of steel slag powder (SSP) as an alternative filler in asphalt mastics, with comparative analysis against conventional limestone powder (LP). Four filler-to-asphalt (F/A) ratios (0.6–1.2) were employed to prepare modified mastics. Comprehensive characterization through laser diffraction analysis, BET nitrogen adsorption, and scanning electron microscopy (SEM) revealed SSP’s significant microstructural advantages: a 29.2% smaller median particle size (D50) and 7.06% larger specific surface area compared to LP, accompanied by enhanced interparticle connectivity and morphological complexity. Rheological evaluation via dynamic shear rheology (DSR) demonstrated SSP’s superior performance enhancement—particularly at elevated F/A ratios (1.0–1.2), where multiple stress creep recovery (MSCR) tests showed a 6.9–46.06% improvement in non-recoverable creep compliance (Jnr) over LP-modified counterparts. The temperature sweep analysis indicated SSP’s effectiveness in reducing the temperature susceptibility index by 9.37–18.06% relative to LP. Fourier-transform infrared spectroscopy (FTIR) combined with two-dimensional correlation analysis (2D-COS) confirmed the dominance of physical interactions over chemical bonding in the SSP–asphalt interface. The results establish SSP’s dual functionality as both a rheological modifier and sustainable construction material, providing mechanistic insights for optimizing steel slag utilization in pavement engineering. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 3821 KiB  
Article
Influence of Waste Catalyst Surface Characteristics on High-Temperature Performance and Adhesion Properties of Asphalt Mortar
by Zhimei Wang, Mengjie Gao, Peng Guo, Yan Chen, Chuanqiang Li and Lingyun Kong
Coatings 2025, 15(2), 187; https://doi.org/10.3390/coatings15020187 - 6 Feb 2025
Viewed by 614
Abstract
The incorporation of waste fluid catalytic cracking (FCC) catalysts (WFCs) into asphalt pavements represents an effective strategy for resource utilization. However, the influences of the composition of the waste catalyst and its surface characteristics on the performance of asphalt mortars are still unclear. [...] Read more.
The incorporation of waste fluid catalytic cracking (FCC) catalysts (WFCs) into asphalt pavements represents an effective strategy for resource utilization. However, the influences of the composition of the waste catalyst and its surface characteristics on the performance of asphalt mortars are still unclear. Herein, five WFCs were selected as powder filler to replace partial mineral powder (MP) to prepare five asphalt mortars. The diffusion behaviors of asphalt binder on the components of WFCs were investigated based upon molecular dynamic simulation, as was the interfacial energy between them. The adhesion work values between asphalt and WFCs were evaluated based upon the surface free energy theory. A dynamic shear rheology test and multiple stress creep recovery test on the WFC asphalt mortar were also conducted. Furthermore, the gray correlation analysis (GCA) method was employed to analyze the correlation between the diffusion coefficient and interfacial energy with the performance of WFC asphalt mortar. The results showed that the asphalt exhibited a low diffusion coefficient and high interfacial energy with the alkaline components of WFCs. The adhesion work values between asphalt and WFCs are higher than those with MP. The addition of WFCs can enhance the anti-rutting property of asphalt mortar significantly. Among the five WFCs, 2# exhibited the best improvement effect on the anti-permanent deformation ability of asphalt mortar, which may be due to its large specific surface area and moderate pore width. The GCA results suggest that the diffusion coefficient and interfacial energy strongly correlated with the performance of asphalt mortar, with an order of adhesion > permanent deformation resistance > rutting resistance. This study provides both theoretical and experimental support for the application of WFCs in asphalt materials. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

23 pages, 4779 KiB  
Article
An Additive Manufacturing MicroFactory: Overcoming Brittle Material Failure and Improving Product Performance through Tablet Micro-Structure Control for an Immediate Release Dose Form
by Elke Prasad, John Robertson and Gavin W. Halbert
Polymers 2024, 16(18), 2566; https://doi.org/10.3390/polym16182566 - 11 Sep 2024
Cited by 2 | Viewed by 1927
Abstract
Additive manufacturing of pharmaceutical formulations offers advanced micro-structure control of oral solid dose (OSD) forms targeting not only customised dosing of an active pharmaceutical ingredient (API) but also custom-made drug release profiles. Traditionally, material extrusion 3D printing manufacturing was performed in a two-step [...] Read more.
Additive manufacturing of pharmaceutical formulations offers advanced micro-structure control of oral solid dose (OSD) forms targeting not only customised dosing of an active pharmaceutical ingredient (API) but also custom-made drug release profiles. Traditionally, material extrusion 3D printing manufacturing was performed in a two-step manufacturing process via an intermediate feedstock filament. This process was often limited in the material space due to unsuitable (brittle) material properties, which required additional time to develop complex formulations to overcome. The objective of this study was to develop an additive manufacturing MicroFactory process to produce an immediate release (IR) OSD form containing 250 mg of mefenamic acid (MFA) with consistent drug release. In this study, we present a single-step additive manufacturing process employing a novel, filament-free melt extrusion 3D printer, the MicroFactory, to successfully print a previously ‘non-printable’ brittle Soluplus®-based formulation of MFA, resulting in targeted IR dissolution profiles. The physico-chemical properties of 3D printed MFA-Soluplus®-D-sorbitol formulation was characterised by thermal analysis, Fourier Transform Infrared spectroscopy (FTIR), and X-ray Diffraction Powder (XRPD) analysis, confirming the crystalline state of mefenamic acid as polymorphic form I. Oscillatory temperature and frequency rheology sweeps were related to the processability of the formulation in the MicroFactory. 3D printed, micro-structure controlled, OSDs showed good uniformity of mass and content and exhibited an IR profile with good consistency. Fitting a mathematical model to the dissolution data correlated rate parameters and release exponents with tablet porosity. This study illustrates how additive manufacturing via melt extrusion using this MicroFactory not only streamlines the manufacturing process (one-step vs. two-step) but also enables the processing of (brittle) pharmaceutical immediate-release polymers/polymer formulations, improving and facilitating targeted in vitro drug dissolution profiles. Full article
(This article belongs to the Special Issue Applications of 3D Printing for Polymers, 3rd Edition)
Show Figures

Figure 1

16 pages, 2235 KiB  
Article
Effect of Flammulina velutipes Soluble Dietary Fiber on Dough Processing Characteristics and Micro-Fermented Dried Noodles Quality Properties
by Wenliang Wang, Shuang Yang, Lihong Wang, Furong Hou, Shasha Song, Yansheng Wang, Zhiqing Gong and Fengjuan Jia
Foods 2024, 13(17), 2764; https://doi.org/10.3390/foods13172764 - 30 Aug 2024
Cited by 1 | Viewed by 1506
Abstract
Our research focused on the integration of Flammulina velutipes soluble dietary fiber (Fv-SDF) into wheat flour during the production of dried noodles, delving into the impact of different addition ratios of Fv-SDF on both dough processing characteristics and the quality of the micro-fermented [...] Read more.
Our research focused on the integration of Flammulina velutipes soluble dietary fiber (Fv-SDF) into wheat flour during the production of dried noodles, delving into the impact of different addition ratios of Fv-SDF on both dough processing characteristics and the quality of the micro-fermented dried noodles. The viscometric and thermodynamic analyses revealed that Fv-SDF notably improved the thermal stability of the mix powder, reduced viscosity, and delayed starch aging. Additionally, Fv-SDF elevated the gelatinization temperature and enthalpy value of the blend. Farinograph Properties and dynamic rheology properties further indicated that Fv-SDF improved dough formation time, stability time, powder quality index, and viscoelasticity. Notably, at a 10% Fv-SDF addition, the noodles achieved the highest sensory score (92) and water absorption rate (148%), while maintaining a lower dry matter loss rate (5.2%) and optimal cooking time (142 s). Gas chromatography-ion mobility spectrometry (GC-IMS) analysis showed that 67 volatile substances were detected, and the contents of furfural, 1-hydroxy-2-acetone, propionic acid, and 3-methylbutyraldehyde were higher in the Fv-SDF 10% group. These 10% Fv-SDF micro-fermented noodles were not only nutritionally enhanced, but also had a unique flavor. This study provides a valuable theoretical basis for the industrial application of F. velutipes and the development of high-quality dried noodles rich in Fv-SDF. Full article
Show Figures

Figure 1

18 pages, 2769 KiB  
Article
Development and Characterization of Hybrid Meat Analogs from Whey Protein-Mushroom Composite Hydrogels
by Ramdattu Santhapur, Disha Jayakumar and David Julian McClements
Gels 2024, 10(7), 446; https://doi.org/10.3390/gels10070446 - 5 Jul 2024
Cited by 3 | Viewed by 2763
Abstract
There is a need to reduce the proportion of animal-derived food products in the human diet for sustainability and environmental reasons. However, it is also important that a transition away from animal-derived foods does not lead to any adverse nutritional effects. In this [...] Read more.
There is a need to reduce the proportion of animal-derived food products in the human diet for sustainability and environmental reasons. However, it is also important that a transition away from animal-derived foods does not lead to any adverse nutritional effects. In this study, the potential of blending whey protein isolate (WPI) with either shiitake mushroom (SM) or oyster mushroom (OM) to create hybrid foods with enhanced nutritional and physicochemical properties was investigated. The impact of OM or SM addition on the formation, microstructure, and physicochemical attributes of heat-set whey protein gels was therefore examined. The mushroom powders were used because they have relatively high levels of vitamins, minerals, phytochemicals, and dietary fibers, which may provide nutritional benefits, whereas the WPI was used to provide protein and good thermal gelation properties. A variety of analytical methods were used to characterize the structural and physicochemical properties of the WPI-mushroom hybrids, including confocal microscopy, particle electrophoresis, light scattering, proximate analysis, differential scanning calorimetry, thermogravimetric analysis, dynamic shear rheology, textural profile analysis, and colorimetry. The charge on whey proteins and mushroom particles went from positive to negative when the pH was raised from 3 to 9, but whey protein had a higher isoelectric point and charge magnitude. OM slightly increased the thermal stability of WPI, but SM had little effect. Both mushroom types decreased the lightness and increased the brownness of the whey protein gels. The addition of the mushroom powders also decreased the hardness and Young’s modulus of the whey protein gels, which may be because the mushroom particles acted as soft fillers. This study provides valuable insights into the formation of hybrid whey protein-mushroom products that have desirable physiochemical and nutritional attributes. Full article
(This article belongs to the Special Issue Properties and Structure of Plant-Based Emulsion Gels)
Show Figures

Graphical abstract

42 pages, 10075 KiB  
Review
A Comprehensive Overview of Recycled Glass as Mineral Admixture for Circular UHPC Solutions
by N. Marcela Redondo-Pérez, Jesús D. Redondo-Mosquera and Joaquín Abellán-García
Sustainability 2024, 16(12), 5077; https://doi.org/10.3390/su16125077 - 14 Jun 2024
Cited by 4 | Viewed by 2393
Abstract
This review article analyzes the influence of recycled glass (as sand and powder) beyond the durability, rheology and compressive strength of plain UHPC, even exploring flexural and direct tensile performance in fiber-reinforced UHPC. Interactions with other mineral admixtures like limestone powder, rice husk [...] Read more.
This review article analyzes the influence of recycled glass (as sand and powder) beyond the durability, rheology and compressive strength of plain UHPC, even exploring flexural and direct tensile performance in fiber-reinforced UHPC. Interactions with other mineral admixtures like limestone powder, rice husk ash, fly ash, FC3R, metakaolin and slags, among others, are analyzed. Synergy with limestone powder improves rheology, reducing superplasticizer usage. Research highlights waste glass–UHPC mixtures with reduced silica fume and cement content by over 50% and nearly 30%, respectively, with compressive strengths exceeding 150 MPa, cutting costs and carbon footprints. Furthermore, with the proper fiber dosage, waste glass–UHPC reported values for strain and energy absorption capacity, albeit lower than those of traditional UHPC formulations with high cement, silica fume and quartz powder content, surpassing requirements for demanding applications such as seismic reinforcement of structures. Moreover, durability remains comparable to that of traditional UHPC. In addition, the reported life cycle analysis found that the utilization of glass powder in UHPC allows a greater reduction of embedded CO2 than other mineral additions in UHPC without jeopardizing its properties. In general, the review study presented herein underscores recycled glass’s potential in UHPC, offering economic and performance advantages in sustainable construction. Full article
(This article belongs to the Special Issue Circular Economy in the Construction Sector)
Show Figures

Figure 1

32 pages, 6042 KiB  
Review
A Comprehensive Review of Nanotechnology Applications in Oil and Gas Well Drilling Operations
by Alhaitham M. Alkalbani and Girma T. Chala
Energies 2024, 17(4), 798; https://doi.org/10.3390/en17040798 - 7 Feb 2024
Cited by 28 | Viewed by 8939
Abstract
The field of nanotechnology has shown promise in addressing major problems and improving drilling effectiveness. An overview of the difficulties encountered during oil and gas well drilling operations and the demand for creative solutions opens the debate. This review explores how nanotechnology is [...] Read more.
The field of nanotechnology has shown promise in addressing major problems and improving drilling effectiveness. An overview of the difficulties encountered during oil and gas well drilling operations and the demand for creative solutions opens the debate. This review explores how nanotechnology is transforming the oil industry and enhancing performance as a whole. The evaluation of the uses of nanotechnology for better oil recovery, real-time monitoring, innovative materials, drilling fluids, and reservoir characterization are extensively discussed in this review. The primary function of additives is to improve the fundamental characteristics of drilling fluids. The variety of fluid additives available is a reflection of the complex drilling–fluid systems that are currently being used to enable drilling in increasingly difficult subsurface conditions. Common additives used in water- and oil-based drilling fluids include lubrication, shale stability, filtration control, rheology control, viscosification, and pH regulation. Drilling fluids frequently contain filtration control additives such as starch, polyanionic cellulose (PAC), carboxymethyl cellulose (CMC), and nanoparticles (NP). Commonly used rheology-modifier additives are xanthan gum, carboxymethyl cellulose, guar gum powder, and, more recently, salt-responsive zwitterionic polymers that were used as viscosifiers to water-based drilling fluids. The three main additives that regulate pH are citric acid monohydrate, potassium hydroxide, and sodium hydroxide. Additives that stabilize shale, such as potassium and sodium salts and asphaltenes, are often used. A wide range of materials are included in the category of lubricating additives, including polymers, asphaltenes, glass beads, oils of various grades, and oil-surfactants. Various fibrous materials, including wood, cotton, fibrous minerals, shredded tires from vehicles, and paper pulp, are used as additives to control circulation. Furthermore, shredded cellophane, bits of plastic laminate, plate-like minerals like mica flakes, granulated inert materials such as nut shells, and nano-polymers are used in wellbores to reduce fluid loss. The incorporation of nanoparticles into drilling fluids has produced upgraded fluids with better features, including improved lubricity, thermal stability, and filtering capacities. These developments aid in lowering friction, enhancing wellbore stability, and enhancing drilling efficiency. This paper also emphasizes how nanotechnology has made enhanced drilling equipment and materials possible. Drilling equipment’s longevity and performance are increased by nanocomposite materials that have been reinforced with nanoparticles due to their improved mechanical strength, wear resistance, and thermal stability. Advanced reservoir characterisation tools, including nanoparticle tracers and nanoscale imaging methods, can help locate the best drilling sites and increase production effectiveness. On the other hand, nanofluids and nanoemulsions can potentially increase oil recovery because they enhance fluid mobility, lower interfacial tension, and alter rock wettability. Although nanotechnology has many advantages, there are also issues that need to be resolved. For an implementation to be effective, factors including nanoparticle stability, dispersion, and potential environmental effects must be carefully taken into account. This review highlights the need for future research to create scalable manufacturing procedures, improve nanoparticle behaviour, and determine nanomaterials’ long-term environmental effects. In conclusion, this in-depth analysis illustrates the use of nanotechnology in transforming the process of drilling oil and gas wells. Full article
(This article belongs to the Special Issue Advances in Oil and Gas Well Engineering Science and Technology)
Show Figures

Figure 1

15 pages, 6650 KiB  
Article
In Situ Hydrogel Formulation for Advanced Wound Dressing: Influence of Co-Solvents and Functional Excipient on Tailored Alginate–Pectin–Chitosan Blend Gelation Kinetics, Adhesiveness, and Performance
by Chiara Amante, Giovanni Falcone, Rita P. Aquino, Paola Russo, Luigi Nicolais and Pasquale Del Gaudio
Gels 2024, 10(1), 3; https://doi.org/10.3390/gels10010003 - 20 Dec 2023
Cited by 5 | Viewed by 3324
Abstract
Chronic skin wounds affect more than 40 million patients worldwide, representing a huge problem for healthcare systems. This study elucidates the optimization of an in situ gelling polymer blend powder for biomedical applications through the use of co-solvents and functional excipients, underlining the [...] Read more.
Chronic skin wounds affect more than 40 million patients worldwide, representing a huge problem for healthcare systems. This study elucidates the optimization of an in situ gelling polymer blend powder for biomedical applications through the use of co-solvents and functional excipients, underlining the possibility of tailoring microparticulate powder properties to generate, in situ, hydrogels with advanced properties that are able to improve wound management and patient well-being. The blend was composed of alginate, pectin, and chitosan (APC). Various co-solvents (ethanol, isopropanol, and acetone), and salt excipients (sodium bicarbonate and ammonium carbonate) were used to modulate the gelation kinetics, rheology, adhesiveness, and water vapor transmission rate of the gels. The use of co-solvents significantly influenced particle size (mean diameter ranging from 2.91 to 5.05 µm), depending on the solvent removal rate. Hydrogels obtained using ethanol were able to absorb over 15 times their weight in simulated wound fluid within just 5 min, whereas when sodium bicarbonate was used, complete gelation was achieved in less than 30 s. Such improvement was related to the internal microporous network typical of the particle matrix obtained with the use of co-solvents, whereas sodium bicarbonate was able to promote the formation of allowed particles. Specific formulations demonstrated an optimal water vapor transmission rate, enhanced viscoelastic properties, gel stiffness, and adhesiveness (7.7 to 9.9 kPa), facilitating an atraumatic removal post-use with minimized risk of unintended removal. Microscopic analysis unveiled that porous inner structures were influencing fluid uptake, gel formation, and transpiration. In summary, this study provided valuable insights for optimizing tailored APC hydrogels as advanced wound dressings for chronic wounds, including vascular ulcers, pressure ulcers, and partial and full-thickness wounds, characterized by a high production of exudate. Full article
Show Figures

Graphical abstract

21 pages, 6138 KiB  
Article
Recycling Local Waste Glass Bottles into Cement Paste: Effect on Hydration, Microstructure, and CO2 Emission
by Fengming Ren, Xiwen Zhang, Mingxin Lin, Qing Wang and Jing Sun
Materials 2023, 16(18), 6195; https://doi.org/10.3390/ma16186195 - 13 Sep 2023
Cited by 5 | Viewed by 2025
Abstract
Large amounts of waste glass are generated along with the manufacturing of glass products, causing detrimental effects on the environment. Through crushing and ball-milling, waste glass powder (WGP) can be acquired from glass bottles and has been suggested in cementitious systems due to [...] Read more.
Large amounts of waste glass are generated along with the manufacturing of glass products, causing detrimental effects on the environment. Through crushing and ball-milling, waste glass powder (WGP) can be acquired from glass bottles and has been suggested in cementitious systems due to its potential pozzolanic activity. To better understand the impact of WGP on cementitious composites, experimental tests of rheology, heat of hydration, and strength development were conducted on cement pastes with and without WGP. Results show that the rheological performance of cement paste is improved when WGP with particles passing through 80 μm sieves is incorporated. The retarding effect and pozzolanic reaction were observed through X-ray diffraction patterns and thermo-gravimetric parameter analyses. A calcium hydroxide (CH) content calculation further confirms the secondary reactivity of WGP in cement pastes. Compared with the samples without WGP, the normalized CH content of binder per unit mass containing 35% WGP decreased by 21.01%, 24.94%, and 27.41% at the ages of 1, 28, and 90 days, respectively, which contributes to late-age strength development of pastes. At the same time, the hydration per unit of cement was increased by 21.53%, 15.48%, and 11.68%, which improved the cement efficiency. In addition, WGP particles provide nuclei for hydration products, facilitating the subsequent growth of C-S-H and strength development in late ages. Based on value engineering analysis, WGP was found to reduce the impact of Portland cement on the environment by 34.9% in terms of carbon dioxide emissions, indicating a bright prospect for WGP in the cement industry. Full article
Show Figures

Figure 1

20 pages, 13642 KiB  
Article
Rheological, Spectroscopic, and Chemical Characterization of Asphalt Binders Modified with Phase Change Materials, Polymers, and Glass Powder
by Haya Almutairi and Hassan Baaj
Appl. Sci. 2023, 13(8), 4875; https://doi.org/10.3390/app13084875 - 13 Apr 2023
Cited by 2 | Viewed by 2127
Abstract
Recently, asphalt modifiers have increasingly gained attention for improving the mechanical and thermal characteristics of asphalt mixtures. As a result, innovative additives are being constantly developed to achieve this purpose. However, some modifiers can significantly impact the chemical and rheological properties of the [...] Read more.
Recently, asphalt modifiers have increasingly gained attention for improving the mechanical and thermal characteristics of asphalt mixtures. As a result, innovative additives are being constantly developed to achieve this purpose. However, some modifiers can significantly impact the chemical and rheological properties of the asphalt binder. This paper investigates the rheological, spectroscopic, and chemical properties of asphalt binders modified with a bio-based phase change material (PCM) and phase change material mixed with glass powder (GPCM). Two binders were investigated, PG 58-28 and PG 70-28 polymer modified asphalt binder with 3% SBS. Two different percentages of GPCM (5% and 7%) were added to PG 58-28 and PG 70-28, and 5% PCM was added to PG 58-28. The results indicated that the PCMs effectively reduced the viscosity values of the asphalt binder. Moreover, testing the modified binders using differential scanning calorimetry (DSC) showed that the PCMs released the stored heat when the melting/freezing temperature was reached. However, adding glass powder with the PCMs negatively affected the thermal properties of PCMs in the asphalt mix. In addition, considerable changes in the stiffness of the binders modified with GPCM at an intermediate temperature were obtained when tested using DSR. Finally, the TGA results revealed that this specific type of PCM would not be suitable as a hot mix asphalt (HMA) modifier as its evaporation temperature is lower than the mixing temperature HMA. However, the use of PCM in warm mix asphalt (WMA) would be a more viable option. The results showed that the evaporation temperature for the PCMs was low; therefore, the PCMs cannot be used in HMA. In addition, modified binders with PCMs and GPCM showed lower viscosity compared to the control binder. The DSR rheological analysis showed that the control binder and 5%PCM, 5%GPCM, 7%GPCM, 5%GPCM, and 7%GPCM binders had similar overall properties. However, the addition of GPCM significantly decreases the stiffness at intermediate temperatures. Full article
Show Figures

Figure 1

31 pages, 4411 KiB  
Review
3D Construction Printing Standing for Sustainability and Circularity: Material-Level Opportunities
by Mariana Fonseca and Ana Mafalda Matos
Materials 2023, 16(6), 2458; https://doi.org/10.3390/ma16062458 - 20 Mar 2023
Cited by 19 | Viewed by 7055
Abstract
Three-dimensional Cementitious materials Printing (3DCP) is a cutting-edge technology for the construction industry. Three-dimensional printed buildings have shown that a well-developed automated technology can foster valuable benefits, such as a freeform architectural design without formworks and reduced human intervention. However, scalability, commercialization and [...] Read more.
Three-dimensional Cementitious materials Printing (3DCP) is a cutting-edge technology for the construction industry. Three-dimensional printed buildings have shown that a well-developed automated technology can foster valuable benefits, such as a freeform architectural design without formworks and reduced human intervention. However, scalability, commercialization and sustainability of the 3DPC technology remain critical issues. The current work presents the ecological fragility, challenges and opportunities inherent in decreasing the 3DCP environmental footprint at a material level (cementitious materials and aggregates). The very demanding performance of printable mixtures, namely in a fresh state, requires high dosages of cement and supplementary cementitious materials (SCM). Besides the heavy carbon footprint of cement production, the standard SCM availability might be an issue, especially in the longer term. One exciting option to decrease the embodied CO2 of 3DCP is, for example, to incorporate alternative and locally available SCM as partial cement replacements. Those alternative SCM can be wastes or by-products from industries or agriculture, with no added value. Moreover, the partial replacement of natural aggregate can also bring advantages for natural resource preservation. This work has highlighted the enormous potential of 3DCP to contribute to reducing the dependence on Portland cement and to manage the current colossal wastes and by-products with no added value, shifting to a Circular Economy. Though LCA analysis, mixture design revealed a critical parameter in the environmental impact of 3DCP elements or buildings. Even though cement significantly affects the LCA of 3DCP, it is crucial to achieving adequate fresh properties and rheology. From the literature survey, mixtures formulated with alternative SCM (wastes or by-products) are still restricted to rice husk ash, Municipal Solid Waste ashes and recycled powder from construction and demolition wastes. Natural aggregate replacement research has been focused on recycled fine sand, mine tailing, copper tailing, iron tailing, ornamental stone waste, recycled glass, crumb rubber, rubber powder and granules, recycled PET bottles and steel slag. However, flowability loss and mechanical strength decrease are still critical. Research efforts are needed to find low-carbon cement replacements and mix-design optimization, leading to a more sustainable and circular 3DCP while ensuring the final product performance. Full article
Show Figures

Graphical abstract

15 pages, 1781 KiB  
Article
Dough Rheological Properties and Characteristics of Wheat Bread with the Addition of Lyophilized Kale (Brassica oleracea L. var. sabellica) Powder
by Anna Korus, Mariusz Witczak, Jarosław Korus and Lesław Juszczak
Appl. Sci. 2023, 13(1), 29; https://doi.org/10.3390/app13010029 - 20 Dec 2022
Cited by 12 | Viewed by 3085
Abstract
In this study, the effect of replacing 5 or 10% of wheat flour with lyophilized kale (Brassica oleracea L. var. sabellica) on the rheology of dough and bread characteristics (physical and textural properties, sensory acceptability, staling tendency) was evaluated. The farinographic [...] Read more.
In this study, the effect of replacing 5 or 10% of wheat flour with lyophilized kale (Brassica oleracea L. var. sabellica) on the rheology of dough and bread characteristics (physical and textural properties, sensory acceptability, staling tendency) was evaluated. The farinographic analysis showed an increase in the development time, index of tolerance to mixing, and water absorption. The share of lyophilized kale in the dough affected changes in its rheological properties, e.g., increased the values of storage and loss moduli with a decrease in the value of the phase shift angle (tan δ) from 0.36 to 0.31 at 1 rad/s. A significant decrease in the values of instantaneous and viscoelastic compliance was also observed, and an increase in the value of zero shear viscosity. The incorporation of lyophilized kale into the dough caused a noticeable decrease in bread volume by about 10%, and porosity, by about 8%, despite the lack of statistical significance. Statistically significant changes were found in pore size and the presence of large pores > 5 mm2 in the crumb, while pores density increased. The enrichment of bread with lyophilized kale influenced a decrease in the brightness of the crumb from 73.7 to 49.5 while increasing the proportion of yellow and green color as a result of a considerable increase in the content of chlorophyll pigments and carotenoids. Bread enriched with lyophilized kale had lower acceptability than the control bread. The enrichment of the bread with powdered kale also caused changes in the texture of the crumb, e.g., the hardness on the first day of the study was 2.14 N in the control bread, while in the bread with 10% kale content it was 6.46 N. In addition, the enriched bread showed a decrease in springiness, cohesiveness, and resilience. Full article
Show Figures

Figure 1

Back to TopTop